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 a b s t r a c t

In this paper, we consider the compound Poisson insurance risk model and analyze the optimal dividend strategy 
(that maximizes the expected present value of dividend payments until ruin) when dividends can only be paid 
periodically as lump sums. If one makes the usual assumption that dividends can be paid from the available 
surplus, then the optimal strategies are often of band or barrier type, resulting in a ruin probability of one 
(e.g. Albrecher et al. (2011a)). As opposed to such an assumption, we propose that dividends can only be paid 
from a certain fraction of the gains (i.e. positive increment of the process between successive dividend decision 
times), and such a constraint allows the surplus process to have a positive survival probability. Some theoretical 
properties of the value function and the optimal strategy are derived in connection to the Bellman equation. 
These properties suggest that a bang-bang type of control can be a candidate for the optimal strategy, where 
dividend is paid at the highest possible amount as long as the surplus is high enough. The dividend function 
under the candidate strategy is subsequently derived under exponential inter-observation times and claims with 
a rational Laplace transform, and we also provide specific numerical examples with (mixed) exponential claims 
where the proposed strategy is optimal in such cases.

1.  Introduction

Dividend payout strategies are a crucial component of insurance 
risk management, balancing the competing interests of policyholders 
and shareholders. While existing models often implicitly assume con-
tinuous dividend decisions due to their theoretical tractability under a 
continuous-time stochastic process, insurers operate under periodic de-
cision schedules in the real world. Unlike previous models where divi-
dends can be paid from the entire surplus, in this paper we introduce a 
novel constraint: dividends can only be paid from a fraction of the gains. 
This allows for a positive survival probability and aligns better with real-
world insurance practices; otherwise, unrestricted dividend payments 
could lead to premature ruin.

To begin, we define the classical compound Poisson risk model 
{𝑆𝑡}𝑡≥0, which describes the surplus evolution of an insurance company 
over time via

𝑆𝑡 = 𝑢 + 𝑐𝑡 −
𝑁𝑡
∑

𝑖=1
𝑋𝑖, 𝑡 ≥ 0, (1.1)
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where 𝑢 ≥ 0 is the initial surplus, and 𝑐 > 0 is the premium rate per unit 
time. In addition, the claim number process {𝑁𝑡}𝑡≥0 is a Poisson process 
with intensity 𝜆 > 0, and the claim amounts {𝑋𝑖}∞𝑖=1 form a sequence of 
independent and identically distributed (i.i.d.) random variables with 
common density 𝑝 and Laplace transform 𝑝. It is further assumed that 
{𝑁𝑡}𝑡≥0 and {𝑋𝑖}∞𝑖=1 are mutually independent. The positive security 
loading condition of the model is given by 𝑐 > 𝜆𝔼[𝑋] with 𝑋 being a 
generic claim amount. For later use, we will denote the set of real num-
bers by ℝ, the set of non-negative real numbers by ℝ+, the set of negative 
real numbers by ℝ−, the set of non-negative integers by ℕ0, and the set 
of positive integers by ℕ.

The risk process (1.1) is often the baseline model where various mod-
ifications are considered by different researchers. In particular, the im-
portance of dividend payout in insurance risk models was discussed by 
de Finetti (1957). See also Albrecher and Thonhauser (2009) and Avanzi 
(2009) for comprehensive reviews. The expected discounted dividends 
payable to the shareholders can indeed be regarded as the value of firm 
in corporate finance, and this present value can be a quantity that the 
company tries to maximize. In such an optimization problem, there is 

https://doi.org/10.1016/j.insmatheco.2025.103203
Received 11 May 2025; Received in revised form 13 October 2025; Accepted 14 December 2025

Insurance Mathematics and Economics 127 (2026) 103203 

Available online 18 December 2025 
0167-6687/© 2025 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by- 
nc-nd/4.0/ ). 

https://www.elsevier.com/locate/ime
https://www.elsevier.com/locate/ime
https://orcid.org/0000-0002-7693-5123

$\{S_t\}_{t\geq 0}$
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\begin {equation}\label {optimalstrategy1} f_b(u,y)=\left \{ \begin {array}{ll} 0,&\qquad 0\le u\le b,\\ \min (u-b,\theta y),&\qquad b<u\le b+y,\\ \theta y,&\qquad u>b+y,\\ \end {array} \right .\end {equation}
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\begin {equation}\label {LundEqClassic} cs-(\lambda +\gamma +\delta )+\lambda \widehat {p}(s)=0,\end {equation}


