Neural Processing Letters (2026) 58:10
https://doi.org/10.1007/5s11063-025-11821-2

®

Check for
updates

Reinforcement Learning-Based Intelligent Path Planning
for Optimal Navigation in Dynamic Environments

Anil Kumar Yadav' - Purushottam Sharma? - Xiaochun Cheng? -
Shiv Shankar Prasad Shukla’

Received: 3 September 2025 / Accepted: 10 December 2025
© The Author(s) 2026

Abstract

Path selection and planning are crucial for autonomous mobile robots (AMRs) to navigate
efficiently and avoid obstacles. Traditional methods rely on analytical search to identify the
shortest distance. However, Reinforcement learning enhances performance by optimizing a
sequence of actions efficiently. It is an iterative approach used for computational sequence
modeling and dynamic programming. RL received sensory input from the environment in
the form of observation or state. The agent interpreted every reward or penalty through trial-
and-error interaction. Policy maximizes the rewards and selects the optimal action among all
possible actions. A challenging problem in traditional reinforcement learning is environment
generalization for dynamic systems. Q-learning faces challenges in dynamic environments
because it relies on rewards or penalties based on the entire sequence of actions from the start
to the end state. This approach often fails to produce optimal results when the environment
changes unexpectedly due to state transitions, iterations, or blocked routes. Such limitations
make Q-learning less effective for dynamic path planning. To overcome these challenges,
this study focuses on optimizing reward functions for efficient navigation in RL-based path
planning, aiming to enhance navigation efficiency and obstacle avoidance. The proposed
method evaluates the shortest decision path by considering total steps, counted steps, and
discount rates in dynamic environments. By implementing this RL with an optimized reward
mechanism, the study analyzes state reward values across different environments, and it
evaluates the effect on state-action pair-based Q-Learning and neural networks using Deep
Q-Learning algorithms. Here, results demonstrate that the optimized reward function effec-
tively decreases the number of iterations and episodes while achieving a 30% to 70% reduction
in overall trajectory distance. These results highlight the effectiveness of reward-based rein-
forcement learning, demonstrating its potential to improve path optimization, learning rate,
episode completion, and decision accuracy in intelligent navigation systems. Q-learning-
based reinforcement learning becomes more effective by combining multiple agents and
utilizing decision-making techniques such as federated and transfer learning on larger maps
to ensure convergence.

Keywords Q-learning (QL) - Reinforcement learning (RL) - Reward function - Policy
iteration - Path optimization - Trajectory planning - Navigation

Extended author information available on the last page of the article

Published online: 04 January 2026 @ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11063-025-11821-2&domain=pdf

10 Page2of27 A.K. Yadav et al.

1 Introduction

Path planning has become a crucial area of research in autonomous mobile robotics, aiming
to minimize time and energy consumption. Efficient path planning is a significant challenge
in robotic systems, particularly in terms of motion control and environmental awareness.
The primary goal is to develop analytical solutions that enable agents to identify optimal
trajectories with minimal distance [1]. Various methods have been designed to allow robots
to guide the agent from the start point to the target, while accounting for predefined object
coordinates [2]. When selecting a decision path, an agent must navigate around all types of
obstacles. In the current scenario, incorporate environmental variables to enhance path plan-
ning efficiency [3-5]. Path searching and planning have become essential components of
navigation systems. While many algorithms prioritize finding the shortest path, other factors,
such as the search area and time complexity, are also considered for optimal performance.
Cell decomposition is a technique used in route planning that divides the environment into
smaller regions. Graph algorithms help find the shortest path with minimal delay. Dijkstra’s
and A* algorithms ensure effective path planning based on the current and given endpoints
[6]. Another commonly used method is edge connection, which ensures that no overlap
occurs between the lines of objects and describes a repulsive force around obstacles to aid
in navigation [7, 8]. Expanding a search tree from the starting point toward the goal until a
valid path is established is described as a rapidly exploring random tree (RRT) [9]. Many
intelligent systems integrate advanced ANN and GA, with choice techniques depending on
recent environmental information [10, 11]. Global and local path planning can incorporate
innovative methods such as cell decomposition, which discretizes vacant space. Mathemat-
ical graphs offer high accuracy and are effectively utilized in conjunction with automated
reasoning and artificial intelligence, particularly when considering multiple variables [12].

Reinforcement learning addresses key challenges in sequential decision-making, including
control problems in gaming, computational modeling, and various applications in machine
learning, operations research, power grid distribution, and control engineering [13—15]. Sev-
eral studies have demonstrated that reinforcement learning algorithms can effectively estimate
the shortest distance from the current state to the endpoint in both static and dynamic envi-
ronments [16-18].

Reinforcement Learning (RL) is a method of training agents to learn optimal decision-
making by mapping situations to actions in a way that maximizes a numerical reward signal.
In RL, the agent interacts with an environment, taking actions and receiving rewards or
penalties based on its choices. Through repeated movement, it gradually learns the best
policy, allowing it to navigate and adapt dynamically to achieve its objective. However,
reinforcement learning has certain drawbacks, such as the need for a large lookup table to
store state-action pairs in extensive environments, resulting in high memory requirements
due to numerous iterations. Additionally, increasing the grid size exponentially can slow
down the convergence rate [19-21].

This study aims to enhance algorithm performance by updating the reward function to
determine the shortest path trajectory in robotics. To achieve this, an innovative approach
is introduced to modify the reward function, reducing the iterative process and increasing
the discount rate during navigation in both static and dynamic environments [22, 23]. This
approach is evaluated against machine learning techniques, such as Q-learning algorithms,
Deep Q-learning, and Temporal Difference Learning. In some cases, state-action pair tables
are modified using a dynamic environment, along with the stuck state. By initializing the
temporary memory Q (s, a) effectively, the learning process is accelerated [24]. A dynamic

@ Springer

Reinforcement Learning-Based Intelligent Path Planning for... Page3of27 10

lookup table, where Q-values are adjusted based on the distance between obstacles, enhances

the Q-Learning algorithm and delay time. Additionally, this approach increases the reward

for each state in path planning algorithms [25, 26]. The smoothing trajectory and diverse

trajectory both yield satisfactory outcomes, as demonstrated by Genetic Algorithms [27].
The main focuses of this study are as follows:

e The proposed modified reward function has demonstrated high accuracy and outperformed
other models in comparison.

e The optimized reward function efficiently evaluates the shortest distance and time trajec-
tories for prey capture while reducing the number of episodes.

e A supervised NN classifier is employed to find the shortest decision path based on the
proposed method.

e A comparative analysis of proposed algorithms with various RL algorithms

e The implementation is tested using Deep Q-Learning (DQL) and the Double Deep Q
Network (DDQN), with training conducted based on the grid world problem.

e The key novelty of the proposed optimized reward function is that it dynamically balances
path optimality, obstacle avoidance, and smooth trajectory generation in changing environ-
ments. While traditional Q-Learning and Deep Q-Learning reward formulations primarily
consider distance or collision penalties, our optimized reward integrates a progressive
distance reward, a dynamic obstacle penalty, and path smoothness.

To assess algorithm efficiency in the context of discount rate, execution time, and memory
usage, itis compared with three algorithms: Deep Q-learning (DQL), Double Deep Q Network
(DDQN), and Temporal Difference Learning (TDL).

The summary of this paper is as follows: Sect. 2 reviews relevant studies on navigation
planning, while Sect. 3 outlines the proposed methodology, including algorithms and the
Deep Q-Learning model. Section 4 presents the experimental results, and Sect. 5 concludes
the study with recommendations for future research.

