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ABSTRACT
Medical image segmentation is crucial for clinical diagnosis and treatment planning. Although methods based on CNN, 
particularly U‐Net and its variants, have achieved remarkable success in automated segmentation tasks, they still face chal
lenges in effectively capturing long‐range dependencies, refining multi‐level features, and efficiently integrating cross‐level 
information. To address these issues, we propose a novel U‐Net architecture incorporating a multi‐scale feature refinement 
mechanism (MFR‐UNet). This network enhances segmentation accuracy and robustness by integrating three innovative 
modules. First, we designed a wavelet transform convolution (WtConv) module. By decomposing, processing, and recon
structing features in the frequency domain, this module enables the model to learn high‐frequency details and low‐frequency 
contours with greater precision. Second, we introduce a large receptive field attention (LRFA) module in the encoder. 
Combining deep separable convolutions with multi‐head attention, LRFA efficiently captures global contextual information at 
low computational cost. Finally, in the skip connections and decoding path, our weighted contextual fusion module (WCF) 
module dynamically generates channel attention weights for one feature stream to another, achieving efficient adaptive feature 
fusion. Simulation experiments on multiple public medical image segmentation datasets demonstrate that our MFR‐UNet 
outperforms several existing mainstream methods in key metrics such as Dice coefficient and IoU, proving its effectiveness 
in enhancing segmentation accuracy and boundary clarity.

1 | Introduction

Precise tumour segmentation is a critical step in surgical planning 
and radiation therapy [1]. Its accuracy directly impacts treatment 
strategy formulation and patient prognosis. Medical image seg
mentation, serving as the pivotal technology bridging medical 
imaging and clinical decision‐making, aims to automatically 
identify and delineate anatomical structures or pathological 

regions within images through computational algorithms [2, 3]. 
From early traditional methods based on thresholding or region 
growing to today's pixel‐level intelligent analysis powered by deep 
learning, this technology has significantly enhanced the effi
ciency, precision and reproducibility of image analysis, becoming 
an indispensable component of modern precision medicine. 
However, designing segmentation models with robust general
isation capabilities remains challenging due to differences in 
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imaging principles across modalities and the vast variability in 
lesion location, morphology, size and boundary clarity [4, 5], as 
shown in Figure 1.

Among numerous deep learning models, CNN based on 
U‐shaped architectures have achieved landmark success in 
medical image segmentation through their symmetric encoder– 
decoder structure and unique skip‐connection mechanism [6]. 
However, CNN rely on local convolutional kernels to process 
information, with their receptive fields expanding far slower than 
the increasing network depth [7, 8]. This inherent local bias 
makes it difficult for models to capture correlations between 
anatomical structures spanning large spatial distances within 
images. This represents a significant limitation for segmentation 
tasks requiring global context understanding, such as segmenting 
irregularly shaped or widely distributed lesions. Moreover, 
U‐Net's skip connections typically employ simple feature con
catenation, directly combining high‐resolution detail features 
from shallow layers with low‐resolution semantic features from 
deep layers. Although effective, this approach lacks adaptability, 
potentially leading to semantic conflicts or feature redundancy, 
and cannot guarantee optimal fusion of features from different 
hierarchical levels [9].

Subsequent studies, such as attention U‐Net, which enhances 
responses to critical regions by introducing attention gates, or 
hybrid models like TransUNet that incorporate transformers to 
capture global information, have partially mitigated these issues 
[10, 11]. However, they have not fundamentally resolved the 
core contradiction between deep information degradation and 
inefficient global modelling. For instance, simple attention 
mechanisms remain built upon local features, whereas standard 
transformers face quadratic computational complexity and may 
disrupt spatial structural continuity at extremely low feature 
map resolutions because of their lack of spatial inductive bias.

To address these core challenges, we propose a novel U‐Net ar
chitecture, MFR‐UNet, which integrates a multi‐scale feature 
refinement mechanism. This network fundamentally enhances 
the expressive power of deep features by incorporating three 
innovative synergistic modules at key positions within the U‐Net 
architecture, thereby overcoming the performance bottlenecks of 
existing models. Our main contributions are as follows:

• Wavelet transform convolution module. This module is 
integrated into the deep layers of the encoder. It de
composes feature maps into the frequency domain via 
discrete wavelet transform, enabling separate processing of 
high‐frequency details and low‐frequency contour infor
mation. This approach effectively enhances the model's 
ability to preserve edges and fine textures.

• Large receptive field attention module. This module 
efficiently expands the receptive field through parallel 
separable convolutions and explicitly models long‐range 
dependencies using a multi‐head attention mechanism. 
This design effectively addresses the insufficient global 
context awareness of traditional CNNs while maintaining 
low computational cost.

• Weighted contextual fusion module. This module is 
employed to optimise the feature fusion process in skip 
connections. It dynamically generates channel attention 
weights for one decoder feature stream from another 
encoder feature stream, enabling adaptive and efficient 
fusion of cross‐level features while effectively suppressing 
feature redundancy and semantic conflicts.

