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Center-vortex surfaces are mapped out in four dimensions within the framework of SU(3) lattice gauge
theory to understand the role of secondary loops that develop in three-dimensional visualizations of center-
vortex structure, appearing separate from the percolating cluster. Loops that initially appear disconnected in
three-dimensional slices can originate from the same connected surface in four dimensions depending on
the surface’s curvature. For the first time, these secondary loops are identified as “connected” or
“disconnected” with respect to the vortex sheet, allowing new insight into the evolution of center-vortex
geometry through the finite-temperature phase transition. At low temperatures, we find that secondary
loops of any length primarily lie in the same sheet percolating the four-dimensional volume. Only a handful
of small secondary sheets disconnected from the percolating sheet are identified. Above the phase
transition, the vortex structure is still found to be dominated by a single large sheet but one that has aligned
with the temporal dimension. With the near absence of any curvature orthogonal to the temporal dimension,
connected secondary loops become vanishingly rare. Other novel quantities, such as the four-dimensional
density of secondary sheets and the sheet sizes themselves, are analyzed to build a complete picture of
center-vortex geometry in four dimensions.
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I. INTRODUCTION

The nature of quark confinement is one of the longest-
standing questions in quantum chromodynamics (QCD).
In the context of static heavy quarks, confinement is
typically inferred through an area-law falloff for large
Wilson loops C [1],

hWðCÞi ∼ exp ð−σAðCÞÞ; ð1Þ

where σ is the string tension. In the presence of light
quarks, this simple picture breaks down due to string
breaking at large separations. Instead, the absence of a
Källen-Lehmann representation of the gluon propagator
implies that the corresponding physical states are confined.
This is signalled by positivity violation in the Schwinger
function at large Euclidean times [2,3].

One aspect of vacuum structure that has been well
established as a leading prospect for a confinement mecha-
nism is the presence of center vortices in the ground-state
fields [4–8]. These form closed two-dimensional sheets in
four dimensions, and have been studied extensively in the
framework of SUðNÞ lattice gauge theory [9–41]. The
removal of center vortices has been demonstrated to result
in a vanishing string tension, indicating the loss of an area
law [17,25,36]. In addition, center-vortex removal with
dynamical fermions leaves no sign of positivity violation in
the Schwinger function [37]. These findings highlight the
importance of center vortices in understanding the non-
perturbative phenomena of QCD.
Center vortices that “percolate” spacetime, i.e., span the

four-dimensional volume, naturally generate an area law
for Wilson loops in those orientations pierced by vortices
[14]. This is the observed behavior for both space-space
and space-time orientations at low temperatures. However,
SUðNÞ Yang-Mills theory is known to undergo a phase
transition at a critical temperature Td beyond which
confinement breaks down. This is reflected in the center-
vortex structure through an alignment of the vortex sheet
along the temporal dimension [15,18,19,39]. This results
specifically in the near absence of space-time Wilson loops
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pierced by a vortex. Meanwhile, center vortices still pierce
and generate an area law for space-space Wilson-loop
orientations above Td.
These characteristics have previously been visualized by

mapping out the center-vortex clusters that form in three-
dimensional slices of the full four-dimensional lattice
[35,38–40]. Here, the closed two-dimensional sheets that
exist in four dimensions are reduced to closed one-dimen-
sional loops. To be precise in our terminology, we use
“cluster” for any generic connected group of vortices.
Accordingly, “sheets” are clusters in four dimensions,
while “loops” are clusters in three-dimensional slices.
Though some aspects of center-vortex geometry can be

deduced in this manner, other features are lost in slicing
through the vortex sheet that exists in four dimensions. For
example, it has previously been discussed how vortices that
appear disconnected in three-dimensional slices can lie in
the same connected sheet in four dimensions, due to the
sheet’s curvature [40]. An illustration of this idea is
provided in Fig. 1. This can also be seen with a sufficiently
fine lattice spacing—in an animation over three-dimen-
sional slices, one can observe such loops walking across the
lattice and joining together [41].
Due to the evolution in center-vortex geometry across the

phase transition, one would expect to find a substantial
change in the connectedness (or otherwise) of these
secondary loops in four dimensions. Nevertheless, it is
in general not possible to ascertain whether two loops are
connected in four dimensions purely by looking at the
three-dimensional structure.
It is thus prescient to detect the distinct center-vortex

surfaces that form in the full four-dimensional lattice. This

has previously been carried out in SU(2) and exploited to
study topological aspects of the vortex sheets, such as their
orientability and Euler characteristics [18]. Our emphasis
will instead be placed on the physical ramifications of
vortex connectedness in four dimensions with regard to the
deconfinement phase transition.
We perform this analysis in pure SU(3) gauge theory at a

range of temperatures that span the phase transition,
building on the work in Ref. [39] that studied vortex
geometry via three-dimensional slices. In addition to the
four-dimensional connectedness of loops discussed above,
we will investigate other novel quantities made available
through this complete picture of center-vortex geometry.
These include the proportion of vortices that lie in the
largest sheet, along with the density and sizes of any
secondary sheets. This will build a deeper understanding of
the relationship between center vortices and confinement.
This paper is structured as follows. In Sec. II, center

vortices and their identification on the lattice are succ-inctly
reviewed. Our four-dimensional analysis of center-vortex
geometry is detailed in Sec. III, with accompanying
visualizations that incorporate the updated cluster informa-
tion. Comparisons are drawn to our prior work that
restricted cluster identification to three-dimensional slices.
Section IV presents our detailed analysis of the various
four-dimensional vortex properties new to this work.
Finally, we conclude our main findings in Sec. V.