2 Related Work

Model-free learning is a type of reinforcement learning that is commonly applied in areas
such as autonomous driving, intelligent control systems, and brain research. It provides
practical solutions for decision-making in unknown environments and operates as a model-
free learning system based on trial-and-error interactions. Q-learning evaluates the quality
of actions through an evaluation function to determine the shortest trajectories for robotic
navigation.

The Markov Decision Process (MDP) is a mathematical model used to solve decision-
making problems and describe how an agent behaves in a given environment. Q-Learning, a
fundamental RL algorithm, begins without prior knowledge; it aims to discover the shortest-
path solutions. By leveraging MDP, an agent executes a sequence of actions to optimize
performance, storing the value of every action pair in the Q matrix. In problems with multiple
states, selecting the optimal action for each state is crucial to achieving a higher reward. Policy
iteration, a key reinforcement learning technique, involves various executions of the repeated
process, refining the agent’s decision-making capabilities. Rapidly exploring the random tree
concept of navigation and path planning is closely associated with automated driving systems
and vision-based mapping techniques. These methods are utilized to assess traffic congestion
and enhance the accuracy of trajectory estimation with minimal distance. The RRT* algorithm
is effective in identifying the shortest route while minimizing overall cost [28]. Trajectory

@ Springer

10 Page4of27 A.K. Yadav et al.

tracking is a crucial control problem that utilizes the Control Lyapunov Function (CLF) to
determine the minimum distance between two points. It is applied to finding the trajectory
of a two-wheeled mobile robot along with time-varying goal states [29].

This study presents a mechanism for determining an obstacle-free optimal path for mobile
robots operating in a radioactive environment [30]. The Deep Double Q-Network (DDQN)
is an efficient approach for finding trajectory paths and planning. Additionally, an action
selection method is used for supervised artificial networks. That is utilized to determine action
values for the given environment. For each Iteration, the agent’s reward is used to assess the
algorithm’s efficiency in complex grid environments [31, 32]. One challenge in reinforcement
learning is creating a practical reward function that effectively guides the agent. Establishing
new reward functions enhances optimal navigation by enabling autonomous mobile robots
(AMR) to find the shortest trajectory with minimal distance [11]. The Double Deep Q-
Network (DDQN) is an enhanced reinforcement learning algorithm designed to overcome
the overestimation bias inherent in the traditional Deep Q-Learning (DQN) approach. In
DQN, the same neural network is used both to select and evaluate actions, which often leads
to inflated value estimates and unstable learning. To address this issue, DDQN decouples
the action selection and evaluation processes by employing two separate networks. The
online network is responsible for choosing the best possible action, while the target network
evaluates the expected return for that action. This separation leads to more stable convergence
and improved decision accuracy, particularly in dynamic or continuous environments [33].

Comprehensive analysis of path planning methodologies, encompassing classical, meta-
heuristic, and artificial intelligence (Al)-driven approaches. Metaheuristic techniques,
including Genetic Algorithms (GA), Particle Swarm Optimization (PSO), and Ant Colony
Optimization (ACO), offer enhanced adaptability and global search capabilities; however,
they may suffer from slower convergence and increased computational costs in large-scale or
real-time applications [34]. Traditional path planning and obstacle avoidance techniques often
struggle to ensure safe and efficient flight in these cluttered, height-restricted environments.
Intelligent navigation methods that leverage advanced sensing, perception, and learning capa-
bilities. Soft Actor-Critic (SAC)-based approaches have demonstrated promise in developing
robust navigation policies that can handle real-time obstacle detection and avoidance while
maintaining flight stability within constrained airspaces. These learning-based frameworks
enhance situational awareness and decision-making by continuously updating the UAV’s
navigation strategy based on environmental feedback [35]. Ensuring the safe operation of
Robotic Autonomous Systems (RAS) within highly regulated environments has become a
critical research focus, especially as these systems are increasingly deployed in sectors such
as healthcare, manufacturing, and transportation. Integrating this rule-based safety layer with
the robot’s autonomy module, RAS can make intelligent decisions while maintaining strict
adherence to safety protocols [36].

RL methods act through trial-and-error interactions between the agent and the environ-
ment. A well-designed reward function encourages the decision-making system to take the
shortest trajectory, while minimizing the number of iterations required for convergence.

3 Proposed Methodology

An optimized reward function is used to update the state-action pair of robots over multi-
ple iterations. The robot navigation problem is addressed through environment modelling,
trajectory planning algorithms, and a schematic workflow of Deep Q-learning. Environment

@ Springer

Reinforcement Learning-Based Intelligent Path Planning for... Page50f27 10

modelling is represented using the cell decomposition method, where the space is divided into
equal-sized cells while accounting for both static and random Stuks. Introduced path planning
incorporates tabular and artificial neural network-based techniques. Both approaches aim to
guide the agent toward selecting the shortest routes with fewer iterations. Additionally, the
schematic workflow diagram outlines the training procedure for RL-based Q-Learning and
DQL, illustrating a step-by-step process.

3.1 Environment Modelling

The environment is constructed using the cell decomposition technique, which transforms the
problem into a finite-state representation for designing RL algorithms. Each cell represents
a specific position, movement, and possible states relevant to the problem, making it easier
to address navigation challenges. Within this environment, the robot is modeled as an agent,
represented by a small circle smaller than the cell size. The agent is allowed to move in four
directions—Ileft, right, up, and down—while diagonal movements are restricted, as illustrated
in Fig. 1.

The environment consists of an 8 x 8 grid of cells, where obstacle positions vary dynam-
ically. Figure 1b illustrates an example of the environment, where grey and blue-filled cells
indicate static and dynamic obstacles, respectively. The target point is marked with a flag,
while the robot is initially positioned at coordinates (2, 2) with a designated target at (4, 5).
Each cell within the grid represents a distinct (X, y) coordinate, where x and y are integer
values.

In Fig. 2, finding a fixed prey (or goal) in a dynamic environment is illustrated using
reinforcement learning. The prey remains stationary at a fixed position, while both static and
dynamic obstacles obstruct the path from the predator (hunter) to the prey. The objective is
to capture the prey in the shortest possible steps while avoiding these obstacles. The predator

N~g
35 H g
=

(a) (b)

Fig. 1 The interaction between various states and corresponding actions within the environment. a An agent
is permitted to take four possible actions: left, right, up, and down. b Cell decomposition representation of
the environment at two different time instances, where grey obstacles indicate static route blockages and blue
obstacles represent dynamic route blockages

@ Springer

10 Page6of 27 A.K.Yadav et al.

pen o Y T S
-
...... .Z).. @ efeey
a S : H
23—
: A
O I o

Fig. 2 Possible routes for the robot towards the goal

can move one step in any of the potential directions up, down, left, or right, with diagonal
movements restricted.

3.2 Reinforcement Learning

Figure 3 illustrates the interaction between the agent and the environment, where the envi-
ronment—supported by an interpreter—simulates a real-world scenario by evaluating the
agent’s actions and returning feedback in the form of rewards or penalties, along with an
updated state. The agent generates actions in response to receiving input from the environ-
ment, which is presented in the form of states or observations. It utilized the Marko decision
process (MDP) to select the best action among the available options. The agent learns in
many iterations under a defined action selection policy that is responsible for modifying

State

Interpreter

Reward

Agent

Environment

Action

Fig. 3 The agent—environment interaction in Reinforcement learning

@ Springer

Reinforcement Learning-Based Intelligent Path Planning for... Page70f27 10

decisions and selecting the best action over a given environment. Self-critics, also known
as interpreters, play a role in determining the best course of action during movement. Rein-
forcement learning is a powerful tool for solving problems without prior knowledge of the
system.

