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ABSTRACT

Medical image segmentation is crucial for clinical diagnosis and treatment planning. Although methods based on CNN,
particularly U-Net and its variants, have achieved remarkable success in automated segmentation tasks, they still face chal-
lenges in effectively capturing long-range dependencies, refining multi-level features, and efficiently integrating cross-level
information. To address these issues, we propose a novel U-Net architecture incorporating a multi-scale feature refinement
mechanism (MFR-UNet). This network enhances segmentation accuracy and robustness by integrating three innovative
modules. First, we designed a wavelet transform convolution (WtConv) module. By decomposing, processing, and recon-
structing features in the frequency domain, this module enables the model to learn high-frequency details and low-frequency
contours with greater precision. Second, we introduce a large receptive field attention (LRFA) module in the encoder.
Combining deep separable convolutions with multi-head attention, LRFA efficiently captures global contextual information at
low computational cost. Finally, in the skip connections and decoding path, our weighted contextual fusion module (WCF)
module dynamically generates channel attention weights for one feature stream to another, achieving efficient adaptive feature
fusion. Simulation experiments on multiple public medical image segmentation datasets demonstrate that our MFR-UNet
outperforms several existing mainstream methods in key metrics such as Dice coefficient and IoU, proving its effectiveness
in enhancing segmentation accuracy and boundary clarity.

1 | Introduction regions within images through computational algorithms [2, 3].

From early traditional methods based on thresholding or region

Precise tumour segmentation is a critical step in surgical planning
and radiation therapy [1]. Its accuracy directly impacts treatment
strategy formulation and patient prognosis. Medical image seg-
mentation, serving as the pivotal technology bridging medical
imaging and clinical decision-making, aims to automatically
identify and delineate anatomical structures or pathological

growing to today's pixel-level intelligent analysis powered by deep
learning, this technology has significantly enhanced the effi-
ciency, precision and reproducibility of image analysis, becoming
an indispensable component of modern precision medicine.
However, designing segmentation models with robust general-
isation capabilities remains challenging due to differences in
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imaging principles across modalities and the vast variability in
lesion location, morphology, size and boundary clarity [4, 5], as
shown in Figure 1.

Among numerous deep learning models, CNN based on
U-shaped architectures have achieved landmark success in
medical image segmentation through their symmetric encoder-
decoder structure and unique skip-connection mechanism [6].
However, CNN rely on local convolutional kernels to process
information, with their receptive fields expanding far slower than
the increasing network depth [7, 8]. This inherent local bias
makes it difficult for models to capture correlations between
anatomical structures spanning large spatial distances within
images. This represents a significant limitation for segmentation
tasks requiring global context understanding, such as segmenting
irregularly shaped or widely distributed lesions. Moreover,
U-Net's skip connections typically employ simple feature con-
catenation, directly combining high-resolution detail features
from shallow layers with low-resolution semantic features from
deep layers. Although effective, this approach lacks adaptability,
potentially leading to semantic conflicts or feature redundancy,
and cannot guarantee optimal fusion of features from different
hierarchical levels [9].

Subsequent studies, such as attention U-Net, which enhances
responses to critical regions by introducing attention gates, or
hybrid models like TransUNet that incorporate transformers to
capture global information, have partially mitigated these issues
[10, 11]. However, they have not fundamentally resolved the
core contradiction between deep information degradation and
inefficient global modelling. For instance, simple attention
mechanisms remain built upon local features, whereas standard
transformers face quadratic computational complexity and may
disrupt spatial structural continuity at extremely low feature
map resolutions because of their lack of spatial inductive bias.

FIGURE 1 | (a) A colonoscopy polyp image from the CVC-ClinicDB
dataset; (b) A dermoscopy lesion image from the ISIC 2017 dataset; (c) A
dental x-ray image from the MICCAI Tooth dataset; (d) A thyroid
nodule ultrasound image from the DDTI dataset.

To address these core challenges, we propose a novel U-Net ar-
chitecture, MFR-UNet, which integrates a multi-scale feature
refinement mechanism. This network fundamentally enhances
the expressive power of deep features by incorporating three
innovative synergistic modules at key positions within the U-Net
architecture, thereby overcoming the performance bottlenecks of
existing models. Our main contributions are as follows:

e Wavelet transform convolution module. This module is
integrated into the deep layers of the encoder. It de-
composes feature maps into the frequency domain via
discrete wavelet transform, enabling separate processing of
high-frequency details and low-frequency contour infor-
mation. This approach effectively enhances the model's
ability to preserve edges and fine textures.

e Large receptive field attention module. This module
efficiently expands the receptive field through parallel
separable convolutions and explicitly models long-range
dependencies using a multi-head attention mechanism.
This design effectively addresses the insufficient global
context awareness of traditional CNNs while maintaining
low computational cost.

e Weighted contextual fusion module. This module is
employed to optimise the feature fusion process in skip
connections. It dynamically generates channel attention
weights for one decoder feature stream from another
encoder feature stream, enabling adaptive and efficient
fusion of cross-level features while effectively suppressing
feature redundancy and semantic conflicts.