II. CENTER VORTICES

Center vortices [4–6] are regions of the gauge field that
carry magnetic flux quantized by the center of SU(3),

Z3 ¼
�
exp

�
2πi
3

n
�
I

���� n ¼ −1; 0; 1
�
: ð2Þ

Physical vortices in the QCD ground-state fields have a
finite thickness. Any Wilson loop that encircles a vortex
acquires a factor of an element of Z3,

WðCÞ → zWðCÞ: ð3Þ

On the lattice, thin center vortices are extracted through a
well-known gauge-fixing procedure that seeks to bring
each link variable UμðxÞ as close as possible to an element
of Z3, known as maximal center gauge (MCG), followed
by projecting onto this nearest Z3 element. The thin
vortices that emerge comprise closed surfaces, or sheets,
in four-dimensional Euclidean spacetime, and therefore
one-dimensional structures in a three-dimensional slice of
the four-dimensional spacetime.
Fixing to MCG is performed by finding the gauge

transformation ΩðxÞ to maximize the functional [42]

R ¼
X
x;μ

jTrUΩ
μ ðxÞj2: ð4Þ

FIG. 1. Adapted from Ref. [40]. An illustration of how
disconnected loops can arise by slicing through a single curved
surface. Here, the τ coordinate is being held fixed such that we are
looking at an xy cross section. Depending on the slice coordinate,
we can see either a single closed curve (top) or two disconnected
curves (bottom).
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The links are subsequently projected onto the center,

UΩ
μ ðxÞ → ZμðxÞ ¼ exp

�
2πi
3

nμðxÞ
�
I∈ Z3; ð5Þ

with nμðxÞ∈ f−1; 0; 1g identified as the center phase
nearest to arg TrUμðxÞ for each link. Finally, the locations
of vortices are identified by nontrivial plaquettes in the
center-projected field,

PμνðxÞ ¼
Y
□

ZμðxÞ ¼ exp

�
2πi
3

mμνðxÞ
�
I; ð6Þ

withmμνðxÞ ¼ �1. The value ofmμνðxÞ is referred to as the
“center charge,” and we say the plaquette is pierced by a
vortex.
Although gauge dependent, numerical evidence indi-

cates that the projected vortex locations correspond to the
physical “guiding centers” of thick vortices in the original
fields [13,25,42,43]. This allows the significance of center
vortices to be investigated through the vortex-only field
ZμðxÞ.
The ensembles employed in this work are the same as in

Ref. [39]. They use the Iwasaki renormalization-group-
improved action [44,45] with β ¼ 2.58, corresponding to a
lattice spacing of a ≃ 0.1 fm [46]. Their spatial volume is
323 and the temporal extent is varied to obtain three
temperatures below Td and three above Td. Their details
are reproduced in Table I for convenience.

III. CENTER-VORTEX STRUCTURES IN FOUR
DIMENSIONS

To understand our approach for identifying the distinct
center-vortex sheets in four dimensions, we first recall how
clusters can be identified in three-dimensional slices. Our
four-dimensional algorithm is then a natural extension of
this procedure.
Center-vortex clusters constitute closed loops in three-

dimensional slices. The vortices exist on the dual lattice,
piercing the associated nontrivial plaquettes. Therefore, if

an ij plaquette at x is pierced by a vortex, the possible
connecting plaquettes form nothing but the faces of the
elementary cubes at x and x − k̂ (ϵijk ¼ 1). This idea is
illustrated in Fig. 2. There is a total of 10 plaquettes to
check for vortices at each step, 5 faces for each elementary
cube. One can thus map out a loop by selecting an initial
pierced plaquette, identifying the connecting nontrivial
plaquettes by checking the faces of these two elementary
cubes, and then iteratively applying this procedure to each
of those plaquettes in turn. The process would terminate
once all connecting nontrivial plaquettes in a given step
have already been visited.
Moving to four dimensions, there are now two orthogo-

nal directions κ, λ for a given μν plaquette (ϵμνκλ ¼ 1).
Noting that the arrows plotted on the dual lattice (as in
Fig. 2) lie within the sheet, here the connecting nontrivial
plaquettes can be identified by implementing the above
three-dimensional procedure independently for κ and λ.
First, λ is held fixed and one imagines the elementary cubes
formed by translating the μν plaquette one step forward and
backward in the κ direction. The plaquettes that form these
cubes are checked for vortices. Then, the roles of κ and λ
are interchanged—κ is held fixed, and one checks the
forward and backward elementary cubes in the λ direction.
After the faces of all four elementary cubes have been
visited, all possible connecting plaquettes have been
accounted for. This can then be applied recursively to
map out center-vortex sheets in four dimensions.
One of our primary goals is to understand the extent to

which vortex loops that appear disconnected in three-
dimensional slices are connected in four dimensions. To
achieve this, we produce visualizations with two different
color schemes. In one, the vortices will be colored by the

TABLE I. The number of sites Nτ in the temporal dimension
for our ensembles, with the corresponding temperatures both in
terms of the critical deconfinement temperature Td and in MeV.
The conversion is performed using r0Td ≃ 0.746 [47] and the
Sommer scale r0 ≃ 0.5 fm [48].