2 | Related Work

2.1 | CNN for Image Segmentation

Convolutional neural networks have become the cornerstone of 
medical image segmentation because of their powerful hierar
chical feature extraction capabilities. Among these, the U‐Net 
architecture proposed by Ronneberger et al. [12, 13] stands 
out. Through its symmetric encoder‐decoder structure and 
innovative skip connections, it effectively integrates low‐level 
details with high‐level semantics, setting new benchmarks for 
high‐precision segmentation tasks.

Building upon U‐Net, researchers have pursued expansions and 
optimisations across multiple dimensions. U‐Net++ introduces 
nested and dense skip connections, constructing multi‐level 
feature aggregation paths within the decoder to enhance infor
mation flow between feature maps at different scales [14]. This 
approach demonstrates higher accuracy when processing or
gans with complex morphologies, such as kidneys and livers. 
ResU‐Net integrates residual learning units into both the 
encoder and decoder of U‐Net [15], effectively mitigating 
gradient vanishing issues that may arise with increasing 
network depth, enabling training of deeper architectures. To 
enable adaptive focus on critical regions, Attention U‐Net in
troduces an attention gate mechanism positioned on skip‐ 
connection paths [16]. This gate automatically learns and am
plifies task‐relevant feature regions based on high‐level se
mantic information while suppressing background noise and 

FIGURE 1 | (a) A colonoscopy polyp image from the CVC‐ClinicDB 
dataset; (b) A dermoscopy lesion image from the ISIC 2017 dataset; (c) A 
dental x‐ray image from the MICCAI Tooth dataset; (d) A thyroid 
nodule ultrasound image from the DDTI dataset.
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irrelevant tissue interference. These enhancements significantly 
boost CNN performance for specific tasks.

However, all CNN‐based architectures share an inherent limi
tation: the locality of convolution kernels. Standard convolution 
operations can only process information within the receptive 
field, making it difficult for models to capture long‐range de
pendencies between anatomical structures. Although expanding 
the receptive field through stacking more convolution layers or 
using dilated convolution can be attempted, these approaches 
often lead to a steep increase in computational cost or result in 
the gridding effect in feature maps, failing to fundamentally 
resolve the issue.

2.2 | Transformer for Image Segmentation

To overcome the locality constraints of CNN, the research 
community turned its attention to the transformer architecture, 
which had initially achieved tremendous success in the NLP 
domain [17]. Its core self‐attention mechanism computes pair
wise relationships between all elements in the input sequence, 
thereby capturing global dependencies. Vision transformer 
represents pioneering work applying transformers to image 
recognition [18, 19]. It segments images into a sequence of fixed‐ 
size patches, linearly embeds these patches, and feeds them as a 
sequence into the transformer encoder.

TransUNet pioneered the integration of ViT with the U‐Net ar
chitecture for medical image segmentation [20]. It leverages CNN 
to extract shallow features, serialises the feature maps, feeds them 
into the transformer encoder to model global context and finally 
restores spatial resolution through a decoder and skip connec
tions. This design demonstrated the transformer's immense 
potential for capturing long‐range anatomical correlations. Sub
sequently, Swin‐Unet introduced windowed self‐attention and 
shifted window mechanisms from Swin transformers [21, 22], 
confining self‐attention computations to non‐overlapping local 
windows while enabling cross‐window information exchange. 
This hierarchical design significantly reduces computational 
complexity, enabling high‐resolution image processing while 
preserving robust global modelling capabilities [23].

Despite Transformers' excellence in modelling global de
pendencies, they face limitations. First, the computational 
complexity of its global self‐attention scales quadratically with 
the input sequence length, making it computationally expensive 
for high‐resolution medical images. Second, Transformers lack 
the inductive biases inherent in CNN, such as locality and 
translation invariance. This necessitates extensive pre‐training 
on large‐scale datasets to achieve optimal performance, yet 
high‐quality large‐scale annotated medical datasets are often 
difficult to obtain.

2.3 | CNN and Transformer for Image 
Segmentation

To balance the local feature extraction efficiency of CNN with 
the global context modelling capability of transformers, hybrid 

architectures emerged and quickly became a research hotspot. 
These models typically follow a “local‐global” collaborative 
processing design philosophy, aiming to achieve complementary 
advantages between the two architectures [24].

Typical hybrid models employ CNN in the shallow layers of the 
encoder to efficiently extract low‐level details such as texture 
and edges from images. Transformer modules are then intro
duced in the deeper layers to capture long‐range structural re
lationships between organs or between pathological regions and 
surrounding tissues. For instance, the TransFuse model em
ploys a dual‐branch architecture that processes feature streams 
from CNN and transformers in parallel, facilitating information 
exchange across multiple levels through a specially designed 
BiFusion module. MedT proposes a gated axial‐attention model 
that retains the CNN backbone structure while selectively 
introducing global context by computing attention across 
different axes, thereby balancing local and global informa
tion [25].