2 | Related Work
2.1 | CNN for Image Segmentation

Convolutional neural networks have become the cornerstone of
medical image segmentation because of their powerful hierar-
chical feature extraction capabilities. Among these, the U-Net
architecture proposed by Ronneberger et al. [12, 13] stands
out. Through its symmetric encoder-decoder structure and
innovative skip connections, it effectively integrates low-level
details with high-level semantics, setting new benchmarks for
high-precision segmentation tasks.

Building upon U-Net, researchers have pursued expansions and
optimisations across multiple dimensions. U-Net++ introduces
nested and dense skip connections, constructing multi-level
feature aggregation paths within the decoder to enhance infor-
mation flow between feature maps at different scales [14]. This
approach demonstrates higher accuracy when processing or-
gans with complex morphologies, such as kidneys and livers.
ResU-Net integrates residual learning units into both the
encoder and decoder of U-Net [15], effectively mitigating
gradient vanishing issues that may arise with increasing
network depth, enabling training of deeper architectures. To
enable adaptive focus on critical regions, Attention U-Net in-
troduces an attention gate mechanism positioned on skip-
connection paths [16]. This gate automatically learns and am-
plifies task-relevant feature regions based on high-level se-
mantic information while suppressing background noise and
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irrelevant tissue interference. These enhancements significantly
boost CNN performance for specific tasks.

However, all CNN-based architectures share an inherent limi-
tation: the locality of convolution kernels. Standard convolution
operations can only process information within the receptive
field, making it difficult for models to capture long-range de-
pendencies between anatomical structures. Although expanding
the receptive field through stacking more convolution layers or
using dilated convolution can be attempted, these approaches
often lead to a steep increase in computational cost or result in
the gridding effect in feature maps, failing to fundamentally
resolve the issue.

2.2 | Transformer for Image Segmentation

To overcome the locality constraints of CNN, the research
community turned its attention to the transformer architecture,
which had initially achieved tremendous success in the NLP
domain [17]. Its core self-attention mechanism computes pair-
wise relationships between all elements in the input sequence,
thereby capturing global dependencies. Vision transformer
represents pioneering work applying transformers to image
recognition [18, 19]. It segments images into a sequence of fixed-
size patches, linearly embeds these patches, and feeds them as a
sequence into the transformer encoder.

TransUNet pioneered the integration of ViT with the U-Net ar-
chitecture for medical image segmentation [20]. It leverages CNN
to extract shallow features, serialises the feature maps, feeds them
into the transformer encoder to model global context and finally
restores spatial resolution through a decoder and skip connec-
tions. This design demonstrated the transformer's immense
potential for capturing long-range anatomical correlations. Sub-
sequently, Swin-Unet introduced windowed self-attention and
shifted window mechanisms from Swin transformers [21, 22],
confining self-attention computations to non-overlapping local
windows while enabling cross-window information exchange.
This hierarchical design significantly reduces computational
complexity, enabling high-resolution image processing while
preserving robust global modelling capabilities [23].

Despite Transformers' excellence in modelling global de-
pendencies, they face limitations. First, the computational
complexity of its global self-attention scales quadratically with
the input sequence length, making it computationally expensive
for high-resolution medical images. Second, Transformers lack
the inductive biases inherent in CNN, such as locality and
translation invariance. This necessitates extensive pre-training
on large-scale datasets to achieve optimal performance, yet
high-quality large-scale annotated medical datasets are often
difficult to obtain.

2.3 | CNN and Transformer for Image
Segmentation

To balance the local feature extraction efficiency of CNN with
the global context modelling capability of transformers, hybrid

architectures emerged and quickly became a research hotspot.
These models typically follow a “local-global” collaborative
processing design philosophy, aiming to achieve complementary
advantages between the two architectures [24].

Typical hybrid models employ CNN in the shallow layers of the
encoder to efficiently extract low-level details such as texture
and edges from images. Transformer modules are then intro-
duced in the deeper layers to capture long-range structural re-
lationships between organs or between pathological regions and
surrounding tissues. For instance, the TransFuse model em-
ploys a dual-branch architecture that processes feature streams
from CNN and transformers in parallel, facilitating information
exchange across multiple levels through a specially designed
BiFusion module. MedT proposes a gated axial-attention model
that retains the CNN backbone structure while selectively
introducing global context by computing attention across
different axes, thereby balancing local and global informa-
tion [25].