Nτ T=Td T (MeV)

64 0.10 30
12 0.55 162
8 0.83 243
6 1.10 324
5 1.32 389
4 1.65 486

FIG. 2. Illustration for identifying connecting plaquettes in
three-dimensional slices of the lattice. The middle ij plaquette at
x is pierced by anm ¼ þ1 vortex, rendered as a unit arrow on the
dual lattice pointing in the þk̂ direction and piercing the
plaquette. Due to conservation of center charge, there must be
at least one vortex connection to the left, and at least one to the
right. Consequently, one can exclusively check the faces of the
elementary cubes at x and x − k̂ to identify the next nontrivial
plaquettes. This holds also ifm ¼ −1 and the vortex were to point
in the −k̂ direction. In four dimensions, one need simply repeat
this procedure for the two dimensions orthogonal to the pierced
plaquette.
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loop they belong to in the three-dimensional slice. This is
how the visualizations in Ref. [39] were produced. In the
second scheme, they will be colored by the sheet they
belong to in four dimensions. The two schemes can
subsequently be compared.
The visualizations are constructed following Ref. [35].

We slice through a dimension of the four-dimensional
lattice by holding the selected coordinate fixed. Slices
obtained by fixing temporal and spatial coordinates are
referred to as “temporal” and “spatial” slices, respectively.
The orientation of an m ¼ þ1 vortex is determined by
applying the right-hand rule, with an m ¼ −1 vortex
rendered in the opposite direction. Since the flow of
m ¼ −1 center charge is indistinguishable from an opposite
flow of m ¼ þ1 center charge, this implies the visualiza-
tions exclusively show the flow of m ¼ þ1 center charge.
This convention is demonstrated in Fig. 3.
We start by comparing the two color schemes in the

confined phase, below Td. A side-by-side comparison of
representative temporal and spatial slices is presented in
Fig. 4. The left-hand side displays the usual setup, in which
the percolating loop is colored dark blue, and any separate
secondary loops are shown with different colors. The right-
hand side shows the new setup, with the vortex jets colored
by the sheet in which they lie. Immediately, we can notice
that nearly all secondary loops, which initially appear
disconnected in the three-dimensional slices, are connected
in four dimensions. To be precise, they exist in the
percolating sheet that permeates all four spacetime dimen-
sions below Td. This is reflected in the right-hand side of
Fig. 4, with the majority of jets that formerly had different
colors now also colored dark blue.
An example of vortices disconnected from the percolat-

ing sheet can be seen in both the temporal and spatial slices
of Fig. 4. In both cases this is a 1 × 1 vortex loop, the
smallest possible such closed loop. They correspond to
very small secondary sheets that exist in four dimensions.
The number of these secondary sheets will be quantified in
Sec. IVA. For now, this points to the idea that below Td any
secondary loops disconnected from the percolating sheet
tend to be very small, while the larger secondary loops are

all connected in four dimensions. That said, it appears that
even a majority of the 1 × 1 secondary loops are connected
to the percolating sheet. This is especially apparent in the
temporal slice shown in Fig. 4. These would correspond to
fluctuations in the sheet at the scale of the lattice spacing,
small protrusions that result in an additional loop when
slicing through the sheet. The proportion of such 1 × 1
loops that are connected and disconnected will be inves-
tigated in Sec. IV B.
In Ref. [38] exploring the impact of dynamical fermions

on center-vortex structure, a proliferation of secondary
loops was observed, including many small 1 × 1 loops in
the three-dimensional slices. The results presented here
suggest that the main effect of dynamical fermions is to add
additional fluctuations to the sheet structure in four
dimensions. Thus, it will be important to examine this
further in QCD.
We now move into the deconfined phase, above Td. A

similar comparison between temporal and spatial slices is
presented in Fig. 5. We recall that the principal change in
center-vortex geometry through the phase transition is an
alignment with the temporal dimension. This is most easily
seen in visualizations via spatial slices, comprising pri-
marily short vortex lines winding around the temporal
dimension. In the left-hand side of Fig. 5, these lines all
have different colors. However, in the right-hand side they
are all dark blue (with the exception of another 1 × 1 loop).
This implies that even at very high temperatures, the center-
vortex structure is still dominated by a single large sheet.
The lines only appear disconnected due to slicing through
this sheet.
This could previously be inferred by additionally looking

at temporal slices, in which a percolating loop is still
formed. This indirectly implies that the vortex structure has
not broken up into a large number of small sheets, but rather
is still predominantly one connected cluster that has
oriented along the temporal dimension. The updated color
scheme provides an explicit representation of this fact,
visually confirming that the percolating loop in temporal
slices and the periodic lines in spatial slices are all part of
the same structure.
For simplicity, we refer to the dominant sheet that exists

at all temperatures as the “primary sheet.” It is interesting to
consider whether the primary sheet is still percolating
above Td in spite of its temporal alignment. A simple test
for percolation can be performed as follows. Define dprimary

to be the largest Euclidean distance between any two
vortices (on the dual lattice) in the primary sheet. This is
then normalized by the maximum possible such distance
dmax,

dnorm ¼ dprimary

dmax
; dmax ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX4
μ¼1

�
Nμ

2

�
2

vuut ; ð7Þ

FIG. 3. The visualization convention for center vortices. An
m ¼ þ1 vortex (left) is represented by a jet in the available
orthogonal dimension, with the direction given by the right-hand
rule. Anm ¼ −1 vortex (right) is rendered by a jet in the opposite
direction, such that we always show the flow of m ¼ þ1 center
charge.
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where Nμ is the lattice extent along dimension μ. If
the primary sheet has dnorm ¼ 1 within a very small
margin, then this signals that the sheet is percolating.
This generalizes a similar calculation that has previously
been performed for loops in three-dimensional slices
[19,38,40].
We have calculated dnorm at each temperature under