Additionally, Qiao et al. designed the multi‐scale gated axial 
transformer (MSGATNet) [26]. This network innovatively 
combines axial Transformers with multi‐scale gating mecha
nisms: the former captures image features along both horizontal 
and vertical dimensions, while the latter dynamically adjusts 
information flow between different scales. This design elegantly 
balances the preservation of structural details with the model
ling of cross‐scale semantics. Recently, Zhao et al. proposed the 
three‐path feature incremental attention network (TPFIANet) 
[27]. By constructing a parallel multi‐branch fusion architecture 
that alternately embeds convolutional and attention modules, it 
efficiently captures features across different levels and scales, 
further enhancing accuracy, robustness, and efficiency in 
medical image segmentation tasks. These innovations continu
ously expand the application boundaries of CNN‐Transformer 
fusion architectures, propelling them to new heights in model 
complexity, task generalisation and real‐world applicability.

Despite the remarkable success of hybrid architectures across 
numerous tasks, designing optimal fusion strategies remains an 
open challenge. Simple feature concatenation or addition may 
fail to effectively align and fuse features from two heterogeneous 
models, potentially introducing noise. Furthermore, although 
complex fusion modules often yield superior performance, they 
typically increase model parameters and computational com
plexity. Therefore, designing a compact, efficient fusion archi
tecture that requires no additional supervision represents a 
crucial future research direction. The MFR‐UNet proposed in 
this paper advances this goal by systematically optimising the 
U‐Net architecture through a series of ingeniously designed 
functional modules.

3 | Our Proposed MFR‐UNet

3.1 | Wavelet Transform Convolution Module

To perform a more refined analysis of features in the frequency 
domain, we introduce the wavelet transform convolution 
(WtConv) module [28]. As shown in Figure 2, the core idea of 
this module is to utilise the discrete wavelet transform (DWT) to 
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decompose the feature map into different frequency compo
nents, process these components independently, and then 
reconstruct them using the inverse wavelet transform (IWT). 
This design enables the model to separately attend to and learn 
high‐frequency details and low‐frequency contour information.

Given an input feature map X ∈ RH ×W ×C, the WtConv module 
first applies the DWT using the Haar wavelet basis to decom
pose it into four sub‐bands:

X —→DWT
{XLL,XLH ,XHL,XHH} (1)

Here, XLL represents the low‐frequency component, capturing 
the approximate or contour information of the feature map. XLH , 
XHL, and XHH represent the high‐frequency components in the 
horizontal, vertical and diagonal directions, respectively, con
taining the detail and edge information of the feature map.

After decomposition, each sub‐band is fed into an independent 
depth‐wise convolution (DWConv) layer for processing. This 
frequency‐separated processing allows the model to learn spe
cific patterns for different frequency components; for example, 
one branch might focus on texture details, whereas another 
concentrates on overall structure. This process can be repre
sented as follows:

Ysub = DWConvsub(Xsub), for sub ∈ {LL,LH,HL,HH} (2)

Subsequently, all processed sub‐band features are aggregated 
through element‐wise summation and then reconstructed back 
to the spatial domain using IWT:

Yrec = IWT(∑
sub

Ysub) (3)

Finally, to further integrate the reconstructed features, we apply 
an additional DWConv layer to produce the module's final 
output Y . This step helps to smooth out artefacts that may be 
introduced by the wavelet reconstruction and promotes the 
fusion of information from different frequencies.

Y = DWConvfinal(Yrec) (4)

In this way, the WtConv module can perform a deep analysis and 
processing of features within the frequency domain in a 
computationally efficient manner, thereby enhancing the 
model's ability to understand complex scenes.

3.2 | Large Receptive Field Attention Module

To effectively capture multi‐scale contextual information and 
long‐range dependencies in images, we have designed a novel 
hybrid computational unit named the large receptive field 
attention (LRFA) module. The overall architecture of the LRFA 
module is illustrated in Figure 3. Its core idea is to combine the 
local feature extraction capability of convolutions with the 
global modelling ability of the self‐attention mechanism.

As shown in Figure 3, the input feature map X is first passed 
through a pre‐processing unit, which consists of a layer nor
malisation (LN) layer followed by a 1 × 1 and a 3 × 3 con
volutional layer in series to extract robust local representations. 
This process can be formalised as follows:

Xlocal = Conv3×3(σ(Conv1×1(LN(X)))) (5)

where σ represents the GELU non‐linear activation function.

Next, to expand the receptive field without significantly 
increasing computational cost, we feed the extracted local fea
tures Xlocal into three parallel depth‐wise convolution (DWConv) 
branches for multi‐scale receptive field aggregation. The 
aggregated feature Xagg is obtained by element‐wise summation 
of the outputs from each branch:

Xagg =∑
3

i=1
DWConvi(Xlocal) (6)

Subsequently, the aggregated feature Xagg is fed into a standard 
multi‐head self‐attention (MHA) module for feature refinement. 
This step aims to explicitly model the pairwise relationships 
between all spatial positions in the feature map, enabling the 
model to dynamically and non‐locally enhance more informa
tive feature regions. Its output is denoted as Xattn = MHA(Xagg).