Additionally, Qiao et al. designed the multi-scale gated axial
transformer (MSGATNet) [26]. This network innovatively
combines axial Transformers with multi-scale gating mecha-
nisms: the former captures image features along both horizontal
and vertical dimensions, while the latter dynamically adjusts
information flow between different scales. This design elegantly
balances the preservation of structural details with the model-
ling of cross-scale semantics. Recently, Zhao et al. proposed the
three-path feature incremental attention network (TPFIANet)
[27]. By constructing a parallel multi-branch fusion architecture
that alternately embeds convolutional and attention modules, it
efficiently captures features across different levels and scales,
further enhancing accuracy, robustness, and efficiency in
medical image segmentation tasks. These innovations continu-
ously expand the application boundaries of CNN-Transformer
fusion architectures, propelling them to new heights in model
complexity, task generalisation and real-world applicability.

Despite the remarkable success of hybrid architectures across
numerous tasks, designing optimal fusion strategies remains an
open challenge. Simple feature concatenation or addition may
fail to effectively align and fuse features from two heterogeneous
models, potentially introducing noise. Furthermore, although
complex fusion modules often yield superior performance, they
typically increase model parameters and computational com-
plexity. Therefore, designing a compact, efficient fusion archi-
tecture that requires no additional supervision represents a
crucial future research direction. The MFR-UNet proposed in
this paper advances this goal by systematically optimising the
U-Net architecture through a series of ingeniously designed
functional modules.

3 | Our Proposed MFR-UNet

3.1 | Wavelet Transform Convolution Module

To perform a more refined analysis of features in the frequency
domain, we introduce the wavelet transform convolution

(WtConv) module [28]. As shown in Figure 2, the core idea of
this module is to utilise the discrete wavelet transform (DWT) to
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FIGURE 2 | Details of our proposed wavelet transform convolution module.

decompose the feature map into different frequency compo-
nents, process these components independently, and then
reconstruct them using the inverse wavelet transform (IWT).
This design enables the model to separately attend to and learn
high-frequency details and low-frequency contour information.

Given an input feature map X € R¥*"*C the WtConv module
first applies the DWT using the Haar wavelet basis to decom-
pose it into four sub-bands:

DWT
X — { X1, Xep, Xer, Xurr} (€Y

Here, X;; represents the low-frequency component, capturing
the approximate or contour information of the feature map. X,
Xur, and Xypy represent the high-frequency components in the
horizontal, vertical and diagonal directions, respectively, con-
taining the detail and edge information of the feature map.

After decomposition, each sub-band is fed into an independent
depth-wise convolution (DWConv) layer for processing. This
frequency-separated processing allows the model to learn spe-
cific patterns for different frequency components; for example,
one branch might focus on texture details, whereas another
concentrates on overall structure. This process can be repre-
sented as follows:

Yeur = DWConvew(Xow), for sub € {LL, LH, HL, HH}  (2)
Subsequently, all processed sub-band features are aggregated
through element-wise summation and then reconstructed back
to the spatial domain using IWT:

Yrec = IWT(ZYsub) ®

sub

Finally, to further integrate the reconstructed features, we apply
an additional DWConv layer to produce the module's final
output Y. This step helps to smooth out artefacts that may be
introduced by the wavelet reconstruction and promotes the
fusion of information from different frequencies.

Y = DWCOHVfinal(Yrec) (4)

In this way, the WtConv module can perform a deep analysis and
processing of features within the frequency domain in a
computationally efficient manner, thereby enhancing the
model's ability to understand complex scenes.

3.2 | Large Receptive Field Attention Module

To effectively capture multi-scale contextual information and
long-range dependencies in images, we have designed a novel
hybrid computational unit named the large receptive field
attention (LRFA) module. The overall architecture of the LRFA
module is illustrated in Figure 3. Its core idea is to combine the
local feature extraction capability of convolutions with the
global modelling ability of the self-attention mechanism.

As shown in Figure 3, the input feature map X is first passed
through a pre-processing unit, which consists of a layer nor-
malisation (LN) layer followed by a 1 X 1 and a 3 X 3 con-
volutional layer in series to extract robust local representations.
This process can be formalised as follows:

Xiocal = Conviys(o(Convix (LN(X)))) ©)
where o represents the GELU non-linear activation function.

Next, to expand the receptive field without significantly
increasing computational cost, we feed the extracted local fea-
tures Xjoca into three parallel depth-wise convolution (DWConv)
branches for multi-scale receptive field aggregation. The
aggregated feature X,g, is obtained by element-wise summation
of the outputs from each branch:

3
X;gg = Z chonvi()ﬁocal) (6)
i=1

Subsequently, the aggregated feature X, is fed into a standard
multi-head self-attention (MHA) module for feature refinement.
This step aims to explicitly model the pairwise relationships
between all spatial positions in the feature map, enabling the
model to dynamically and non-locally enhance more informa-
tive feature regions. Its output is denoted as X = MHA(X,g).-

Finally, the output of the module is completed through a main
residual connection. The attention-refined feature X, is first
passed through a 1 X 1 convolution for channel-wise informa-
tion integration, and the result is then added to the original
module input X to obtain the final output Y:

Y =X + Convyg (Xatn) ™

This residual structure ensures effective information flow and
stable gradient backpropagation, allowing the LRFA module to
be easily integrated into any deep neural network architecture.
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FIGURE 3 | The overall framework of the medical image segmentation model MFR-UNet.