consideration and found that it is exactly equal to 1 in every
case. This verifies that, in the context of sheets in four
dimensions, the center-vortex structure is percolating at all
temperatures.
Of course, due to the temporal alignment of the sheet,

this percolation persists in three-dimensional slices above

Td only when slicing along the temporal dimension.
In spatial slices, the percolating loop found below Td gives
way to lines of finite extent winding around the temporal
dimension as Td is crossed.
Staying with temporal slices, above Td we find a

comparatively large secondary loop that is genuinely
disconnected from the primary sheet. This is in direct
contrast to below Td, where larger loops were connected to
the percolating sheet. We understand secondary loops that
lie in the same sheet arise due to the sheet’s curvature in
four dimensions, as elucidated in Fig. 1. Above Td, with the
vortex structure aligned with the temporal dimension, such
instances are increasingly rare. This means one expects that

FIG. 4. A comparison of center-vortex visualizations in the confined phase at T=Td ≃ 0.55 (Nτ ¼ 12) colored by the loop in three
dimensions (left) and sheet in four dimensions (right) to which each vortex belongs. An example temporal slice (top) and spatial slice
(bottom) are shown. The majority of secondary loops are observed to lie in the same connected sheet in four dimensions. A single 1 × 1
secondary loop is found to be disconnected from the percolating sheet in both cases.
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any secondary loops are less likely to be connected at high
temperatures, a fact that will be quantitatively verified in
Sec. IV B. That is, above Td any larger secondary loops
necessarily originate from disconnected sheets in four
dimensions above.
Given that the center-vortex structure comprises a

primary sheet at all temperatures, an interesting quantity
to examine is the proportion of vortices that belong to said
sheet. The temperature evolution of this proportion is
shown in Fig. 6. It generally attains values above 99%
regardless of temperature, reflecting the sheer density of the
primary sheet. Still, a small statistically significant decrease

is observed through Td. There are two ways this could
manifest, either as an increase in the number of secondary
sheets, or as an increase in their sizes. The high-temperature
visualizations of Fig. 5, through which a large disconnected
secondary loop was observed, suggest it is the latter for our
highest temperatures.
The one outlier in Fig. 6 is our temperature nearest to but

above Td, at which the proportion is notably smaller than
all other temperatures. This point being an outlier is in fact
a recurring feature throughout most quantities we have
computed, and the reason for its existence will be explored
in detail throughout Sec. IV.

FIG. 5. A comparison of center-vortex visualizations in the deconfined phase at T=Td ≃ 1.65 (Nτ ¼ 4) colored by the loop in three
dimensions (left) and sheet in four dimensions (right) to which each vortex belongs. An example temporal slice (top) and spatial slice
(bottom) are shown. Unlike below Td, a relatively large secondary loop is found to be disconnected from the percolating loop in the
temporal slice. In spatial slices, the short vortex lines winding around the temporal dimension are primarily connected in four
dimensions, embodying the fact that there is a single large sheet even at high temperatures.

MICKLEY, ALLTON, BIGNELL, and LEINWEBER PHYS. REV. D 112, 054505 (2025)

054505-6



IV. VORTEX GEOMETRY ANALYSIS

We now turn to a quantitative investigation of four-
dimensional center-vortex geometry, expanding on the
qualitative aspects identified through visualization. Having
already quantified the relative size of the primary sheet that
exists at all temperatures, in Sec. IVA we will consider the
number and sizes of secondary sheets. Subsequently, the
four-dimensional connectedness of the loops seen in three-
dimensional sliceswill be thoroughly examined in Sec. IV B.
All quantities are calculated using 100 configurations at each
temperature, with statistical uncertainties obtained through
bootstrapping.

A. Secondary sheets

The first quantity we consider is the number of secon-
dary center-vortex sheets identified in four dimensions.
This encompasses any sheet that is disconnected from the
largest (primary) sheet. More precisely, to account for the
reduction in four-dimensional volume as temperature
increases, we compute a secondary-sheet density in fm−4

as the number of secondary sheets divided by the physical
volume. This can then be compared across all temperatures.
Its evolution is shown in Fig. 7.
We find that the four-dimensional density of secondary

sheets is approximately constant. This again sets aside our
temperature just above Td, at which there is a considerable
spike in the density of secondary sheets. This spike
naturally coincides with the decrease in proportion of
vortices belonging to the primary sheet seen in Fig. 6.
With an increase in the number of secondary sheets relative

to the volume, a greater proportion of vortices can be
attributed to said sheets.
This could originate partly from the substantial reduction

in total vortex density that is known to occur through the
phase transition [39]. As less vortex matter fills the volume,
more space is available for small secondary sheets to form.
Since the vortex density is known to subsequently increase
following this initial drop, this would primarily impact a
small region just above Td. Another possible reason for the
anomaly will be identified in Sec. IV B.
It is noteworthy that the density of secondary sheets is

otherwise constant (within statistical uncertainty) across the
full temperature range. This value is rather small, only
≃1=3 fm−4. In particular, the density is approximately
equal at both low and high temperatures. This is despite
the small decrease in proportion of vortices in the primary
sheet that persists at our highest temperature in Fig. 6. This
corroborates that the latter observation arises not from an
increase in the number of secondary sheets, but due to an
increase in their typical size.
We now turn to examine these secondary-sheet sizes in