$\rho _\gamma >0$


$\{-R_{\gamma ,j}\}_{j=1}^m$


$n=1$


\begin {equation}\label {g-} g_{\delta ,-}(x)=Ae^{-\rho _\gamma x},\qquad x>0,\end {equation}


\begin {equation*}A = \frac {\gamma }{c} \frac {L_{1,m}(\rho _\gamma )}{\prod _{j=1}^m(\rho _\gamma +R_{\gamma ,j})}.\end {equation*}


$n=1$


\begin {equation}\label {g+} g_{\delta ,+}(x)=\sum _{j=1}^mB_j e^{-R_{\gamma ,j}x},\qquad x\ge 0,\end {equation}


\begin {equation*}B_j = \frac {\gamma }{c} \frac {L_{1,m}(-R_{\gamma ,j})}{(\rho _\gamma +R_{\gamma ,j})\prod _{\ell =1,\ell \ne j}^{m}(R_{\gamma ,\ell }-R_{\gamma ,j})}, \qquad j=1,\ldots ,m.\end {equation*}


$1/\gamma $


$m$


$\widetilde {V}(u;b)$


\begin {equation}\label {V1SolForm} \widetilde {V}_1(u)=\sum _{i=1}^{m+1}C_i e^{r_iu} + De^{\frac {\rho _\gamma }{1-\theta }u},\qquad 0\le u\le b,\end {equation}


\begin {equation}\label {V2SolForm} \widetilde {V}_2(u) = w + \sum _{i=1}^m E_i e^{s_iu},\qquad u\ge b.\end {equation}


$\{r_i\}_{i=1}^{m+1}$


$m+1$


$\gamma =0$


$w$


\begin {equation}\label {wDef} w = \frac {\theta A/\rho _\gamma ^2}{1-A/\rho _\gamma - \sum _{j=1}^m B_j/R_{\gamma ,j}} = \frac {\theta A}{\rho _\gamma ^2} \frac {\gamma +\delta }{\delta },\end {equation}


$\{s_i\}_{i=1}^m$


$s$


\begin {equation}\label {LundEq3} 1=\frac {A}{\rho _\gamma -(1-\theta )s} +\sum _{j=1}^m \frac {B_j}{s+R_{\gamma ,j}},\end {equation}


$m$


$\{C_i\}_{i=1}^{m+1}$


$D$


$\{E_i\}_{i=1}^m$


$2m+2$


\begin {align}\label {LinearEq1} D& \left (\sum _{j=1}^m \frac {B_j}{\frac {\rho _\gamma }{1-\theta }+R_{\gamma ,j}} - \frac {(1-\theta )A}{\rho _\gamma \theta } -1\right )e^{\frac {\rho _\gamma }{1-\theta }b} \notag \\ &\quad + \sum _{i=1}^m E_i \left (\frac {1}{\rho _\gamma -(1-\theta )s_i} - \frac {1}{\rho _\gamma }\right ) Ae^{s_ib} = \frac {(1-\theta )A}{\rho _\gamma ^2},\end {align}


\begin {equation}\label {LinearEq2} \sum _{i=1}^{m+1} \frac {C_ir_i}{\rho _\gamma -r_i} e^{r_ib} - \frac {D}{\theta } e^{\frac {\rho _\gamma }{1-\theta }b} = \frac {1}{\rho _\gamma },\end {equation}


\begin {equation}\label {LinearEq3} \sum _{i=1}^{m+1} \frac {C_i}{R_{\gamma ,j}+r_i} +\frac {D}{\frac {\rho _\gamma }{1-\theta }+R_{\gamma ,j}} =0,\qquad j=1,\ldots ,m,\end {equation}


\begin {align}\label {LinearEq4} &\sum _{i=1}^{m+1} \frac {C_i}{R_{\gamma ,j}+r_i} e^{r_ib} + \frac {D}{\frac {\rho _\gamma }{1-\theta }+R_{\gamma ,j}} e^{\frac {\rho _\gamma }{1-\theta }b} - \sum _{i=1}^m \frac {E_i}{R_{\gamma ,j}+s_i} e^{s_ib} = \frac {w}{R_{\gamma ,j}},\notag \\ &\qquad j=1,\ldots ,m.\end {align}


$\{C_i\}_{i=1}^{m+1}$


$D$


$\{E_i\}_{i=1}^m$


$b$


$\rho _\gamma $


$\{-R_{\gamma ,j}\}_{j=1}^m$


$\{r_i\}_{i=1}^{m+1}$


$\{s_i\}_{i=1}^{m+1}$


$b$


$b^*$


$\widetilde {V}(u;b)$


$b$


$\square $


\begin {equation}\label {EY+} \mathbb {E}[Y^+] = \int _0^\infty xg_{0,-}(x)\mathrm {d}x = \frac {A}{\rho _\gamma ^{2}}\bigg |_{\delta =0}\end {equation}