3.3 | Weighted Contextual Fusion Module

fusion (WCF) module. This module aims to dynamically
generate channel attention weights for one feature stream

To achieve effective information interaction and fusion between (e.g., features from the decoder) by utilising another feature
different feature streams, we propose a weighted contextual stream (e.g., features from the encoder), thereby fusing
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complementary information in an adaptive manner. The WCF
module receives two feature maps as input, which we denote as
X and X;, respectively.

As shown in Figure 4, the computation process of the module is
mainly divided into two parallel branches. In the dynamic
weight generation branch, the input feature X; is used to
generate channel attention weights. It is first transformed by a
linear layer, then adjusted to a suitable dimension through a
reshape operation, and finally, the Softmax function is applied
to compute the normalised attention weights Wy.

Wattn = Softmax(Reshape(Linear(X;))) (8)

In the parallel feature transformation branch, the other input
feature X; is first passed through a depth-wise convolution
(DWConv) layer to extract spatial features, and then trans-
formed in the channel dimension by a linear layer to obtain the
features to be weighted, E.

F, = Linear(DWConv(X;)) ©)

In the fusion stage, we perform element-wise multiplication
between the dynamically generated attention weights Wy, and
the features to be weighted, F,. This operation can be under-
stood as using the information from X; to dynamically and
selectively enhance or suppress different feature channels of X;.
Finally, the fused feature Fygq is passed through another
DWConv layer for final feature integration, producing the
module's output Y.

Fysed = Waitn ® Fn (10)
Y = DWConv(Fysed) (11)
Through this weighted fusion mechanism, the WCF module can

flexibly integrate features from different sources and highlight
the most important information for the current task.

4 | Experimental Results Analysis

4.1 | Datasets

To comprehensively evaluate the performance and generalisa-
tion capabilities of our proposed MFR-UNet, we conducted

experiments using four publicly available datasets spanning
different imaging modalities. These datasets enable thorough
testing of the model's performance across diverse scenarios.

41.1 | CVC-ClinicDB

This dataset comprises 612 frames extracted from colonoscopy
videos, each annotated with a polyp region segmentation mask by
professional physicians. It serves as a common benchmark for
evaluating endoscopic polyp segmentation algorithms (Down-
load link: https://paperswithcode.com/dataset/cvc-clinicdb).

41.2 | ISIC 2017

This large-scale dermatoscopy dataset comprises 2000 training
images designed to support research on identifying and seg-
menting skin lesions such as melanoma. Each image provides
pixel-level segmentation annotations for lesion areas, presenting
challenges due to the diverse lesion morphologies and
frequently indistinct boundaries with surrounding skin
(Download link: https://challenge.isic-archive.com/data/).

4.1.3 | DDTI (Diagnostic Dataset for Thyroid Imaging)

This dataset focuses on thyroid ultrasound images, featuring
various types of thyroid nodules (benign and malignant) along-
side normal thyroid tissue images. Inherent challenges in ultra-
sound imaging—low contrast, speckle noise and blurred nodule
boundaries—pose significant difficulties for precise segmenta-
tion, making it a crucial dataset for testing model robustness
(Download link: https://www.kaggle.com/datasets/dasmehdix
tr/ddti-thyroid-ultrasound-images).

4.1.4 | MICCAI Tooth

This dataset originates from the MICCAI 2D tooth segmentation
challenge, providing a large collection of dental x-ray images
with corresponding segmentation masks. It aims to evaluate
model performance on segmenting high-density, finely struc-
tured and densely packed tissues such as teeth (Download link:
https://tianchi.aliyun.com/dataset/156596).

~ WCF

|

Softmax

FIGURE 4 | Details of our proposed weighted contrastive fusion module.
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4.2 | Evaluation Metrics

To comprehensively and objectively evaluate the performance of
the proposed model, this study selects four widely used evalu-
ation metrics in this field. They are all calculated based on True
Positives (TP), False Positives (FP), and False Negatives (FN).

e Dice Similarity Coefficient (DSC): This is the most
commonly used metric for measuring the overlap between
the predicted segmentation region and the ground truth
region, and it is particularly robust for targets of varying
sizes. Its value ranges from [0, 1], with a value closer to 1
indicating a better segmentation result.

2XxTP
DSC=———F——— 12
SC 2X TP+ FP +FN (12)

e Intersection over Union (IoU): Also known as the Jaccard
index, it evaluates segmentation performance by calculating
the ratio of the intersection to the union of the predicted and
ground truth regions. It is more sensitive to the accuracy of
segmentation boundaries than the Dice coefficient.

TP

oU=s——
Y = TP+ FP+FN

(13)

e Precision: This metric measures the proportion of pixels
that are correctly predicted as the target region among all
pixels predicted as the target region by the model. High
precision implies a low false positive rate, which is crucial
for avoiding unnecessary clinical interventions.