detail. The number of vortices in each secondary sheet is
counted, and histograms are produced to uncover the
resulting distribution. These are shown for each temper-
ature throughout Fig. 8. Here, the vertical axis gives the
proportion of secondary sheets with a given size. The
histograms are given on a log-log scale. This allows
the detail at small sheet sizes to be resolved, while simulta-
neously making visible the rare larger secondary sheet.
To start, the leftmost bin in each histogram is located at a

size of six. This is the smallest number of vortices required

FIG. 6. The proportion of vortices that belong to the largest
(“primary”) sheet. It sits consistently above 99% throughout the
full temperature range, barring a curious drop just above Td. The
typically smaller proportion in the deconfined phase can be
attributed to larger secondary sheets, as identified from the
visualizations in Fig. 5.

FIG. 7. The four-dimensional density of secondary sheets. It is
approximately constant across the full temperature range, ex-
cepting a conspicuous increase just above Td. This is connected
to the analogous decrease in proportion of vortices attributed to
the primary sheet in Fig. 6.
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to form a closed surface. It corresponds to a 1 × 1 × 1
(elementary) cube on the dual lattice. Such secondary
sheets are far and away the most probable of any size,
over an order of magnitude more prevalent than the next-
smallest size. Slicing through these sheets produces the few
disconnected 1 × 1 vortex loops found in the visualizations.

The next-smallest sheets comprise ten vortices. These
primarily constitute (but are not limited to) 1 × 1 × 2 closed
surfaces, and permutations thereof. Beyond a size of ten,
there is an alternating trend where secondary sheets that
comprise an even number of vortices are more probable
than those with an odd number of vortices. This is because

FIG. 8. Histograms of secondary-sheet sizes on a log-log scale for T=Td ¼ 0.10 (Nτ ¼ 64, upper left), T=Td ¼ 0.55 (Nτ ¼ 12, upper
right), T=Td ¼ 0.83 (Nτ ¼ 8, middle left), T=Td ¼ 1.10 (Nτ ¼ 6, middle right), T=Td ¼ 1.32 (Nτ ¼ 5, lower left), T=Td ¼ 1.65
(Nτ ¼ 4, lower right). The smallest and most common sheet size is six vortices, covering the six faces of a cube in the dual space. Sheets
with an odd number of vortices are suppressed relative to their adjacent even sizes due to requiring at least one branching point
somewhere in the sheet. Considerably larger secondary sheets are seen to appear above Td compared to below Td.
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for a closed surface to contain an odd number of vortices, it
necessarily features a branching point somewhere in the
sheet. Center-vortex branching points, also known as
monopoles, are allowed because the center charge is only
conserved modulo N in general SUðNÞ gauge theory. In
SU(3), this implies that three m ¼ þ1 vortices can con-
verge to or emerge from a point. The semantics of
branching points are highlighted in Fig. 9. They are
relatively rare occurrences, such that sheets with an odd
number of vortices are suppressed.
As an example, sheets of size eleven are nearly identical

to those of size ten, except the middle “face” separating the
two elementary cubes that form the 1 × 1 × 2 surface is
also part of the sheet. This results in the formation of four
branching points, one along each edge of the middle face,
as demonstrated in Fig. 10.

The primary shift in behavior exhibited as the temper-
ature climbs above Td is the presence of larger sheets.
Namely, the largest secondary sheet found below Td is
comprised of 129 vortices, while above Td there are sheets
with greater than several hundred vortices. This is despite
the reduction in four-dimensional volume, providing
explicit confirmation that appreciably larger secondary
sheets are present in the deconfined phase. This accounts
for the lower proportion of vortices in the primary sheet
captured by Fig. 6.
The appearance of larger secondary sheets might be

attributed to the temporal alignment of the center-vortex
structure. While secondary sheets in the confined phase
typically only exist for a couple of slices, above Td they can
easily be locked into winding around the temporal dimen-
sion and therefore would permeate a greater spacetime
extent. This would also explain why the largest secondary
sheet at our highest temperature (Nτ ¼ 4) is still smaller
than that of the two lower temperatures (Nτ ¼ 5 and 6) with
longer temporal extents.
It is also worth noting that, ignoring sheets with a size of

six, the histogram at our lowest temperature appears approx-
imately linear over even sheet sizes. Linearity on a log-log
scale implies a power-law distribution for the sheet sizes,

logpðxÞ ¼ α − β log x ⇒ pðxÞ ¼ eαx−β: ð8Þ

This motivates performing fits of the form Eq. (8) to the
distribution of sheet sizes. Naturally, even and odd sizes
cannot be simultaneously described owing to the suppression
of the latter relative to the former. We exclusively consider
even sizes due to their superior statistics.
In Fig. 11, the lowest-temperature distribution of Fig. 8 is

reproduced over a more-limited range with our final fit
overlaid. To suppress finite-volume effects, we consider
secondary sheets up to a sheet size of 50. We perform the fit

FIG. 9. Schematic of a vortex branching point/monopole. In four dimensions (left), monopoles occur when three faces of the vortex
sheet (purple areas) connect at a common dual link. The black arrows around each face of the sheet are to indicate the vortex orientation,
taken to be m ¼ þ1. In taking a cross section through the sheet (i.e., “slicing”), as portrayed by the dashed gray area, the monopole
appears as three vortex lines emerging from a point (right). These arrows appear where the cross section intersects the vortex sheet.
Examples of such monopoles can be found throughout the visualizations in Figs. 4 and 5. Reversal of the left-hand arrow in the right
figure instead shows the flow of m ¼ −1 center charge, which is in turn equivalent to m ¼ þ2 since −1 ¼ þ2mod 3. Therefore, the
right-hand diagram equivalently depicts the branching of center charge.