Each time step ¢ occurs, the agent observes an abstract piece of information (which we
call a state) and a numerical quantity (which we call reward in absolute numbers).

A random state and reward are served towards the possible movement ¢ 4+ 1 state and
action, respectively. The environment provides several observations along with a random
variable:

o State/Reward progression is solely dependent on the current state of a given action.

e A complete reward is determined through the agent’s trial-and-error interactions with
the environment. It is sufficient to examine the existing situation to predict the future
consequences of a given action.

The policy function transforms a state into an action at each given time step. Hence, the
agent’s role involves exercising control by determining the best policy function—innovative
contribution—to develop an efficient and rewarding approach to a reinforcement Learning
algorithm for a dynamic environment.

State actions sequence defined as a set of states s, action a;, and reward R, every moment
perstept =0, 1, 2, 3, ... The initial sequence can be represented as Eq. (1)

So, Ao, R1, S1, A1, Ry .. (1

Maximizing the reward in terms of performance R, which represents commutative rewards,
can be expressed in Eq. (2).

R=R1+ Riy2+ Riy3---+ R, ()

Equation (3) defines the reward terms for this study, which aim to achieve two key objec-
tives:

(i) Enhancing the agent’s potential movements and (ii) reducing the frequency of direction
changes.

(1 —a)Qt(st, at) + at[rt + y max Q(st + 1, a)]
Q(s,a)=r{ rt + ymax Q(st + 1, at + 1), ifat =1 3)
Q(st, at) ifat =0

The discount rate y and is denoted as y € (0, 1). The returned reward values r; are
obtained from the environment, and a represents the agent’s learning rate [13].

However, the reward in each episode may vary. In this context, the maximization of the
expected reward is expressed in Eq. (4).

In this context, the expected reward maximization is represented by Eq. (4):

o0
R=Zy’rt+1,..., 0<y <1, 4)
=0

where the discount rate, y € (0, 1) and r; represent the reward values returned from the
environment [11].

The proposed optimized reward, derived from Eq. (4), is represented by the mathematical
expression in Eq. (5) using rewards and discount rates.

o0
Optimized Reward R} = Z y &, ©)
i=0

@ Springer

10 Page8of27 A.K.Yadav et al.

The derivation starts from traditional Q learning Q (s, a) <— Q (s, a) ¢[r+y max Q(s’, a’)—
Q (s, a)], optimized reward function r as a weighted combination of the three components
defined as r = myry + mar, + m3rg, where rq, 1, 1g correspond to distance efficiency,
obstacle interaction, goal alignment rewards, respectively. The weight parameters m;, mp,
mj3 are adaptively tuned using feedback from environmental dynamics to maintain a balanced
learning process.

The reward values r; are obtained from the environment, where x represents the total
number of steps between the start and end, and I is the current step.

3.3 RL-Based Q Learning Algorithm

Reinforcement learning encompasses three key approaches: State-Action-Reward-State-
Action (SARSA) [37], Q-Learning [38], and Markov Decision Process (MDP). SARSA
is a decision-making system that stores state-action values in a lookup table. These methods
are used to assess the value of each state-action pair, guaranteeing convergence regardless
of the policy followed by the agent [13]. The lookup table, representing a Quality Matrix of
dimensions N x Z, stores state-action data during the modeling of action sequences. Here,
N denotes the number of possible states (observations) used to perceive the environment,
while Z represents the set of possible actions available to the agent. Q-learning functions in
a discrete state-action (SA) space, where the best possible action is chosen by identifying
the maximum reward value from the reward matrix. At the start of the training phase, the Q-
Matrix is initialized with values set to either random numbers or zero, and it is subsequently
updated using Q-learning, as described in Eq. (6).

Ry = Ry®™ (6)

Here, R represents the total accumulated reward, R1 denotes the reward value for the
current state, X is the total number of steps, and i indicates the current step count.

It determines the extent to which the agent should prioritize long-term rewards over imme-
diate gains (Fig. 4).

Algorithm 1 Q learning

1. Initialize: Set the number of iterations' n', define the total steps "X, Count step 'I' and initialize the lookup table-
Q-matrix 'Q (s, a).'

Start a loop for each episode.

State Transition: Agent or robot moves to the next state si+1 after a random operation

Goal Check: For each episode repeat step (1) until a goal is not achieved

Evaluate optimized reward R;=R y*?

Update move, state s, ¢— si+1

Every reward value stored in the lookup table for getting the goal

Step Count Check: if x< I; (X: total step, I: counted step)

A O R o

Update Iteration: reduced iteration count: 'n=n- 1"

—_
f=}

. Repeat or Terminate: if iteration n >0; repeat- go to step 2
Otherwise, print the final optimal step or the shortest distance X.

Return to step 2.

Table 1 outlines the training parameters used to assess the optimal discount rate in Q-
Learning, guiding the decision-making agent to prioritize maximizing cumulative rewards.

@ Springer

Reinforcement Learning-Based Intelligent Path Planning for... Page9of27 10

7 i | ™~

| Determine |
1
¢ State
- «
State . Jes
a Action ;
> Action S
ds =
g Reward §
PE— 2
D§c1510n Rule / Penalty
Update Look up Table/
Q Table
Fig. 4 Reinforcement learning framework using Q-learning strategy
Table 1 Overview of Q-learning
model parameter training Feature Range
procedures
Episode 10-60
Rate of discount 0.99
Iteration 1-500
Learning rate 0.001

Conversely, a lower convergence is adopted to ensure convergence, which increases the
required repetition. For experimental analysis, iteration reduction is employed to distinguish
between QL and DQL techniques.

The algorithm was developed and executed in MATLAB on a system running Windows
11. Reinforcement learning is a model-free technique that relies on state-action-reward pairs
and policy updates through a Q-matrix. Each row in the Q-matrix represents state-action
values, where Q denotes the quality of each action executed by the agent within a grid or
defined space. The reward matrix is automatically updated in the lookup table using the
Bellman equation, enabling the selection of the best action for each state.

Figure 5 shows the workflow of supervised learning combined with an artificial neural
network classifier based on Deep Q-Learning (DQL), where the state-action pair Q(S, a) is
updated using the immediate reward received. The training process is terminated when the
number of epochs exceeds the predefined maximum limit (epoch > max epochs) or when
the change in Q-values between successive iterations becomes smaller than a convergence
tolerance.

The deep Q-learning algorithm leverages a supervised neural network to identify the
optimal action from all possible actions in both dynamic and static environments. The robot

@ Springer

10 Page 10 of 27 A.K. Yadav et al.

State Transition from Si, Sg
e e > Check for YES
initialization
Goal
NO \ 4
Update Reward
X R=Ry®*;»
NO Q matrix (s, a)
epoch > max
epochs Epoch i=i+1
Basic RL Decision making System (NN
l YES .
Classifier)
Look-UP-Table (s,a)

v

Supervised (NN Classifier)

Fig. 5 Schematic diagram of reinforcement learning model with supervised neural network integration for deep
Q-learning

aims to perform the most effective action by maximizing the reward through the shortest
decision path. Algorithm 2 outlines the training and testing procedure for Deep Q-Learning,
enabling an agent or robot to operate effectively in a dynamic environment. The agent selects
a random action with probability € to encourage exploration of unvisited states and the
action with the highest Q-value with probability (1—¢) to promote exploitation of learned
knowledge. The value of ¢ gradually decayed as training progressed to ensure convergence
toward an optimal policy. In Deep Q-Learning, the exploration rate (¢) determines how the
agent balances exploratory behaviour with the use of its current best actions. When ¢ is
high, the agent performs more random actions to discover new state—action combinations.
As training advances, ¢ is systematically decreased, allowing the agent to rely more on the
learned Q-values for informed decision-making. Replay memory stores previous transitions,
including state, action, and reward, and plays a crucial role in stabilizing neural network
updates in DQN. By maintaining a sufficiently large memory buffer, the algorithm can sample
diverse past experiences, reducing the correlation between consecutive observations and
promoting more stable learning. This mechanism improves convergence behaviour, enhances
training stability, and contributes to more efficient learning over time.