Finally, the output of the module is completed through a main 
residual connection. The attention‐refined feature Xattn is first 
passed through a 1 × 1 convolution for channel‐wise informa
tion integration, and the result is then added to the original 
module input X to obtain the final output Y :

Y = X + Conv1×1(Xattn) (7)

This residual structure ensures effective information flow and 
stable gradient backpropagation, allowing the LRFA module to 
be easily integrated into any deep neural network architecture.

FIGURE 2 | Details of our proposed wavelet transform convolution module.
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3.3 | Weighted Contextual Fusion Module

To achieve effective information interaction and fusion between 
different feature streams, we propose a weighted contextual 

fusion (WCF) module. This module aims to dynamically 
generate channel attention weights for one feature stream 
(e.g., features from the decoder) by utilising another feature 
stream (e.g., features from the encoder), thereby fusing 

FIGURE 3 | The overall framework of the medical image segmentation model MFR‐UNet.
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complementary information in an adaptive manner. The WCF 
module receives two feature maps as input, which we denote as 
X1 and X2, respectively.

As shown in Figure 4, the computation process of the module is 
mainly divided into two parallel branches. In the dynamic 
weight generation branch, the input feature X1 is used to 
generate channel attention weights. It is first transformed by a 
linear layer, then adjusted to a suitable dimension through a 
reshape operation, and finally, the Softmax function is applied 
to compute the normalised attention weights Wattn.

Wattn = Softmax(Reshape(Linear(X1))) (8)

In the parallel feature transformation branch, the other input 
feature X2 is first passed through a depth‐wise convolution 
(DWConv) layer to extract spatial features, and then trans
formed in the channel dimension by a linear layer to obtain the 
features to be weighted, Fin.

Fin = Linear(DWConv(X2)) (9)

In the fusion stage, we perform element‐wise multiplication 
between the dynamically generated attention weights Wattn and 
the features to be weighted, Fin. This operation can be under
stood as using the information from X1 to dynamically and 
selectively enhance or suppress different feature channels of X2. 
Finally, the fused feature Ffused is passed through another 
DWConv layer for final feature integration, producing the 
module's output Y .

Ffused =Wattn ⊗ Fin (10)

Y = DWConv(Ffused) (11)

Through this weighted fusion mechanism, the WCF module can 
flexibly integrate features from different sources and highlight 
the most important information for the current task.

4 | Experimental Results Analysis

4.1 | Datasets

To comprehensively evaluate the performance and generalisa
tion capabilities of our proposed MFR‐UNet, we conducted 

experiments using four publicly available datasets spanning 
different imaging modalities. These datasets enable thorough 
testing of the model's performance across diverse scenarios.

4.1.1 | CVC‐ClinicDB

This dataset comprises 612 frames extracted from colonoscopy 
videos, each annotated with a polyp region segmentation mask by 
professional physicians. It serves as a common benchmark for 
evaluating endoscopic polyp segmentation algorithms (Down
load link: https://paperswithcode.com/dataset/cvc‐clinicdb).

4.1.2 | ISIC 2017

This large‐scale dermatoscopy dataset comprises 2000 training 
images designed to support research on identifying and seg
menting skin lesions such as melanoma. Each image provides 
pixel‐level segmentation annotations for lesion areas, presenting 
challenges due to the diverse lesion morphologies and 
frequently indistinct boundaries with surrounding skin 
(Download link: https://challenge.isic‐archive.com/data/).

4.1.3 | DDTI (Diagnostic Dataset for Thyroid Imaging)

This dataset focuses on thyroid ultrasound images, featuring 
various types of thyroid nodules (benign and malignant) along
side normal thyroid tissue images. Inherent challenges in ultra
sound imaging—low contrast, speckle noise and blurred nodule 
boundaries—pose significant difficulties for precise segmenta
tion, making it a crucial dataset for testing model robustness 
(Download link: https://www.kaggle.com/datasets/dasmehdix 
tr/ddti‐thyroid‐ultrasound‐images).

4.1.4 | MICCAI Tooth

This dataset originates from the MICCAI 2D tooth segmentation 
challenge, providing a large collection of dental x‐ray images 
with corresponding segmentation masks. It aims to evaluate 
model performance on segmenting high‐density, finely struc
tured and densely packed tissues such as teeth (Download link: 
https://tianchi.aliyun.com/dataset/156596).

FIGURE 4 | Details of our proposed weighted contrastive fusion module.
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4.2 | Evaluation Metrics

To comprehensively and objectively evaluate the performance of 
the proposed model, this study selects four widely used evalu
ation metrics in this field. They are all calculated based on True 
Positives (TP), False Positives (FP), and False Negatives (FN).

• Dice Similarity Coefficient (DSC): This is the most 
commonly used metric for measuring the overlap between 
the predicted segmentation region and the ground truth 
region, and it is particularly robust for targets of varying 
sizes. Its value ranges from [0, 1], with a value closer to 1 
indicating a better segmentation result.

DSC =
2 × TP

2 × TP + FP + FN
(12)

• Intersection over Union (IoU): Also known as the Jaccard 
index, it evaluates segmentation performance by calculating 
the ratio of the intersection to the union of the predicted and 
ground truth regions. It is more sensitive to the accuracy of 
segmentation boundaries than the Dice coefficient.