FIG. 10. Example vortex sheets of size ten (left) and eleven
(right). The sheet of size ten is a 2 × 1 × 1 rectangular prism. In
slicing through the sheet, one obtains either a 2 × 1 or 1 × 1
vortex loop depending on the dimension held fixed. The sheet of
size eleven is also a rectangular prism, but with the middle face
separating the two halves of the prism now part of the sheet and
constituting a vortex in its own right. This therefore requires the
existence of four branching points/monopoles (of the form
illustrated in Fig. 9), one for each edge of the middle face.
Slicing horizontally through the sheet picks up two of these
monopoles, in which it is clear that one monopole has three
vortices emerging from a point, while the other has three vortices
converging to a point.
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starting from aminimum sheet size of twelve, which is found
to better capture the behavior at larger sizes. To ensure
accurate parameter estimation, the fit is initially performed to
the logarithm of the data, using the left half of Eq. (8). The
output is subsequently provided as initial guesses to a fit of
the untransformed data, using the right half of Eq. (8). This
two-step procedure is essential, as taking the logarithm
causes an implicit reweighting of the data in performing
the fit. Thereby, this initially produces incorrect results that
need to be corrected by the untransformed fit.
The fit is found to suitably describe the data within the

displayed window, and is especially accurate up to sheet
sizes of ≃30 vortices. The power-law exponent is extracted
as β ≃ 2.6. It is interesting that we find β < 3, given that a
power-law distribution only possesses a finite variance for
β > 3. This is because of the very long tail exhibited by
power-law distributions, which only converges to zero
sufficiently fast to obtain a finite variance for β > 3.
Thus, if our value of β ≃ 2.6 continues to describe the
infinite-volume distribution, then we predict an infinite
variance for the average secondary-sheet size.
Although these fits provide initial evidence that a power

law can be used to describe secondary-sheet sizes, we note
that additional statistics are required for verification. This is
especially true if one wishes to perform these fits at higher
temperatures, which induce less statistics by default due to
the shorter temporal extent. Establishing whether empirical
data follows a power law notoriously requires extreme
statistics to capture the distribution’s tail. This covers rare
events at large sizes that nonetheless contribute significantly
to statistical properties of the power-law distribution, such as
its mean. Further inroads in this regard may be made with
dynamical fermions, for which visualizations already reveal

an abundance of secondary loops in three-dimensional slices
compared to the quenched theory. It seems likely that this
would partly be a consequence of an excess in secondary
sheets, which may accordingly provide the statistics needed
to accurately determine the distribution of sheet sizes.

B. Connected and disconnected loops

Having studied the vortex sheets that exist in four
dimensions themselves, we now turn our attention to
secondary loops in three-dimensional slices. Our goal is to
understand the extent to which these secondary loops are
connected in four dimensions (lie in the same sheet) and how
this changes through thephase transition. Specifically,we are
interested in the case where the loops lie in the primary sheet
and hence form part of the dominant structure. With the
primary sheet explicitly mapped out at all temperatures, this
is a straightforward check. For simplicity, wewill refer to any
secondary loops that lie in the primary sheet as connected and
any that do not as disconnected.
Our focus for this analysis will be exclusively on

temporal slices. The notion of “secondary loops” is based
on the existence of a percolating loop, which above Td is
only found in temporal slices (as seen in the visualizations
of Fig. 5). This allows a direct comparison between the
connectedness and disconnectedness of secondary loops
above Td to below Td, where a difference is expected due to
the change in orientation of the vortex sheet.
To start with, the average number of connected and

disconnected secondary loops per temporal slice is shown
for each temperature in Fig. 12. The total number combin-
ing both connected and disconnected loops is also dis-
played for reference.
We find that below Td, the majority of secondary loops

are connected to the primary sheet. This is unsurprising
given the qualitative findings of Fig. 4, in which comparing
the two visualization color schemes revealed that most
secondary loops are part of the percolating sheet. The
number of disconnected secondary loops is comparatively
small, averaging only ≃1 such loop per temporal slice. This
also matches the visualizations, in which a single 1 × 1
disconnected loop can be observed.
As the phase transition is crossed, the average number of

connected secondary loops rapidly falls to near zero, with
such occurrences becoming very rare. This coincides with
an equally steep drop in the combined average, as was
initially observed in Ref. [39]. We were able to find one
instance of a connected secondary loop at our highest
temperature, recorded in Fig. 13 for completeness.
This falloff has a natural explanation. As illuminated in

Fig. 1, connected secondary loops appear because of
curvature in the primary sheet. To be precise, for connected
secondary loops to appear in temporal slices, the sheet must
curve back on itself in the temporal dimension. However,
above Td the primary vortex sheet aligns with the temporal
dimension. Therefore, such instances where the sheet curves