TP

Precisi —
recision —TP T FP

(14)

e Sensitivity (or Recall): This metric measures the pro-
portion of pixels that are successfully predicted by the
model among all pixels in the actual target region. High
sensitivity implies a low false negative rate, which is
essential to ensure that no small lesions are missed.

TP
Sensitivity = m (15)

4.3 | Implementation Details
4.3.1 | Experimental Environment

All experiments were conducted in a unified software and
hardware environment to ensure the reproducibility of the re-
sults. Our hardware platform was a server equipped with an
NVIDIA RTX 4090 GPU (24 GB VRAM), running the Ubuntu
20.04 operating system. The deep learning framework used was
PyTorch 2.1, with CUDA 12.3 for GPU acceleration.

4.3.2 | Data Preprocessing and Augmentation

Before being fed into the network, all input images and their
corresponding masks were uniformly resized to 256 X 256

pixels. We normalised the images by subtracting the mean and
dividing by the standard deviation to accelerate model conver-
gence. To enhance the model's generalisation ability and
mitigate overfitting, we employed a series of online data
augmentation strategies, including: random rotation (from —15
to +15°), random horizontal and vertical flips, random scaling
(from 0.8 to 1.2 times) and elastic transformations.

4.3.3 | Training Configuration

We utilised the AdamW optimiser for updating the model pa-
rameters, with an initial learning rate set to 1 x 10~% and a
weight decay of 1 x 10~°. The learning rate was dynamically
adjusted during training using a cosine annealing schedule,
which smoothly decreases the learning rate over time. The model
was trained for a total of 200 epochs, with a batch size of 8. To
ensure a robust and reliable performance evaluation, we
employed a five-fold cross-validation scheme to make full use of
the dataset.

4.3.4 | Loss Function

To effectively address the potential class imbalance problem in
medical image segmentation and to enhance the overall per-
formance of the model, this study employs a hybrid loss func-
tion that combines the cross-entropy Loss (Lcg) and the Dice
Loss (Lpice). The total loss, Lo, is defined as follows:

Liotal = A1Lcg + A2Lpice (16)

where Lcp focuses on pixel-level classification accuracy,
whereas Lp;., directly optimises the overlap between the pre-
diction and the ground truth. In this study, we empirically set
the weighting coefficients to 4; = 0.4 and 1, = 0.6. This choice
appropriately increases the weight of the Dice loss to more
directly optimise for structural similarity in the segmentation,
which is particularly beneficial for improving the model's ability
to learn small targets and fine-grained boundary details.

4.4 | Results and Discussion

To systematically validate the effectiveness of our proposed
MFR-UNet, we conducted extensive comparisons against mul-
tiple state-of-the-art segmentation methods, including the
classic U-Net, U-Net++, AttUnet, UNeXt, WRANet, DualA-Net,
DPMNet and TPFIANet. All models were trained and evaluated
under identical experimental settings across four distinct multi-
modal datasets.

441 | Comparison With SOTA Models

Based on quantitative experimental results, our proposed MFR-
UNet consistently achieved optimal or near-optimal perfor-
mance across all metrics on all four datasets, comprehensively
outperforming all compared SOTA methods. This sustained
competitive advantage is not coincidental but rather the
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inevitable outcome of its purposeful modular design synergis-
tically addressing diverse clinical challenges.

As shown in Table 1, In the CVC-ClinicDB dataset, polyp seg-
mentation is challenging because of their diverse morphologies
and sometimes indistinct boundaries with surrounding mucosa.
MFR-UNet achieved a leading Dice score here, primarily due to
the synergistic effects of the LRFA and WCF modules. The
LRFA module, through its parallel large receptive field convo-
lutions and self-attention mechanism, captures the complete
contour and contextual information of the entire polyp. This
avoids the limitation of traditional CNNs, whose restricted
receptive fields result in incomplete segmentation due to a
narrowed view. Simultaneously, the WCF module plays a
crucial role when sampling and fusing features from the
encoder at the decoder. Rather than simply concatenating fea-
tures, it dynamically generates channel weights for the decoder's
semantic features using the encoder's high-resolution features.
This enables the model to intelligently determine which infor-
mation to prioritise in boundary regions, achieving precise
delineation of polyp edges.

On the more challenging ISIC 2017 dermatoscopy dataset, le-
sions like melanoma exhibit highly irregular shapes, variable
colour textures, and often feature feathered blurred boundaries
with healthy skin. MFR-UNet achieved top performance on
this dataset, fully demonstrating the value of the WtConv
module. Traditional CNNs inevitably lose the high-frequency
information defining these irregular boundaries during suc-
cessive downsampling. WtConv, however, decomposes feature
maps into the frequency domain, enabling the separation and
independent processing of high-frequency components repre-
senting edges and texture. This allows the network to retain
and learn these critical diagnostic details even in its deeper

layers. Consequently, when reconstructing the segmentation
map, the model restores boundaries that are finer and more
closely aligned with the actual lesion contours than other
models.