IoU =
TP

TP + FP + FN
(13)

• Precision: This metric measures the proportion of pixels 
that are correctly predicted as the target region among all 
pixels predicted as the target region by the model. High 
precision implies a low false positive rate, which is crucial 
for avoiding unnecessary clinical interventions.

Precision =
TP

TP + FP
(14)

• Sensitivity (or Recall): This metric measures the pro
portion of pixels that are successfully predicted by the 
model among all pixels in the actual target region. High 
sensitivity implies a low false negative rate, which is 
essential to ensure that no small lesions are missed.

Sensitivity =
TP

TP + FN
(15)

4.3 | Implementation Details

4.3.1 | Experimental Environment

All experiments were conducted in a unified software and 
hardware environment to ensure the reproducibility of the re
sults. Our hardware platform was a server equipped with an 
NVIDIA RTX 4090 GPU (24 GB VRAM), running the Ubuntu 
20.04 operating system. The deep learning framework used was 
PyTorch 2.1, with CUDA 12.3 for GPU acceleration.

4.3.2 | Data Preprocessing and Augmentation

Before being fed into the network, all input images and their 
corresponding masks were uniformly resized to 256 × 256 

pixels. We normalised the images by subtracting the mean and 
dividing by the standard deviation to accelerate model conver
gence. To enhance the model's generalisation ability and 
mitigate overfitting, we employed a series of online data 
augmentation strategies, including: random rotation (from −15 
to +15°), random horizontal and vertical flips, random scaling 
(from 0.8 to 1.2 times) and elastic transformations.

4.3.3 | Training Configuration

We utilised the AdamW optimiser for updating the model pa
rameters, with an initial learning rate set to 1 × 10 − 4 and a 
weight decay of 1 × 10 − 5. The learning rate was dynamically 
adjusted during training using a cosine annealing schedule, 
which smoothly decreases the learning rate over time. The model 
was trained for a total of 200 epochs, with a batch size of 8. To 
ensure a robust and reliable performance evaluation, we 
employed a five‐fold cross‐validation scheme to make full use of 
the dataset.

4.3.4 | Loss Function

To effectively address the potential class imbalance problem in 
medical image segmentation and to enhance the overall per
formance of the model, this study employs a hybrid loss func
tion that combines the cross‐entropy Loss (LCE) and the Dice 
Loss (LDice). The total loss, Ltotal, is defined as follows:

Ltotal = λ1LCE + λ2LDice (16)

where LCE focuses on pixel‐level classification accuracy, 
whereas LDice directly optimises the overlap between the pre
diction and the ground truth. In this study, we empirically set 
the weighting coefficients to λ1 = 0.4 and λ2 = 0.6. This choice 
appropriately increases the weight of the Dice loss to more 
directly optimise for structural similarity in the segmentation, 
which is particularly beneficial for improving the model's ability 
to learn small targets and fine‐grained boundary details.

4.4 | Results and Discussion

To systematically validate the effectiveness of our proposed 
MFR‐UNet, we conducted extensive comparisons against mul
tiple state‐of‐the‐art segmentation methods, including the 
classic U‐Net, U‐Net++, AttUnet, UNeXt, WRANet, DualA‐Net, 
DPMNet and TPFIANet. All models were trained and evaluated 
under identical experimental settings across four distinct multi‐ 
modal datasets.

4.4.1 | Comparison With SOTA Models

Based on quantitative experimental results, our proposed MFR‐ 
UNet consistently achieved optimal or near‐optimal perfor
mance across all metrics on all four datasets, comprehensively 
outperforming all compared SOTA methods. This sustained 
competitive advantage is not coincidental but rather the 
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inevitable outcome of its purposeful modular design synergis
tically addressing diverse clinical challenges.

As shown in Table 1, In the CVC‐ClinicDB dataset, polyp seg
mentation is challenging because of their diverse morphologies 
and sometimes indistinct boundaries with surrounding mucosa. 
MFR‐UNet achieved a leading Dice score here, primarily due to 
the synergistic effects of the LRFA and WCF modules. The 
LRFA module, through its parallel large receptive field convo
lutions and self‐attention mechanism, captures the complete 
contour and contextual information of the entire polyp. This 
avoids the limitation of traditional CNNs, whose restricted 
receptive fields result in incomplete segmentation due to a 
narrowed view. Simultaneously, the WCF module plays a 
crucial role when sampling and fusing features from the 
encoder at the decoder. Rather than simply concatenating fea
tures, it dynamically generates channel weights for the decoder's 
semantic features using the encoder's high‐resolution features. 
This enables the model to intelligently determine which infor
mation to prioritise in boundary regions, achieving precise 
delineation of polyp edges.