@ Springer

Reinforcement Learning-Based Intelligent Path Planning for... Page110f27 10

Algorithm 2 Deep Q-learning to navigate and adapt effectively within continuously changing environments
1. Input: Randomly generate an initial state 'sn', discount factor y, and learning rate o

2. Initialize: environment size, states, action a, q value, goal position s,

3. Initialize look-up table Q (s, a)

4. Determine the next move 'an' start from the initial position based on the current policy.

5. Select a random action from the set of available moves to encourage exploration. with g-greedy
policy during training

Loop: start episode (1 to n)

Perform the selected action 'an' and capture the resulting state to inform the learning process.

If the agent repeats the same state-action pair in any episode, then Proceed to Step 8.

L x® N R

Evaluate the target output.
10. If the target is achieved: (i) Move to the next episode (ii) Go to Step 1.
11. If the target is not achieved, then store the state-action pair (sn, an)in a temporary array.
12. Insert transition into the lookup table Q (s, a)
13. Update the Q-value using the following Equation
Update Q-matrix Ry=R y*)
14. Check, whether the iteration limit is reached or not.
15. If the limit is not reached, return to Step 1.
16. If the iteration limit is reached, then Train the neural network (NN) using the state-action table
or Q-table.
17. Predict the next state using the trained NN.
18. If the decision from the NN matches the decision from the agent:
) Predict the next state as the goal state.
(ii) Exit (goal achieved).
19. If the decisions from the NN and the agent do not match:

(i) Update the neural network.
(i1) Repeat the process until convergence.
20. End loop.

21. Every episode
22. End loop.
23. Output: Shortest path

Table 2 outlines the training parameters applied in this study. A higher discount factor
encourages the decision-making agent to prioritize long-term rewards, while a lower learning
rate leads to slower convergence, requiring a greater number of training episodes.

Reinforcement learning techniques were implemented using MATLAB, and the same
hardware setup as the Q-learning algorithm was used.

@ Springer

10 Page 12 of 27

A.K. Yadav et al.

Table 2 Lists the training

parameters used for

implementing the deep
Q-learning (DQL) techniques

3.4 Look-Up-Table

Features Range
Probability distribution 1

Rate of discount 0.99
Size of step parameter 1
Probability of random action 0.1
Possible agent action 4
Learning rate, 0.001
Number of episodes 12,000

The state-action pair, also referred to as the Q-matrix or lookup table, stores state-action

values in the form of state-action pairs, as shown in Table 3.

The table represents a grid-world environment where an agent can perform actions and
receive corresponding rewards. The environment states are labeled from Sy to Sa4, and the
available actions include A,, A4, A;, and A,, which correspond to moving up, down, left,
and right, respectively. For each state, the table displays the expected reward value for each
possible action. If an action is not feasible from a particular state, it is marked as “N/A.” The
“Total Reward” column indicates the cumulative reward for all possible actions from a given

state.

Table 3 Reward values corresponding to the grid world environment depicted in Fig. 6

Actions States Total reward Ways
Ay Ay Aj Ay
S11 N/A 0.32 N/A 0.32 0.64 2
S12 N/A 0.42 0.24 0.42 1.08 3
S13 N/A 0.56 0.32 0.56 1.44 3
S14 N/A 0.75 0.42 N/A 1.17 2
S$o1 0.24 0.42 N/A 0.42 1.08 3
S22 0.32 0.56 0.32 0.56 1.76 4
83 0.42 0.75 0.42 0.75 2.34 4
84 0.32 1.0 0.56 N/A 1.88 3
831 0.32 0.32 N/A 0.56 1.20 3
S3 0.42 0.42 0.24 0.75 1.83 4
833 0.56 0.56 0.32 1.0 2.44 4
S34 0 0 0 0 0 0
S41 0.42 N/A N/A 0.42 0.84 2
Sa 0.56 N/A 0.32 0.56 1.44 3
S43 0.75 N/A 0.42 0.75 1.92 3
Saa 1.0 N/A 0.56 N/A 1.56 2

@ Springer

Reinforcement Learning-Based Intelligent Path Planning for... Page130f27 10

Fig. 6 An example grid world
with a4 x 4 cell N

Su Sy Sis S14

521 S22 S23 524

S31 53 533 S

Si Sp Si3 Su

The “Ways” column indicates the number of possible actions from each state. For instance,
state S1; allows two actions (moving right or down), while the state S»y permits four actions
(moving in any direction). This table helps assess and compare different policies (sequences
of actions) for the agent within the grid-world environment, enabling the optimization of the
agent’s behavior.

4 Analysis and Interpretation of Experimental Outcomes

This section is divided into three subsections, each addressing a specific aspect of the exper-
imental results and their analysis. The first subsection examines the planning process and
variations in distance, Iteration, episode, and learning rate, as well as the count using the
optimized reward for the proposed Q-Learning (QL) and Deep Q-Learning methods. Com-
pares the accuracy of different techniques and examines the state and reward variations at
various discount rates.

The second subsection explains the training and testing process in a continuously changing
environment, using a prey capture scenario as a case study. In this study, all computational
experiments were conducted on a standard laptop equipped with an 11th-generation Intel Core
i5-1155G7 processor (2.50 GHz), a 64-bit operating system, and limited system memory.
Given these hardware constraints, the experimental design adopted smaller grid environments
(3 x 3 and 4 x 4) to ensure that the reinforcement learning simulations operated efficiently
without exceeding available computational resources. Under this configuration, the CPU
runtime remained within practical limits, recording approximately 25.05 s for the 3 x 3 grid
and 36.56 s for the 4 x 4 grid, which is suitable for a conventional non-GPU machine.

@ Springer

10 Page 14 of 27 A.K. Yadav et al.

However, Larger n x n environments lead to exponential growth in the state—action space,
greater memory demand for Q-table or neural network storage, and longer training durations
due to more complex exploration dynamics. Consequently, scaling the experiments to higher-
resolution environments would necessitate more powerful hardware, particularly higher-end
CPUs, GPUs, and larger system memory to maintain feasible runtime and training stability.

4.1 Assessment of the Trajectory Path Planning Method

The proposed diagram for evaluating Q-Learning and Deep Q-Learning considers four dif-
ferent configurations, as shown in Fig. 7.

Figure 7 illustrates various positions of the agent, starting from the initial location at
coordinates (2, 8). All paths in the grid are free of obstacles, allowing movement from the

I8!
T
1
t
-
r—n
B r--1 T
an,
o L .
(a) (b)
r—
- t
— '
T o
111 ‘ N

(©) (d)

Fig. 7 The structure of maps used for testing includes: a Mapl consists of both fixed start and goal points,
with a combination of static and dynamic movement patterns. b Map 2 includes both fixed start and goal
points, with a combination of static and dynamic movement patterns. ¢ Map 3 features both random start and
goal points, with dynamic movement patterns; and d Map 4 features both random start and goal points, with
dynamic movement patterns

@ Springer

Reinforcement Learning-Based Intelligent Path Planning for...

Page 15 of 27

10

start to the goal position. The planned trajectory follows the shortest route to the target using
left, right, up, and down movements, which may vary across episodes. The goal is located at
the bottom-left corner, with coordinates (9, 2).