FIG. 11. Power-law fit to the distribution of even secondary-
sheet sizes at our lowest temperature T=Td ≃ 0.10 described in
text, performed starting from a sheet size of twelve. The fit
appears linear on the log-log scale. It is seen to adequately
describe the data, particularly up to a size of ≃30. Additional
statistics are required to confirm whether a power law is a valid
description of the secondary-sheet sizes.
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to produce secondary loops in temporal slices become
increasingly rare. This accounts for the reduction in secon-
dary loops through Td. This was previously proposed as the
reason behind this evolution in Ref. [40], though by
identifying and counting the connected and disconnected
loops we now have explicit confirmation.
In contrast, the typical number of disconnected secon-

dary loop above Td is roughly unchanged from below Td,

still only ≃1 per slice. As with previous quantities, this is
excluding our temperature just above Td, which is slightly
higher. In fact, the trend displayed by the number of
disconnected secondary loops follows directly from the
secondary-sheet density in Fig. 7. That is, if there is a
greater density of secondary sheets in four dimensions, then
there will on average be a greater number of disconnected
secondary loops in three-dimensional slices. One can even
derive an approximate relation between the two quantities.
Denoting the secondary-sheet density by ρsheet, the number
of secondary sheets is

Nsheet ¼ ρsheetV; V ¼ N3
sNτa4; ð9Þ

where V is the physical four-dimensional volume. Now,
under the assumption that each secondary sheet spans only
a single temporal unit (as in Fig. 13), then it follows that the
average number of disconnected secondary loops in tem-
poral slices is

Ndisconnected ¼ Nsheet=Nτ ¼ ρsheetN3
sa4: ð10Þ

Substituting in our approximate values of a ≃ 0.1 fm and
ρsheet ≃ 1=3 fm−4 gives Ndisconnected ≃ 1.1. This is consis-
tent with Fig. 12 to leading order. The true value is slightly
less than 1.1, landing closer to exactly 1. This is likely due
to sheets that exist at a single temporal coordinate on the
dual lattice and therefore do not appear in any temporal
slice, thus creating an overestimate. For instance, 1 × 1 × 1
elementary vortex sheets live within a three-dimensional
subspace of the full four dimensions. If it is an x-y-z
subspace, then this would produce a secondary loop in x, y,
and z (i.e., spatial) slices of the lattice but not temporal
slices.

FIG. 12. The average number of connected (lie in the primary
sheet) and disconnected (lie in a secondary sheet) secondary
loops per temporal slice. The combined average is also shown.
Below Td, the majority of secondary loops are connected, arising
from curvature of the primary sheet. Above Td, as the sheet aligns
with the temporal dimension, the number of connected loops
plummets to ≃0. In contrast, the average number of disconnected
loops is approximately constant across the full temperature range,
with around ≃1 disconnected loop per temporal slice.

FIG. 13. An example of a rare connected secondary loop in temporal slices above Td at T=Td ≃ 1.65 (Nτ ¼ 4), colored by the loop in
three dimensions (left) and sheet in four dimensions (right). Such occurrences are heavily suppressed above Td due to the temporal
alignment of the vortex sheet. This example persists only for the one slice, rejoining with the percolating loop in the following slice.
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Furthermore, Fig. 12 reveals additional context for the
anomaly barely above Td. A similar increase is in fact also
present below Td, but in the connected secondary loops. We
also know from Ref. [39] that there is a slight increase in

vortex density just below Td. Together, this makes it
apparent that as Td is approached from below, the extra
vortex matter manifests as additional curvature in the
primary sheet. This underlies the increase in connected

FIG. 14. Histograms of connected and disconnected secondary loop lengths for T=Td ¼ 0.10 (Nτ ¼ 64, upper left), T=Td ¼ 0.55
(Nτ ¼ 12, upper right), T=Td ¼ 0.83 (Nτ ¼ 8, middle left), T=Td ¼ 1.10 (Nτ ¼ 6, middle right), T=Td ¼ 1.32 (Nτ ¼ 5, lower left),
T=Td ¼ 1.65 (Nτ ¼ 4, lower right). The leftmost bin, corresponding to loops of length four, has been scaled down by a factor of ten for
each temperature so that the details at larger loop lengths can be resolved. Below Td, a majority of secondary loops are seen to be
connected, including elementary 1 × 1 loops of four vortices. The opposite is true above Td, where connected secondary loops of any
length are suppressed. The asymmetry between even and odd lengths is apparent at all temperatures, with the latter suppressed due to
requiring vortex branching.
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secondary loops in this region below Td. Then, immediately
as the phase transition is crossed and the alignment sets in,
these additional regions of curvature effectively “break off”
from the primary sheet, generating a temporary spike in
secondary sheets. This in turn realizes an increase in the
number of disconnected secondary loops found in temporal
slices. The fact that this dynamic is only found in a small
region around Td suggests it would be interesting to inves-
tigate the finite-volume crossover in greater detail. We find it
fascinating that our previous observations around Td can be
understood as curvature “separating” from the primary sheet.
The final aspect of secondary loops we will consider is

their lengths, again restricted to temporal slices. The
number of vortices in each connected and disconnected
secondary loop is counted and a histogram is made in a
similar vein to the sheet sizes in Fig. 8. Instead of showing
separate histograms for connected and disconnected loops,
a single stacked histogram is produced. This allows the
relative proportions of connected and disconnected loops of
a given length to be easily discerned. These histograms are
presented in Fig. 14. Note that to resolve the details at larger
loop lengths on the same figure, the histogram bin for a
length of four has been scaled down by a factor of ten
across all temperatures. It has also been given a dashed
outline in Fig. 14 for emphasis.
We find that the histograms below Td are dominated by