On the more challenging ISIC 2017 dermatoscopy dataset, le
sions like melanoma exhibit highly irregular shapes, variable 
colour textures, and often feature feathered blurred boundaries 
with healthy skin. MFR‐UNet achieved top performance on 
this dataset, fully demonstrating the value of the WtConv 
module. Traditional CNNs inevitably lose the high‐frequency 
information defining these irregular boundaries during suc
cessive downsampling. WtConv, however, decomposes feature 
maps into the frequency domain, enabling the separation and 
independent processing of high‐frequency components repre
senting edges and texture. This allows the network to retain 
and learn these critical diagnostic details even in its deeper 

layers. Consequently, when reconstructing the segmentation 
map, the model restores boundaries that are finer and more 
closely aligned with the actual lesion contours than other 
models.

As shown in Table 2, the primary challenge in the DDTI thyroid 
ultrasound dataset stems from the images' inherent low contrast 
and intense speckle noise, which severely disrupts nodule 
boundary identification. MFR‐UNet also demonstrates the 
strongest robustness in such tasks. This success further high
lights the advantages of the WtConv module, which effectively 
separates low‐frequency signals representing nodule structure 
from high‐frequency signals representing speckle noise. 
Furthermore, under low signal‐to‐noise conditions, the long‐ 
range dependency modelling capability of the LRFA module 
becomes particularly crucial. It enables the model to integrate 
scattered, faint evidence across the image, forming a global 
judgement on nodule location and morphology rather than 
being misled by locally intense noise.

Finally, on the MICCAITooth dental x‐ray dataset which de
mands exceptionally high segmentation accuracy MFR‐UNet 
still achieved the best results. Teeth, as high‐density tissues, 
feature compact structures and subtle boundaries where even 
minor deviations lead to incorrect segmentation. The success of 
MFR‐UNet stems from the synergistic interaction of all its 
components. LRFA provides holistic layout information of the 
dental arch; WtConv enhances perception of high‐frequency 
details such as interdental spaces and enamel edges; whereas 
the WCF module ensures that this multidimensional informa
tion, extracted from global, frequency‐domain and local per
spectives, is fused losslessly and efficiently during the decoder's 
layer‐by‐layer resolution recovery process, ultimately achieving 
pixel‐level precision localisation.

TABLE 1 | Quantitative comparison with SOTA methods on the CVC‐ClinicDB and ISIC 2017 datasets.

Model

CVC‐ClinicDB ISIC 2017

Dice (%) IoU (%)
Precision 

(%)
Sensitivity 

(%) Dice (%) IoU (%)
Precision 

(%)
Sensitivity 

(%)
U‐Net [12] 89.72 

± 0.30
82.71 
± 0.65

90.51 ± 0.50 89.88 ± 0.21 88.15 
± 0.21

81.03 
± 0.26

90.95 ± 0.68 88.77 ± 0.92

U‐ 
Net++ [14]

90.03 
± 0.28

83.62 
± 0.30

91.41 ± 0.29 90.95 ± 0.45 88.71 
± 0.13

81.80 
± 0.17

91.66 ± 0.41 89.01 ± 0.25

AttUnet [16] 89.79 
± 0.20

83.31 
± 0.25

91.48 ± 0.48 89.31 ± 0.50 88.59 
± 0.22

81.58 
± 0.23

90.46 ± 0.25 89.99 ± 0.30

UNeXt [29] 84.85 
± 0.42

76.50 
± 0.20

87.81 ± 0.45 84.40 ± 0.40 88.66 
± 0.20

81.78 
± 0.22

91.58 ± 0.32 89.48 ± 0.29

DualA‐ 
Net [30]

90.21 
± 0.31

84.00 
± 0.42

92.48 ± 0.55 90.18 ± 0.22 88.65 
± 0.12

82.03 
± 0.18

92.98 ± 1.60 88.28 ± 1.55

DPMNet [31] 90.89 
± 0.22

84.75 
± 0.29

92.55 ± 0.15 90.05 ± 0.11 89.01 
± 0.15

82.35 
± 0.16

92.35 ± 0.09 89.45 ± 0.15

TPFIANet 
[27]

90.95 
± 0.15

84.82 
± 0.22

92.58 ± 0.11 90.11 ± 0.08 89.05 
± 0.12

82.41 
± 0.15

92.41 ± 0.05 89.55 ± 0.13

MFR‐UNet 91.25 
± 0.18

85.05 
± 0.25

92.75 ± 0.08 91.30 ± 0.04 89.25 
± 0.17

82.60 
± 0.18

92.55 ± 0.02 89.70 ± 0.11

Note: Bold indicates the best result.
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4.4.2 | Ablation Studies

To validate the individual contributions of our three core 
modules (LRFA, WtConv and WCF) and their synergistic ef
fects, we conducted a series of exhaustive ablation experiments 
on the CVC‐ClinicDB dataset using U‐Net as the baseline.

As shown in Table 3, the results demonstrate that when U‐Net 
serves as the baseline, adding any single module we designed 
(LRFA, WtConv, or WCF) to the baseline model yields perfor
mance improvements to varying degrees. Among these, the 
LRFA module delivers the most significant gains, strongly 
confirming the critical importance of introducing long‐range 
dependencies and global context modelling into the deep 
encoder layers for enhancing segmentation performance. The 
inclusion of WtConv and WCF modules also yielded consider
able performance gains, validating their effectiveness in fre
quency domain analysis and feature fusion.