The second diagram, shown in Fig. 7b, modifies the original map by introducing randomly
moving obstacles to assess how the agent responds to these changes. The third and fourth
diagrams, in Fig. 7c and 7d, have random start and goal positions with moving elements. In
these cases, the starting point is not (2, 8). Figure 8a—d show how episodes, rewards, and

Rewards

Rewards

100

o

Total rewards in fixed position condition

——DAL| |
—o—aL |4
*
+
i
3 0
3
! :
+ :
e 14
150 200 250 300 350 400

Iterations

(@)

100

70

60

Total rewards in fixed position condition

100

80

70

60

=
——o—Teo—b—o— 4

S =

=

2

150
Iterations

(b)

50 100 200 250

Total rewards in fixed position condition

300

80

70

60

50

Rewards

——QL %0
|

4
30

20

Iterations

(©

——DQL
——AqQL

Iterations

(d)

TR

0
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Fig. 8 Graphical representation illustrating the relationship between cumulative rewards and training iterations
for Q-learning and deep Q-learning algorithms

@ Springer

10 Page 16 of 27 A.K. Yadav et al.

iterations are related to Q-learning in diagrams 1, 2, 3, and 4. The graphs demonstrate a con-
sistent trend toward minimizing accumulated rewards. The similarity in accumulated reward
values across the maps can be attributed to the uniform 10 x 10 grid size and comparable
action sequence lengths for each map.

Graphical representation illustrating the relationship between cumulative rewards and
training iterations for Q-Learning and Deep Q-Learning algorithms, highlighting the con-
vergence behaviour and learning efficiency of each technique during the training process, as
shown in Fig. 8.

The performance of the proposed Deep Q-Learning algorithm is shown in terms of reward
and total episodes for Maps 1, 2, 3, and 4 in Fig. 9a—d, respectively. These graphs indicate that
convergence occurs around episode 100. The results demonstrate satisfactory performance,
as the agent incurs minimal penalties throughout its trajectory. This is further supported by
the near-zero values observed from episode 100 onwards, confirming the efficiency of the
approach.

The shortest trajectory is illustrated in Fig. 10, which utilizes the proposed algorithm,
considering both fixed and random start and target positions.

Graphical representation of the Deep Q-Learning (DQL) technique illustrating the rela-
tionship between the learning rate and the number of training episodes, highlighting how
variations in learning rate influence convergence behavior and performance stability in
Fig. 11.

In Fig. 11, the proposed trajectory planning model was analysed in comparison with Deep
Q-learning, Temporal Difference learning, and RL-based Q-learning techniques. Findings
demonstrate that Deep Q-learning achieves superior performance over the approach, particu-
larly in terms of iteration count and the agent’s learning efficiency across various algorithms.

4.2 Comparison of Accuracy Across Different Algorithms

The accuracy of various learning algorithms was evaluated, demonstrating that Deep Q-
learning outperforms Q-learning (QL), Temporal Difference Learning (TDL), and DDQN in
terms of learning rate efficiency relative to the number of iterations, as presented in Table 4.

Accuracy is assessed based on query evaluation using reinforcement learning with a neural
network for each episode. Mathematical expressions are used to calculate the learning rate
from Eq. (7), assess goal-tracking efficiency (EQ), and analyze overall training performance.

@)

Eq = |:1 __ Minimium count step(/) — Total count step(xl)i| 100

Total program output(7’)

where T is the total number of states, the minimum count step is i, and x; is the total count
step.

In the experimental setup, four distinct algorithms were implemented for path planning
within a controlled environment featuring fixed obstacles and goal positions. During the
training phase, the agent progressively improved its navigation capability and was ultimately
able to reach the target location without collisions across all four algorithms in the later stages
of learning. The performance of each algorithm was evaluated by monitoring the cumulative
return over training episodes, and the resulting return curves are illustrated in Fig. 12.

Figure 12 demonstrates that all four algorithms converge gradually toward the optimal
reward value in the later stages of training. During the initial phase, the cumulative return of
each algorithm increases rapidly as the agent begins to learn effective navigation strategies.
Moderate fluctuations are observed in the mid-training phase due to ongoing exploration and

@ Springer

Reinforcement Learning-Based Intelligent Path Planning for...

Page 17 of 27

10

Total rewards in fixed position condition

il Total rewards in fixed position condition 100 T
- - r - : : — =N
——a| | /
% ——a |} % o g |
® 4 8 #
#
70 ‘j 0F /
60 f , 0 '
D / D
g / § 5l
= / ;
¢ # 12
40 4 40
f
30 0
20 20
’ M 1 WOFM’

5 0 15 2 25 30 3B 40 4 5 10 15 20 25 30
number of episode number of episode
(@ (®)
Total rewards in fixed position condition
- Total rewards in fixed position condition 100 : : - . P -
——DQL P
——0QL | /)
. 7l
% 80
270 o

0 70 kel g
B i+
: §
T 60 6

50 50

40 / 40

2 L i . L L I I % . I i L I . I

2 3 4 5 6 T 8 9 10 N 15 2 25 3 35 4 45 5
number of episode number of episode
(© (@

Fig. 9 Graphical representation illustrating the relationship between cumulative rewards and training episodes
for Q-learning and deep Q-learning algorithms

policy adjustments. Overall, the DQL algorithm demonstrates comparatively higher stability
throughout the training process.

The performance comparison of four algorithms in the fixed-position environment is
shown in Table 5.

According to Table 2, the DQL algorithm showed a faster learning rate compared to the
QL, TDN, and DDQN algorithms. Specifically, the learning rates of QL and TDN were

@ Springer

10 Page 18 of 27

A.K. Yadav et al.

1
1 r——.
|
1
1
1
L 1 |
[-
1 €
(a) (b)
| |
J
| |
'——1
S 1
11 -
| i | g | [
© (d

Fig. 10 Graphical representation of the shortest trajectory, as determined by the proposed algorithm, is illus-
trated as follows: a the RL algorithm with fixed state achieved minimum distance over a 10 x 10 grid in 20
steps. b DQL method with a fixed state completed the trajectory over a 10 x 10 grid in 14 steps. ¢ QL with
random state navigated over a 10 x 10 grid in 23 steps. d The Deep Q-Learning algorithm with a random state
successfully learned the trajectory over a 10 x 10 grid in 20 steps

variations in learning rate in fixed position

o (=
© ©

o
~N

Learning rate

—S—Dal:
—#—AQL

25

30 35 40 45 50 55 60
number of episode

Fig. 11 Graphical representation illustrating the relationship between cumulative rewards and training episodes
for Q-learning and deep Q-learning algorithms

@ Springer

Reinforcement Learning-Based Intelligent Path Planning for...