As shown in Table 2, the primary challenge in the DDTT thyroid
ultrasound dataset stems from the images' inherent low contrast
and intense speckle noise, which severely disrupts nodule
boundary identification. MFR-UNet also demonstrates the
strongest robustness in such tasks. This success further high-
lights the advantages of the WtConv module, which effectively
separates low-frequency signals representing nodule structure
from high-frequency signals representing speckle noise.
Furthermore, under low signal-to-noise conditions, the long-
range dependency modelling capability of the LRFA module
becomes particularly crucial. It enables the model to integrate
scattered, faint evidence across the image, forming a global
judgement on nodule location and morphology rather than
being misled by locally intense noise.

Finally, on the MICCAITooth dental x-ray dataset which de-
mands exceptionally high segmentation accuracy MFR-UNet
still achieved the best results. Teeth, as high-density tissues,
feature compact structures and subtle boundaries where even
minor deviations lead to incorrect segmentation. The success of
MFR-UNet stems from the synergistic interaction of all its
components. LRFA provides holistic layout information of the
dental arch; WtConv enhances perception of high-frequency
details such as interdental spaces and enamel edges; whereas
the WCF module ensures that this multidimensional informa-
tion, extracted from global, frequency-domain and local per-
spectives, is fused losslessly and efficiently during the decoder's
layer-by-layer resolution recovery process, ultimately achieving
pixel-level precision localisation.

TABLE 1 | Quantitative comparison with SOTA methods on the CVC-ClinicDB and ISIC 2017 datasets.

CVC-ClinicDB ISIC 2017
Precision Sensitivity Precision Sensitivity
Model Dice (%) IoU (%) (%) (%) Dice (%) IoU (%) (%) (%)
U-Net [12] 89.72 82.71 90.51 £+ 0.50 89.88 + 0.21 88.15 81.03 90.95 + 0.68 88.77 + 0.92
+ 0.30 + 0.65 + 0.21 + 0.26
U- 90.03 83.62 91.41 £ 0.29 90.95 £+ 0.45 88.71 81.80 91.66 + 0.41 89.01 £+ 0.25
Net++ [14] + 0.28 + 0.30 + 0.13 + 0.17
AttUnet [16] 89.79 83.31 91.48 £+ 0.48 89.31 £+ 0.50 88.59 81.58 90.46 £+ 0.25 89.99 £+ 0.30
+ 0.20 + 0.25 + 0.22 + 0.23
UNeXt [29] 84.85 76.50 87.81 £ 0.45 84.40 £ 0.40 88.66 81.78 91.58 + 0.32 89.48 + 0.29
+ 0.42 + 0.20 + 0.20 + 0.22
DualA- 90.21 84.00 92.48 £+ 0.55 90.18 £+ 0.22 88.65 82.03 9298 + 1.60 88.28 + 1.55
Net [30] +0.31 + 0.42 +0.12 +0.18
DPMNet [31] 90.89 84.75 92.55 £ 0.15 90.05 £ 0.11 89.01 82.35 92.35 £ 0.09 89.45 £+ 0.15
+ 0.22 + 0.29 + 0.15 + 0.16
TPFIANet 90.95 84.82 92.58 £ 0.11 90.11 £ 0.08 89.05 82.41 92.41 £ 0.05 89.55 £ 0.13
[27] +0.15 +0.22 +0.12 +0.15
MFR-UNet 91.25 85.05 92.75 £ 0.08 91.30 + 0.04 89.25 82.60 92.55 + 0.02 89.70 + 0.11
+ 0.18 + 0.25 + 0.17 + 0.18

Note: Bold indicates the best result.
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TABLE 2 | Quantitative comparison with SOTA methods on the DDTI and MICCALI tooth datasets.

DDTI MICCAITooth
Precision Sensitivity Precision Sensitivity
Model Dice (%) IoU (%) (%) Dice (%) IoU (%) (%) (%)
U-Net [12] 75.12 62.88 82.01 £ 0.42 75.03 £ 0.55 92.41 86.09 92.68 £+ 0.41 92.55 £ 0.70
+ 0.45 + 0.51 + 0.40 + 0.53
U- 75.61 63.55 80.82 £ 0.39 75.91 £ 0.51 92.63 86.41 92.70 + 0.26  92.39 £+ 0.40
Net++ [14] +0.41 +0.48 +0.15 + 0.37
AttUnet [16] 74.41 62.35 81.12 + 0.31 75.72 + 0.44 92.31 85.92 92.20 + 0.49 92.85 £ 0.35
+ 0.35 + 0.39 + 0.10 + 0.15
UNeXt [29] 75.45 63.15 81.80 £ 0.36  76.71 £ 0.49 91.58 84.66 91.49 + 0.15 92.10 £ 0.13
+ 0.39 + 0.43 + 0.03 £ 0.05
DualA- 76.71 64.70 82.95 £ 0.35 79.92 £ 0.46 91.93 85.28 92.57 +£1.10 91.73 £ 0.20
Net [30] + 0.39 + 0.42 + 0.31 + 0.40
DPMNet [31] 77.15 64.81 83.01 £ 0.33 80.65 £ 0.45 92.45 86.45 92.41 £ 0.25 92.85 £ 0.25
+ 0.37 + 0.40 + 0.08 + 0.11
TPFIANet 77.21 64.85 83.05 £ 0.31 80.69 £ 0.43 92.51 86.51 92.48 £ 0.20 92.91 £+ 0.20
[27] + 0.35 + 0.38 + 0.05 £ 0.08
MFR-UNet 77.45 65.10 83.25 £ 0.30 80.85 + 0.41 92.70 86.75 92.65 £+ 0.23 93.05 + 0.22
+ 0.32 + 0.36 + 0.01 + 0.04