Notably, the combined effect of the modules is evident. Removing 
any single module from the complete MFR‐UNet results in a 
noticeable decline in performance. The greatest degradation oc
curs when LRFA is removed, further highlighting its central role 
within the architecture. Similarly, removing either WtConv or 
WCF also leads to performance loss, demonstrating that fre
quency domain analysis and adaptive feature fusion are indis
pensable for achieving high‐precision segmentation, they are not 
redundant design elements.

Ultimately, the complete MFR‐UNet model‐integrating all three 
modules working synergistically‐achieved the best performance, 
with a Dice score significantly higher than all baselines and 
partial combination models. This result fully demonstrates the 
synergistic advantages and rationality of our proposed method: 

the three modules are not a simple stacking of functions but 
rather a complementary and indispensable organic whole.

4.4.3 | Complexity Analysis

When evaluating segmentation model performance, computa
tional complexity and inference speed are equally critical in 
clinical deployment alongside segmentation accuracy. As shown 
in Table 4, we comprehensively assessed the model parameters 
(Params), floating‐point operations (FLOPs) and single‐image 
inference time for MFR‐UNet and other SOTA methods.

Our MFR‐UNet exhibits higher parameter counts and computa
tional demands compared to lightweight models such as UNeXt 
or the baseline U‐Net. This primarily stems from integrating 
powerful feature refinement modules (LRFA, WtConv and WCF) 
at different network stages, which inevitably introduce additional 
computational overhead to achieve deep feature refinement. 
Nevertheless, we consider this increase in complexity a carefully 
designed and valuable trade‐off.

As demonstrated by the preceding experimental results, this 
moderate resource investment yields significant and consistent 
performance gains in segmentation accuracy, robustness, and 
generalisation capability. More importantly, MFR‐UNet dem
onstrates outstanding performance in practical inference effi
ciency. Despite its higher FLOPs, the highly parallelised 
architecture of our designed modules (e.g., LRFA and WtConv) 
fully leverages modern GPU computational power, keeping 
single‐image inference time within the range required for clin
ical real‐time or near‐real‐time auxiliary diagnosis. Thus, MFR‐ 
UNet achieves a favourable trade‐off between model complexity 
and segmentation performance.

TABLE 2 | Quantitative comparison with SOTA methods on the DDTI and MICCAI tooth datasets.

Model

DDTI MICCAITooth

Dice (%) IoU (%)
Precision 

(%)
Sensitivity 

(%) Dice (%) IoU (%)
Precision 

(%)
Sensitivity 

(%)
U‐Net [12] 75.12 

± 0.45
62.88 
± 0.51

82.01 ± 0.42 75.03 ± 0.55 92.41 
± 0.40

86.09 
± 0.53

92.68 ± 0.41 92.55 ± 0.70

U‐ 
Net++ [14]

75.61 
± 0.41

63.55 
± 0.48

80.82 ± 0.39 75.91 ± 0.51 92.63 
± 0.15

86.41 
± 0.37

92.70 ± 0.26 92.39 ± 0.40

AttUnet [16] 74.41 
± 0.35

62.35 
± 0.39

81.12 ± 0.31 75.72 ± 0.44 92.31 
± 0.10

85.92 
± 0.15

92.20 ± 0.49 92.85 ± 0.35

UNeXt [29] 75.45 
± 0.39

63.15 
± 0.43

81.80 ± 0.36 76.71 ± 0.49 91.58 
± 0.03

84.66 
± 0.05

91.49 ± 0.15 92.10 ± 0.13

DualA‐ 
Net [30]

76.71 
± 0.39

64.70 
± 0.42

82.95 ± 0.35 79.92 ± 0.46 91.93 
± 0.31

85.28 
± 0.40

92.57 ± 1.10 91.73 ± 0.20

DPMNet [31] 77.15 
± 0.37

64.81 
± 0.40

83.01 ± 0.33 80.65 ± 0.45 92.45 
± 0.08

86.45 
± 0.11

92.41 ± 0.25 92.85 ± 0.25

TPFIANet 
[27]

77.21 
± 0.35

64.85 
± 0.38

83.05 ± 0.31 80.69 ± 0.43 92.51 
± 0.05

86.51 
± 0.08

92.48 ± 0.20 92.91 ± 0.20

MFR‐UNet 77.45 
± 0.32

65.10 
± 0.36

83.25 ± 0.30 80.85 ± 0.41 92.70 
± 0.01

86.75 
± 0.04

92.65 ± 0.23 93.05 ± 0.22

Note: Bold indicates the best result.
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4.4.4 | Visualisation of Segmentation Results

To more intuitively demonstrate the segmentation performance 
advantages of our proposed MFR‐UNet, we conducted a visual 
analysis of segmentation results across typical cases in addition 
to quantitative metric comparisons. These visualisations not 
only corroborate our quantitative data but also reveal our 
model's specific strengths in handling complex boundaries, 
noise interference and fine‐grained structures.