Page190f27 10

Table 4 Accuracy comparison of various learning algorithms

Algorithms Accuracy Learning Learning Learning Learning Learning Average
rate (L) rate (Lp) rate (L3) rate (Lg) rate (Ls) (%)
Deep Q 10 74.05 72.40 80.50 83.20 96.00 79.50
‘(?)‘18‘]:‘;’5 20 97.05 77.53 67.81 85.30 97.51 82.10
30 83.62 64.25 95.21 92.20 68.60 98.50
40 99.50 83.04 95.40 84.50 96.50 88.90
50 85.61 97.80 87.30 99.80 96.88 91.80
Q learning 10 76.06 75.80 71.08 85.50 95.09 78.80
QL) 20 98.88 76.15 73.80 76.50 97.80 82.30
30 85.56 67.56 94.40 96.80 68.50 79.40
40 86.58 84.60 98.50 85.80 97.25 95.50
50 85.58 97.80 82.50 98.80 95.80 91.80
Temporal 10 93.70 75.45 71.81 76.54 98.65 83.54
difference 5 75.07 76.85 75.53 80.80 98.70 93.90
learning
(TDL) 30 77.63 69.40 95.87 94.55 63.53 78.02
40 97.96 85.74 80.56 81.56 94.50 83.42
50 99.40 88.40 90.40 83.20 96.40 85.70
Double 10 80.10 80.60 75.60 84.30 93.40 80.10
deep Q 20 71.20 75.50 70.30 80.50 97.80 84.30
network
(DDQN) 30 84.32 67.60 98.60 97.50 63.50 78.30
40 98.60 86.60 96.50 82.80 95.80 91.80
50 84.05 97.80 82.40 99.50 99.80 91.80
’ Total discounts in fixed location condition
= —%
09 1
08| —— 1
2
i
o>
£07F 1
=
©
o y
06 1
L —6&—npaL
0.5 &
—+—TDN
DDQN

0.4 : ; ; ; :
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000
number of episode

Fig. 12 Comparison of return curves for four algorithms in a fixed-location environment, illustrating the learn-
ing performance over training episodes

@ Springer

10 Page 20 of 27 A.K. Yadav et al.

Table 5 Performance comparison of four algorithms in the fixed-position environment

Algorithm DQL QL TDN DDQN
The average learning rate 98.50 95.50 85.70 91.80
The average return values 6.12 6.51 6.62 6.66
The average rewards per step 0.098 0.097 0.093 0.94

about 3 and 13 times lower, respectively, while DDQN was around 7 times lower than DQL.
However, the QL and TDN algorithms achieved higher average return values than the DQL
algorithm. Among all algorithms, the TDN algorithm had the lowest average rewards per
step, whereas the DQL algorithm had the highest. Overall, DQL learned faster, but QL and
TDN performed better in terms of return efficiency.

Based on the experimental evaluations presented in this paper, along with the data in
Table 4, Q-learning evaluates a longer trajectory path of 23 units. In contrast, it determines a
comparatively shorter route of 20 units, as shown in Fig. 9. However, we observed an increase
in time complexity without achieving an optimal solution. In contrast, the proposed algorithm
identifies the shortest decision path of 14 units in Fig. 9, demonstrating its efficiency. Deep Q-
learning proves to be more effective in implementing trajectories involving repeated actions.
One of its significant applications is in grid-world games, particularly in agent-based tasks
such as prey capture. Furthermore, a comparative analysis of various reinforcement learning
algorithms, as illustrated in Fig. 11, indicates that the introduced method outperforms others
in terms of learning rate and the number of iterations.

According to Table 6, the optimized reward Deep Q-Learning model exhibits a signif-

Table 6 Performance comparison between baseline and optimized reward functions for Q-Learning and Deep
Q-Learning

Measure Baseline reward function QL with optimized reward ~ Optimized reward (deep
Q-learning)
Trajectory Small path length due to More optimal due to Most optimal with
optimality iterative learning iterative learning consistent shortest paths
due to non-iterative
Computational Low Average High due to neural
cost network training

Decision path

Irregular trajectory paths

Regular or smooth path
due to the state action
pair

Highest smoothness due
to continuous state
action evaluation via a
neural network

Convergence Slow and unstable in Faster and stable Fastest and most stable
speed large grids convergence due to state convergence with the
action NN feature
Collision High collision probability =~ Reduced collisions with Lowest collision due to
avoidance in dynamic scenarios less reward generalized and
dynamic reward
Performance Suitable for simple static Ideal for simple static Suitable for dynamic

grids

large grids

large grids

@ Springer

Reinforcement Learning-Based Intelligent Path Planning for... Page210f27 10

icantly faster convergence pattern and reduced path-collision complexity compared to the
QL, TDN, and DDQN algorithms.

4.3 GUI-Based Framework for Prey Capture in Dynamic Environments:
Game-Inspired Problem-Solving Approach

During the training process, the agent progressively learns to navigate the grid-world envi-
ronment through repeated interactions and feedback from the reward function. In the initial
episodes, the agent exhibits random exploration, frequently colliding with obstacles or taking
inefficient routes toward the goal. As training progresses, the reinforcement learning policy
gradually adapts, enabling the agent to identify optimal state—action mappings and minimize
unnecessary movements.

For the 3 x 3 environment, the policy converges more rapidly due to the limited state
space, resulting in smooth and consistent path selection. In contrast, the 4 x 4 environment
requires a more extensive exploration phase, as the agent must evaluate a greater number of
possible transitions and coordinate actions among multiple agents. Over successive episodes,
the agents begin to cooperate implicitly, avoiding redundant paths and minimizing conflicts,
which indicates effective policy evolution. Overall, the results shown in Fig. 13a and b
demonstrate that the agent’s behaviour transitions from exploration to exploitation, leading
to stable and goal-oriented navigation strategies across different environment scales.

During the testing phase, after the training process has achieved convergence, the agent
effectively applies the learned policy to perform the prey capture task. Initially, the agent
demonstrates a reactive and exploratory behaviour, adjusting its movements based on the
prey’s position and environmental constraints. As the episode progresses, the agent utilizes
its trained policy to predict and intercept the prey’s path more efficiently. Figure 14a and b
illustrate how the agent’s actions evolve from basic pursuit strategies to coordinated and goal-
directed movements, minimizing unnecessary exploration. The agent exhibits an improved
ability to anticipate the prey’s motion, adapt its trajectory, and maintain optimal spacing to

Y

Training Complete

Probatilty Distribution Single v

Prabability Distribution Singe

Training Complete

Enviranment Size 3 = Environment Size 4

Training Episodes 50 Training Episodes 50

Total Agents 9 Train Total Agents 3 Train

Execute Execute

(a) (b)

Fig. 13 GUI The framework for prey capture using the DQL method shows: a multiple agents trained in a
3 x 3 environment for 50 episodes, showing learning and adaptation; b multiple agents trained in a 4 x 4
environment for 50 episodes, also showing learning improvement

@ Springer

10 Page 22 of 27 A.K. Yadav et al.

® o ®
- -Em O ®
. [— - oIEM
. o
(a) (b)

Fig. 14 A GUI-based framework for prey capture in dynamic environments using the DQL algorithm is
depicted: a testing of multiple agents in a 3 x 3 environment over 50 episodes, highlighting learning pro-
gression and adaptation; b testing of multiple agents in a4 x 4 environment over 50 episodes, demonstrating
similar learning improvements

ensure successful capture. This indicates that the learned policy generalizes well beyond
the training phase, enabling stable, adaptive, and intelligent behaviour in dynamic testing
conditions.

4.3.1 Agent Training in Grid-Based Environments

In the context of multi-agent systems, it allows multiple agents to learn and navigate simul-
taneously within the same space. Each agent observes the environment, takes actions, and
learns from its own experience, while also considering the behaviour of other agents. This
setup is proper for real-world situations where many robots, drones, or autonomous vehicles
share the same workspace. Multi-agent setups allow the framework to be extended to larger,
more realistic applications such as warehouse robots, traffic navigation, and swarm robotics.
With multiple agents, the system learns how to distribute movement so that paths do not
overlap or block each other.

Multi-agent systems operating in grid-based environments (e.g., 3 x 3 or 4 x 4 grids)
involve training agents to learn optimal strategies for achieving specific goals, such as cap-
turing a “prey”’ agent, while navigating the environment. Here is a breakdown based on the
observed data:

Grid States and Environment:

e 3 x 3 Grid: A smaller environment where agents can explore up to 9 positions.
e 4 x 4 Grid: A more complex space with 16 positions, increasing the state space and
decision complexity.