Note: Bold indicates the best result.

4.4.2 | Ablation Studies

To validate the individual contributions of our three core
modules (LRFA, WtConv and WCF) and their synergistic ef-
fects, we conducted a series of exhaustive ablation experiments
on the CVC-ClinicDB dataset using U-Net as the baseline.

As shown in Table 3, the results demonstrate that when U-Net
serves as the baseline, adding any single module we designed
(LRFA, WtConv, or WCF) to the baseline model yields perfor-
mance improvements to varying degrees. Among these, the
LRFA module delivers the most significant gains, strongly
confirming the critical importance of introducing long-range
dependencies and global context modelling into the deep
encoder layers for enhancing segmentation performance. The
inclusion of WtConv and WCF modules also yielded consider-
able performance gains, validating their effectiveness in fre-
quency domain analysis and feature fusion.

Notably, the combined effect of the modules is evident. Removing
any single module from the complete MFR-UNet results in a
noticeable decline in performance. The greatest degradation oc-
curs when LRFA is removed, further highlighting its central role
within the architecture. Similarly, removing either WtConv or
WCF also leads to performance loss, demonstrating that fre-
quency domain analysis and adaptive feature fusion are indis-
pensable for achieving high-precision segmentation, they are not
redundant design elements.

Ultimately, the complete MFR-UNet model-integrating all three
modules working synergistically-achieved the best performance,
with a Dice score significantly higher than all baselines and
partial combination models. This result fully demonstrates the
synergistic advantages and rationality of our proposed method:

the three modules are not a simple stacking of functions but
rather a complementary and indispensable organic whole.

4.4.3 | Complexity Analysis

When evaluating segmentation model performance, computa-
tional complexity and inference speed are equally critical in
clinical deployment alongside segmentation accuracy. As shown
in Table 4, we comprehensively assessed the model parameters
(Params), floating-point operations (FLOPs) and single-image
inference time for MFR-UNet and other SOTA methods.

Our MFR-UNet exhibits higher parameter counts and computa-
tional demands compared to lightweight models such as UNeXt
or the baseline U-Net. This primarily stems from integrating
powerful feature refinement modules (LRFA, WtConv and WCF)
at different network stages, which inevitably introduce additional
computational overhead to achieve deep feature refinement.
Nevertheless, we consider this increase in complexity a carefully
designed and valuable trade-off.

As demonstrated by the preceding experimental results, this
moderate resource investment yields significant and consistent
performance gains in segmentation accuracy, robustness, and
generalisation capability. More importantly, MFR-UNet dem-
onstrates outstanding performance in practical inference effi-
ciency. Despite its higher FLOPs, the highly parallelised
architecture of our designed modules (e.g., LRFA and WtConv)
fully leverages modern GPU computational power, keeping
single-image inference time within the range required for clin-
ical real-time or near-real-time auxiliary diagnosis. Thus, MFR-
UNet achieves a favourable trade-off between model complexity
and segmentation performance.
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TABLE 3 | Module ablation study results of MFR-UNet on the CVC-ClinicDB dataset.

Model variant Dice IoU Precision Sensitivity
Baseline (U-Net) 89.72 82.71 90.51 89.88
Baseline + WtConv 90.45 83.65 91.15 90.65
Baseline + WCF 90.21 83.28 90.88 90.33
Baseline + LRFA 90.95 84.31 91.55 90.21
MFR-UNet (w/o LRFA) 90.33 83.95 91.89 90.55
MFR-UNet (w/o WtConv) 90.45 84.15 92.01 90.78
MFR-UNet (w/o WCF) 90.68 84.45 92.25 90.01
MFR-UNet 91.15 85.05 92.75 91.30

Note: Bold indicates the best result.

TABLE 4 | Complexity analysis of MFR-UNet and SOTA methods.
Network Params (M) FLOPs (G) Inference time (ms)
U-Net (2015) [12] 7.85 56.40 1.5
UNet++(2018) [14] 9.44 128.39 3.7
Att-Unet (2018) [16] 34.88 266.53 4.3
UNeXt (2022) [29] 1.47 2.29 1.7
DualA-Net (2024) [30] 2.58 22.04 2.9
DPMNet (2024) [31] 28.04 31.76 1.9
TPFIANet (2025) [27] 10.49 256.07 2.7
MFR-UNet 27.26 201.27 2.2

Note: Bold indicates the best result.