As shown in Figures 5–9, comparisons with SOTA models 
reveal that many baseline models (e.g., U‐Net and AttUnet) 
struggle to fully enclose irregularly shaped polyps and skin le
sions in the CVC‐ClinicDB and ISIC 2017 datasets. In contrast, 
the segmentation masks generated by MFR‐UNet exhibit 
smoother more complete contours that precisely align with 
lesion edges. This visually demonstrates the synergistic effect of 
the WtConv module in preserving high‐frequency boundary 
information and the LRFA module in understanding global 
morphology. When confronted with the intense speckle noise in 
DDTI images, segmentation results from other models often 
exhibit isolated small patches of misclassification caused by 
noise. MFR‐UNet, however, delivers cleaner and more robust 
results due to WtConv's effective separation of signal and noise.

Visualisation results from ablation experiments further reveal 
the indispensability of each core module. The baseline U‐Net 
model produces relatively coarse segmentation results. When 
the LRFA module is removed, the model sometimes loses grasp 
of the target's overall shape, leading to structurally incomplete 

segmentation results. When the WtConv module is removed, 
segmentation boundaries become noticeably blurred, failing to 
handle fine texture details. Removing the WCF module resulted 
in incomplete segmentation regions and weaker boundary 
coherence, indicating ineffective cross‐level feature alignment 
and fusion. Ultimately, the complete MFR‐UNet model deliv
ered the closest visual results to ground truth, exhibiting 
optimal performance in structural integrity, boundary definition 
and internal consistency.

5 | Conclusions

In this paper, we propose a novel medical image segmentation 
network—MFR‐UNet—aimed at addressing the core limitations 
of existing U‐Net architectures in global context capture, multi‐ 
frequency domain feature processing, and cross‐level informa
tion fusion. By innovatively integrating LRFA, WtConv and 
WCF modules, our model performs deep refinement of feature 
representations across multiple dimensions.

Extensive experimental results robustly demonstrate the effec
tiveness and superiority of MFR‐UNet. Across four public 
datasets spanning diverse imaging modalities (endoscopy, der
matoscopy, ultrasound and x‐ray), MFR‐UNet consistently 
outperforms multiple state‐of‐the‐art methods on key perfor
mance metrics. This success stems from its modular, synergistic 
design: LRFA effectively captures long‐range dependencies, 
WtConv precisely preserves high‐frequency boundary details 
and WCF enables intelligent cross‐level feature fusion.

TABLE 3 | Module ablation study results of MFR‐UNet on the CVC‐ClinicDB dataset.

Model variant Dice IoU Precision Sensitivity
Baseline (U‐Net) 89.72 82.71 90.51 89.88

Baseline + WtConv 90.45 83.65 91.15 90.65

Baseline + WCF 90.21 83.28 90.88 90.33

Baseline + LRFA 90.95 84.31 91.55 90.21

MFR‐UNet (w/o LRFA) 90.33 83.95 91.89 90.55

MFR‐UNet (w/o WtConv) 90.45 84.15 92.01 90.78

MFR‐UNet (w/o WCF) 90.68 84.45 92.25 90.01

MFR‐UNet 91.15 85.05 92.75 91.30
Note: Bold indicates the best result.

TABLE 4 | Complexity analysis of MFR‐UNet and SOTA methods.

Network Params (M) FLOPs (G) Inference time (ms)
U‐Net (2015) [12] 7.85 56.40 1.5

UNet++(2018) [14] 9.44 128.39 3.7

Att‐Unet (2018) [16] 34.88 266.53 4.3

UNeXt (2022) [29] 1.47 2.29 1.7

DualA‐Net (2024) [30] 2.58 22.04 2.9

DPMNet (2024) [31] 28.04 31.76 1.9

TPFIANet (2025) [27] 10.49 256.07 2.7

MFR‐UNet 27.26 201.27 2.2
Note: Bold indicates the best result.
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FIGURE 5 | Comparison of MFR‐UNet and SOTA methods for visual segmentation on the CVC‐ClinicDB dataset.

FIGURE 6 | Comparison of MFR‐UNet and SOTA methods for visual segmentation on the ISIC2017 dataset.

FIGURE 7 | Comparison of MFR‐UNet and SOTA methods for visual segmentation on the MICCAI tooth dataset.

FIGURE 8 | Comparison of MFR‐UNet and SOTA methods for visual segmentation on the DDTI dataset.

FIGURE 9 | Comparison of visual segmentation for module ablation studies in MFR‐UNet.
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Despite MFR‐UNet's encouraging results, we recognise room for 
optimisation in model complexity. Future work will focus on 
two primary directions: First, we will explore model light
weighting techniques such as knowledge distillation and 
network pruning to reduce computational costs while main
taining high performance, making it more deployable in 
resource‐constrained clinical settings. Second, we will strive to 
extend MFR‐UNet's 2D framework to 3D for handling volu
metric data such as MRI and CT scans, which holds greater 
clinical significance for tumour volume measurement and sur
gical planning.
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