New States of Agents

e These values (e.g., 8 6 for 3 x 3 and 8 3 6 for 4 x 4) represent the different unique states
or positions the agents occupy or move to during training.

e The variation in states suggests that agents are exploring the grid effectively during training
episodes, learning how to coordinate their movements.

Prey State and Capture

@ Springer

Reinforcement Learning-Based Intelligent Path Planning for... Page230f27 10

e The “Pray state” (likely meant as Prey state) refers to the position of the prey in the
environment.

e “Possible prey states new = 0 0 0 0” implies that during these episodes, no new states for
the prey were discovered—possibly because the prey was stationary or easily predictable.

Capturing Time
The capturing time reflects the efficiency of the agents in reaching and capturing the prey.

e 3 x 3 Grid: Capture time is approximately 25.05 s.
e 4 x 4 Grid: Capture time increases to around 36.56 s, indicating higher complexity.

To evaluate the scalability and computational efficiency of the proposed model, addi-
tional experiments were conducted with grid sizes of 12 x 12, 15 x 15, and 20 x 20.
The time complexity of the generalized environment is O(n?), where n represents the grid
dimension. The time complexity of the cell (n x n) is T(n) = O(n?). Where n is the num-
ber of cell states. Accordingly, the evaluated computational complexities for the respective
grid sizes are 20,736, 50,625, and 160,000. As the grid dimension increases, both the state
space and computational demand grow exponentially, resulting in significantly higher train-
ing time during the prey-capturing tasks. While the proposed algorithm maintains stable
learning performance across different grid scales, larger environments inherently require
more computational resources and longer convergence times due to their increased com-
plexity. Smaller environments, such as 3 x 3 and 4 x 4 grids, reached convergence within
fewer episodes (around 40-50), whereas larger grids required more training iterations due
to increased state—action complexity. The runtime, CPU/GPU utilization, and the number of
training episodes are necessary for convergence across different grid sizes (n x n cells).

The agents demonstrate learning progress by adapting to different grid sizes and effectively
navigating to capture the prey. Increased capturing time in larger grids reflects the added
complexity. No new prey positions suggest predictable prey behaviors, allowing agents to
generalize their capture strategy efficiently.

Upon successful completion of all experimental trials, we compared prey capture effi-
ciency, learning rate, and the number of states and episodes. The introduced approach achieves
superior prey capture efficiency and learning rate, characterized by minimized delay rewards,
reduced training time, and improved data retention—benefits applicable across game playing,
robotics, and other domains. Analysis of prey capture efficiency as a function of the number
of states, illustrating how increasing state complexity affects the agent’s decision-making
accuracy and overall task performance, is presented in Fig. 15.

The results show that both Q-Learning (QL) and Deep Q-Learning (DQL) enhance agent
performance by reducing the number of repetitions and episodes required to complete the
task, even when the environment changes. These methods help shorten the agent’s path,
cutting the number of steps from 20 to 14, which is a 30% to 70% reduction in both fixed
and random setups.

Among the two, Deep Q-learning performs better by lowering the number of iterations
and improving path planning. As shown in Fig. 10, DQL enables agents to complete tasks
more efficiently in both Map 1 and Map 2.

The designed reward function supports better path planning by encouraging shorter routes
and fewer steps. As shown in Fig. 12, Deep Q-learning outperforms both Q-learning and
Temporal Difference Learning.

A practical example of prey capture in a dynamic environment is presented in Figs. 13
and 14, illustrating autonomous robots that adapt and learn to accomplish their objectives
across different environments. These agents operate independently, autonomously developing
diverse gameplay strategies through experience. Their efficiency underscores the successful

@ Springer

10 Page 24 of 27 A.K. Yadav et al.

106 Total paray capturing efficency

90 #1
80 r *
70

60 I ,

= b d
40 /

30 F e

pray capturing efficency

20 7

0 5 10 15 20 25 30 35
Number of state

Fig. 15 Comparative analysis of prey capture efficiency as a function of the number of states

application of reinforcement learning in artificial intelligence, particularly in robotics and
related fields.

5 Conclusions and Future Work

This study demonstrates that Q-Learning (QL) and Deep Q-Learning (DQL) enhance naviga-
tion by reducing the number of steps and episodes required to reach the goal, even in dynamic
environments. The use of an optimized reward function helps shorten the path, leading to a
30% to 70% reduction in travel distance in both fixed and random setups.

Our results show that Deep Q-Learning is the most effective method for the prey capture
game, with better capture efficiency. A comparison of DQL, Temporal Difference Learning
(TDL), DDQN, and Q-Learning (QL) reveals the pros and cons of each method. One main
drawback of Q-learning is that it often results in longer paths, which increases the time and
number of steps needed to complete the task.

Future work can focus on utilizing multiple learning agents and advanced methods, such
as transfer learning, to enhance the system’s capabilities. Testing these approaches on larger
maps can help check how well they adapt and improve performance in changing environ-
ments.

Author contribution Data curation, Purushottam Sharma; Formal analysis, Anil Kumar Yadav and Purushot-
tam Sharma; Investigation, Xiaochun Cheng; Methodology, Shiv Shanker Prasad Shukla and Purushottam
Sharma; Project administration, Purushottam Sharma, Xiaochun Cheng; Software, Shiv Shanker Prasad
Shukla; Supervision and Funding, Xiaochun Cheng; Validation, Shiv Shanker Prasad Shukla and Purushottam
Sharma; Writing—review and editing—Anil Kumar Yadav, Purushottam Sharma.

Funding Authors have been supported by UKRI EPSRC Grant funded Doctoral Training Centre at Swansea
University, through project RS718. Authors also have been supported by UKRI EPSRC Grant EP/W020408/1.

Availability of data and materials No datasets were generated or analysed during the current study.

@ Springer

Reinforcement Learning-Based Intelligent Path Planning for... Page250f27 10

Declarations

Consent to Publish All images within this manuscript are original works created by the author(s) unless
otherwise stated. The authors retain all copyrights to these images.

Ethical Approval This is an observational study. The research involves no human or animal subjects; therefore,
no ethical approval is required.

Competing interests The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Mohanty PK, Singh AK, Kumar A, Mahto MK, Kundu S (2021, December) Path planning techniques
for mobile robots: a review. In: International conference on soft computing and pattern recognition, pp
657-667. Springer International Publishing, Cham

2. Cheng C, Sha Q, He B, Li G (2021) Path planning and obstacle avoidance for AUV: a review. Ocean Eng
235:109355

3. Loganathan A, Ahmad NS (2023) A systematic review on recent advances in autonomous mobile robot
navigation. Int J Eng Sci Technol 40:101343

4. WuM, Yeong CF, Su ELM, Holderbaum W, Yang C (2023) A review on energy efficiency in autonomous
mobile robots. Robot Intell Autom 43(6):648-668

5. Liu L, Wang X, Yang X, Liu H, Li J, Wang P (2023) Path planning techniques for mobile robots: review
and prospect. Expert Syst Appl 227:120254

6. Salama OA, Eltaib ME, Mohamed HA, Salah O (2021) RCD: radial cell decomposition algorithm for
mobile robot path planning. IEEE Access 9:149982-149992

7. Chen G, Luo N, Liu D, Zhao Z, Liang C (2021) Path planning for manipulators based on an improved
probabilistic roadmap method. Robot Comput Integr Manuf 72:102196

8. Souza RMIJA, Lima GV, Morais AS, Oliveira-Lopes LC, Ramos DC, Tofoli FL (2022) Modified artifi-
cial potential field for the path planning of aircraft swarms in three-dimensional environments. Sensors
22(4):1558

9. Lindqvist B, Agha-Mohammadi AA, Nikolakopoulos G (2021, September) Exploration-RRT: a multi-
objective path planning and exploration framework for unknown and unstructured environments. In: 2021
IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 3429-3435. IEEE.