4.4.4 | Visualisation of Segmentation Results segmentation results. When the WtConv module is removed,

To more intuitively demonstrate the segmentation performance
advantages of our proposed MFR-UNet, we conducted a visual
analysis of segmentation results across typical cases in addition
to quantitative metric comparisons. These visualisations not
only corroborate our quantitative data but also reveal our
model's specific strengths in handling complex boundaries,
noise interference and fine-grained structures.

As shown in Figures 5-9, comparisons with SOTA models
reveal that many baseline models (e.g., U-Net and AttUnet)
struggle to fully enclose irregularly shaped polyps and skin le-
sions in the CVC-ClinicDB and ISIC 2017 datasets. In contrast,
the segmentation masks generated by MFR-UNet exhibit
smoother more complete contours that precisely align with
lesion edges. This visually demonstrates the synergistic effect of
the WtConv module in preserving high-frequency boundary
information and the LRFA module in understanding global
morphology. When confronted with the intense speckle noise in
DDTI images, segmentation results from other models often
exhibit isolated small patches of misclassification caused by
noise. MFR-UNet, however, delivers cleaner and more robust
results due to WtConv's effective separation of signal and noise.

Visualisation results from ablation experiments further reveal
the indispensability of each core module. The baseline U-Net
model produces relatively coarse segmentation results. When
the LRFA module is removed, the model sometimes loses grasp
of the target's overall shape, leading to structurally incomplete

segmentation boundaries become noticeably blurred, failing to
handle fine texture details. Removing the WCF module resulted
in incomplete segmentation regions and weaker boundary
coherence, indicating ineffective cross-level feature alignment
and fusion. Ultimately, the complete MFR-UNet model deliv-
ered the closest visual results to ground truth, exhibiting
optimal performance in structural integrity, boundary definition
and internal consistency.

5 | Conclusions

In this paper, we propose a novel medical image segmentation
network—MFR-UNet—aimed at addressing the core limitations
of existing U-Net architectures in global context capture, multi-
frequency domain feature processing, and cross-level informa-
tion fusion. By innovatively integrating LRFA, WtConv and
WCF modules, our model performs deep refinement of feature
representations across multiple dimensions.

Extensive experimental results robustly demonstrate the effec-
tiveness and superiority of MFR-UNet. Across four public
datasets spanning diverse imaging modalities (endoscopy, der-
matoscopy, ultrasound and x-ray), MFR-UNet consistently
outperforms multiple state-of-the-art methods on key perfor-
mance metrics. This success stems from its modular, synergistic
design: LRFA effectively captures long-range dependencies,
WtConv precisely preserves high-frequency boundary details
and WCF enables intelligent cross-level feature fusion.
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FIGURE 5 | Comparison of MFR-UNet and SOTA methods for visual segmentation on the CVC-ClinicDB dataset.

AttUNet UNeXt DualA-Net DPMNet TPFIANet MFR-Net

FIGURE 6 | Comparison of MFR-UNet and SOTA methods for visual segmentation on the ISIC2017 dataset.
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FIGURE 7 | Comparison of MFR-UNet and SOTA methods for visual segmentation on the MICCAI tooth dataset.
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FIGURE 8 Comparison of MFR-UNet and SOTA methods for visual segmentation on the DDTI dataset.
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FIGURE 9 | Comparison of visual segmentation for module ablation studies in MFR-UNet.

IET Systems Biology, 2026 11 of 13

85U801 SUOWILLIOD BAIR.1D 8|t |dde au Aq peusenob ae Sajoie O 9N JO oI 104 Al 8UlUQO AB[IM UO (SUO 1 IPUOD-PUE-SWLBYWOD" A8 1M ARq P UO//:SdNY) SUORIPUOD pUe SWLS | 83 88S *[9202/T0/L0] U ARigIT8UIUQ AB|IM  UOIRWIOLM| ASIBAIUN B3SUEMS - YATIHSYZ VYNNY A 6700/ '20AS/6¥0T OT/I0p/WO00" 3| IM"ARid 1 BUI JUO"UYo.Jeesa 1R /SNy Wo. 4 papeolumod ‘T ‘9202 ‘/S88TS.T



Despite MFR-UNet's encouraging results, we recognise room for
optimisation in model complexity. Future work will focus on
two primary directions: First, we will explore model light-
weighting techniques such as knowledge distillation and
network pruning to reduce computational costs while main-
taining high performance, making it more deployable in
resource-constrained clinical settings. Second, we will strive to
extend MFR-UNet's 2D framework to 3D for handling volu-
metric data such as MRI and CT scans, which holds greater
clinical significance for tumour volume measurement and sur-
gical planning.
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