connected secondary loops. This is expected for larger
lengths, but it is interesting that even the elementary 1 × 1
secondary loops that comprise four vortices are more likely
to be connected than disconnected. The example temporal
slice visualized in Fig. 4 hints at this, though it was unclear
whether it would hold true generally. We find an approxi-
mate 3∶1 split of connected∶disconnected elementary
vortex loops below Td.
With connected secondary loops suppressed above Td,

the histograms are instead dominated by disconnected
secondary loops at all lengths. The occasional connected
1 × 1 loop is found at a rate of about 1 in 10 just above Td,
and down to about 1 in 20 at our highest temperature. Any
connected secondary loops longer than four vortices are
vanishingly rare.
Inspecting the longer secondary loops, as with the histo-

grams of sheet sizes inFig. 8 an asymmetrybetweeneven and
odd loop lengths is evident. The latter are again suppressed,
necessitating a branching point somewhere in the loop.
Beyond lengths of ≃14, the contribution of disconnected
loops to the below-Td histograms is no longer visible at the
shown scale. This further emphasizes how large secondary
loops are almost certainly connected, arising from curvature
in the primary sheet. We note that the longest disconnected
secondary loop identified below Td, found at our lowest
temperature, has a length of 23 vortices.
Above Td, there is insufficient statistics to produce a

smooth histogram at larger loop lengths. This is from a
combination of the smaller four-dimensional volume and

the substantial reduction in number of secondary loops that
occurs through the phase transition. Still, the important
changes are apparent. Beyond a length of four, there are
only a small handful of connected loops that contribute
above Td. Instead, nearly all secondary loops are discon-
nected. The connected loop with a length of 24 that can be
discerned in the highest-temperature histogram is the one
shown in Fig. 13.

V. CONCLUSION

In this paper, the geometry of center-vortex sheets in four
dimensions was studied extensively in SU(3) lattice gauge
theory. By explicitly mapping out these sheets, a compre-
hensive picture of their relationship with secondary loops
observed in three-dimensional slices of the lattice was
developed, with an emphasis on the structural changes that
occur through the phase transition.
Initially, this connection was examined qualitatively by

producing visualizations of center-vortex structure with
two different color schemes. In one scheme the vortex jets
were colored by the loop they belong to in the three-
dimensional slice, and in the other by the sheet they belong
to in four dimensions. This revealed that below Td, the
majority of secondary loops that manifest in three-dimen-
sional slices are connected in four dimensions, lying in the
percolating sheet. These loops instead develop due to
curvature in this sheet. Above Td, the short vortex lines
that wind around the temporal dimension in spatial slices of
the lattice were also identified to primarily lie in the same
connected sheet, indicating that at high temperatures there
is still a single large sheet that has simply oriented itself
with the temporal dimension.
In addition to the primary sheet that exists at all

temperatures, there are a handful of small secondary sheets
scattered throughout the volume in four dimensions. A
density of secondary sheets was computed and found to be
approximately constant across the full temperature range
with ρsheet ≃ 1=3 fm−4. That is, the number of secondary
sheets that form relative to the volume is independent of
temperature. This is with the exception of a temporary
increase that occurs just above Td, a recurring anomaly in
most quantities considered in this work.
By producing histograms of secondary-sheet sizes, an

asymmetry between even and odd sizes was observed, with
the latter requiring a branching point to form a closed
surface. Below Td, the secondary-sheet sizes plausibly
obeyed a power-law distribution, though additional statis-
tics are needed to verify this. Above Td, larger secondary
sheets were found compared to below Td. This is possibly a
consequence of the temporal alignment in the deconfined
phase, with some secondary sheets also locked into wind-
ing around the temporal dimension and therefore persisting
for the full temporal extent.
Thereafter, the properties of connected (lie in the primary

sheet) and disconnected (lie in a secondary sheet) loops in
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temporal slices were thoroughly investigated. This quanti-
tatively established that below Td, secondary loops tend to
be connected and that disconnected loops represent only a
minor contribution. Above Td, the average number of
connected secondary loops in temporal slices fell to ≃0,
while the number of disconnected loops remained approx-
imately constant with ≃1 per temporal slice. The former
behavior is a direct consequence of the temporal alignment
above Td, implying that the primary sheet almost never
curves back on itself in the temporal dimension as is needed
to produce connected secondary loops in temporal slices.
A small increase in connected secondary loops as Td is

approached from below was related to the spike in
secondary-sheet density above Td. The extra connected
loops must arise from additional curvature in the primary
sheet. As the temporal alignment takes hold, these regions
of curvature “break off” from the sheet and form small
secondary sheets just above Td. It will be interesting to
perform these calculations at a larger spatial volume to
explore aspects of the finite-volume crossover as one
approaches a genuine phase transition.
Finally, the lengths of connected and disconnected

secondary loops were examined. Below Td, connected
loops form the dominant contribution at all lengths,
including the 1 × 1 vortex loops of length four. Almost
zero disconnected loops longer than ≃14 vortices were
present. Due to the suppression of connected loops at high
temperatures, the reverse holds above Td. Here, any
connected loops longer than four vortices are vanishingly
rare.
Future work will apply the techniques developed here

to the dynamical gauge field configurations of QCD.

Center-vortex geometry has previously been studied at
finite temperature with dynamical fermions, revealing three
distinct regimes for vortex behavior [40]. The first two
regions are separated by the chiral transition, while the
second and third regions are separated by the percolation
transition that is associated with loss of confinement. It will
be interesting to see how the black-and-white findings of
the pure-gauge theory extend to the more-complex center-
vortex behavior with dynamical fermions.
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