10. Low ES, Ong P, Low CY (2023) A modified Q-learning path planning approach using distortion concept
and optimization in dynamic environment for autonomous mobile robot. Comput Ind Eng 181:109338

11. Jaramillo-Martinez R, Chavero-Navarrete E, Ibarra-Pérez T (2024) Reinforcement-learning-based path
planning: a reward function strategy. Appl Sci 14(17):7654

12. Gad AG (2022) Particle swarm optimization algorithm and its applications: a systematic review. Arch
Comput Methods Eng. https://doi.org/10.1007/s11831-021-09694-4

13. Arulkumaran K, Deisenroth MP, Brundage M, Bharath AA (2017) Deep reinforcement learning: a brief
survey. IEEE Signal Process Mag 34(6):26-38

14. Li SE (2023) Reinforcement learning for sequential decision and optimal control. Springer, Berlin

15. Sharma P, Alshehri M, Sharma R (2023) Activities tracking by smartphone and smartwatch biometric
sensors using fuzzy set theory. Multimed Tools Appl 82(2):2277-2302. https://doi.org/10.1007/s11042-
022-13290-4

16. Lan W, Jin X, Chang X, Wang T, Zhou H, Tian W, Zhou L (2022) Path planning for underwater gliders
in time-varying ocean current using deep reinforcement learning. Ocean Eng 262:112226

@ Springer

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s11831-021-09694-4
https://doi.org/10.1007/s11042-022-13290-4

10

Page 26 of 27 A.K.Yadav et al.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

LiZ, WuL, Xu Y, Moazeni S, Tang Z (2021) Multi-stage real-time operation of a multi-energy microgrid
with electrical and thermal energy storage assets: a data-driven MPC-ADP approach. IEEE Trans Smart
Grid 13(1):213-226

Gao H, Jiang S, Li Z, Wang R, Liu Y, Liu J (2024) A two-stage multi-agent deep reinforcement learning
method for urban distribution network reconfiguration considering switch contribution. IEEE Trans Power
Syst 39(6):7064-7076

. Xu C, Zhao W, Chen Q, Wang C (2021) An actor-critic based learning method for decision-making and

planning of autonomous vehicles. Sci China Technol Sci 64(5):984-994

Alshehri M, Sharma P, Sharma R, Alfarraj O (2021) Motion-based activities monitoring through biometric
sensors using genetic algorithm. Comput Mater Continua 66(3):2525-2538. https://doi.org/10.32604/
cmc.2021.012469

Low ES, Ong P, Low CY (2023) An empirical evaluation of Q-learning in autonomous mobile robots in
static and dynamic environments using simulation. Decis Anal J 8:100314

Low ES, Ong P, Low CY, Omar R (2022) Modified Q-learning with distance metric and virtual target on
path planning of mobile robot. Expert Syst Appl 199:117191

Maoudj A, Hentout A (2020) Optimal path planning approach based on Q-learning algorithm for mobile
robots. Appl Soft Comput 97:106796

Low ES, Ong P, Cheah KC (2019) Solving the optimal path planning of a mobile robot using improved
Q-learning. Robot Auton Syst 115:143-161

Chen C, Chen X-Q, Ma F, Zeng X-J, Wang J (2019) A knowledge-free path planning approach for smart
ships based on reinforcement learning. Ocean Eng 189:106299

Huo F, Zhu S, Dong H, Ren W (2024) A new approach to smooth path planning of Ackerman mobile
robot based on improved ACO algorithm and B-spline curve. Robot Auton Syst 175:104655

Elhoseny M, Tharwat A, Hassanien AE (2018) Bezier curve-based path planning in a dynamic field using
modified genetic algorithm J. Comput Sci 25:339-350

Rapalski A, Dudzik S (2023) Energy consumption analysis of the selected navigation algorithms for
wheeled mobile robots. Energies 16(3):1532

Kubo R, Fujii Y, Nakamura H (2020) Control Lyapunov function design for trajectory tracking problems
of wheeled mobile robot. IFAC Pap Online 53(2):6177-6182

Wu Z, Yin Y, Liu J, Zhang De, Chen J, Jiang W (2023) A novel path planning approach for mobile robot
in radioactive environment based on improved deep Q network algorithm. Symmetry 15(11):2048
Wang W, Wu Z, Luo H, Zhang B (2022) Path planning method of mobile robot using improved deep
reinforcement learning. J Electr Comput Eng 2022(1):5433988

Li X, Lv Z, Wang S, Wei Z, Wu L (2019) A reinforcement learning model based on temporal difference
algorithm. IEEE Access 7:121922-121930

Zhang X, Shi X, Zhang Z, Wang Z, Zhang L (2022) A DDQN path planning algorithm based on experience
classification and multi steps for mobile robots. Electronics 11(14):2120

Venu S, Gurusamy M (2025) A comprehensive review of path planning algorithms for autonomous
navigation. Results Eng. https://doi.org/10.1016/j.rineng.2025.107750

Chen Z, Sheng K, Zhou R, Dong H, Wang J (2024, September) Exploring urban UAV navigation: SAC-
based static obstacle avoidance in height-restricted areas using a forward camera. In: 2024 6th international
symposium on robotics and intelligent manufacturing technology (ISRIMT), pp 182-186. IEEE
Benjumea DC (2024, June) Formalising safety requirements for robotic autonomous systems in highly
regulated domains. In: 2024 IEEE 32nd international requirements engineering conference (RE), pp
512-516. IEEE

Yadav AK, Sharma P, Cheng X, Gupta NK (2025) Hybrid reinforcement learning with optimized SARSA
for improved face recognition systems. J Electr Comput Eng 2025(1):3305430

Yadav AK, Sharma P, Yadav RK (2022) A novel algorithm for wireless sensor network routing protocols
based on reinforcement learning. Int J Syst Assur Eng Manag 13(3):1198-1204

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

@ Springer

https://doi.org/10.32604/cmc.2021.012469
https://doi.org/10.1016/j.rineng.2025.107750

Reinforcement Learning-Based Intelligent Path Planning for... Page270f27 10

Authors and Affiliations

Anil Kumar Yadav' - Purushottam Sharma? - Xiaochun Cheng?3 -
Shiv Shankar Prasad Shukla’

B Purushottam Sharma
purushottam @ galgotiasuniversity.edu.in

B Xiaochun Cheng
xiaochun.cheng @swansea.ac.uk

Anil Kumar Yadav

anilkumar.yadav @vitbhopal.ac.in

VIT Bhopal University, Bhopal-Indore Highway, Bhopal, India

School of Computer Science and Engineering, Galgotias University, Greater Noida, India

Computer Science Department, Bay Campus Fabian Way, Swansea University, Swansea SA1 8EN,
Wales, UK

@ Springer

	Reinforcement Learning-Based Intelligent Path Planning for Optimal Navigation in Dynamic Environments
	Abstract
	1 Introduction
	2 Related Work
	3 Proposed Methodology
	3.1 Environment Modelling
	3.2 Reinforcement Learning
	3.3 RL-Based Q Learning Algorithm
	3.4 Look-Up-Table

	4 Analysis and Interpretation of Experimental Outcomes
	4.1 Assessment of the Trajectory Path Planning Method
	4.2 Comparison of Accuracy Across Different Algorithms
	4.3 GUI-Based Framework for Prey Capture in Dynamic Environments: Game-Inspired Problem-Solving Approach
	4.3.1 Agent Training in Grid-Based Environments

	5 Conclusions and Future Work
	References