\begin {equation}\label {EY} \mathbb {E}[Y] = \frac {c-\lambda \mathbb {E}[X]}{\gamma }.\end {equation}


\begin {equation}\label {PSLCEx} \frac {c-\lambda \mathbb {E}[X]}{\gamma }-\theta \frac {A}{\rho _\gamma ^{2}}\bigg |_{\delta =0}>0,\end {equation}


$n=1$


$\square $


$\widetilde {V}(u;b)$


$g_{\delta ,-}$


$g_{\delta ,+}$


$L_{1,m}$


$m$


$g_{\delta ,-}$


$g_{\delta ,+}$


$\widetilde {V}_1$


$\widetilde {V}_2$


$\square $


$\lambda =1$


$c=1.5$


$\delta =0.01$


$\theta $


$\theta $


$\gamma $


$\gamma $


$\infty $


$\theta $


$\gamma =1$


$\theta =0.2$


$\widetilde {V}(u;b)$


$b$


$u$


$b^*=3.17$


$u$


$V(u,y;b^*)$


$f_{b^*}$


$b^*$


$f_{b^*}(u,y)$


$y=2$


$a+\widetilde {V}(u-a;b^*)-V(u,2;b^*)$


$(u,a)$


$u\ge y=2$


$a\in [0,\theta y^+]=[0,0.4]$


$a+\widetilde {V}(u-a;b^*)-V(u,2;b^*)$


$a+\widetilde {V}(u-a;b^*)-V(u,2;b^*)$


$a\in [0,0.4]$


$a+\widetilde {V}(u-a;b^*)$


$u$


$f^*(u,2)$


$u$


$f_{b^*}(u,2)$


$y$


$f_{b^*}^\infty $


$f_{b^*}$


$f^*(u,y)=f_{b^*}(u,y)$


$b=b^*$


$V(u,y)$


\begin {equation}\label {Vdecompose} V(u,y) = f_{b^*}(u,y) + \widetilde {V}(u-f_{b^*}(u,y);b^*).\end {equation}


$V(u,y)$


$u$


$y$


$V(u,y)$


$(u,y)$


$0\le y \le u$


$V(u,y)$


$u$


$y$


$\gamma $


$\theta $


$b^*$


$(\gamma ,\theta )=(1,0.2)$


$(\gamma ,\theta )$


$b^*$


$u$


$b^*$


$\gamma $


$\theta $


$b^*$


$b^*$


$\gamma $


$\theta $


$\gamma $


$\gamma $


$b^*$


$\gamma $


$b^*$


$b^*$


$\theta $


$\gamma $


$\theta $


$b^*$


$\theta $


$b^*=0$


$\gamma $


$\theta $


$\widetilde {V}(u;b^*)$


$u$


$\widetilde {V}(u;b^*)$


$u$


$(\gamma ,\theta )$


$\widetilde {V}(u;b^*)$


$V(u,y) = \widetilde {V}(u;b^*)$


$f_{b^*}(u,y)=0$


$Y_0$


$y\le 0$


$U_0$


$u\le b^*$


$\widetilde {V}(u;b^*)$


$u$


$\gamma =1$


$\widetilde {V}(u;b^*)$


$\theta $


$\theta $


$\theta $


$\widetilde {V}(u;b^*)$


$\theta =0.2$


$\widetilde {V}(u;b^*)$


$\gamma $


$b^*$


$\frac {\mathrm {d}}{\mathrm {d}u}\widetilde {V}(u;b^*)$


$u$


$\frac {\mathrm {d}}{\mathrm {d}u}\widetilde {V}(u;b^*)$


$u$


$(\gamma ,\theta )$


$\widetilde {V}(u;b^*)$


$u$


$u$


$(\gamma ,\theta )=(1,0.2)$


\begin {equation}\label {EfficientCompany} \frac {\mathrm {d}}{\mathrm {d}u}\widetilde {V}(u;b^*)\bigg |_{u=b^*}=1\end {equation}


$b^*=3.17$


\begin {equation}\label {EfficientCompany2} \frac {\mathrm {d}}{\mathrm {d}u}\widetilde {V}(u;b^*)>1\text {~~for~~} 0\le u< b^*\text {~~and~~} \frac {\mathrm {d}}{\mathrm {d}u}\widetilde {V}(u;b^*)<1\text {~~for~~} u> b^*.\end {equation}


$(\gamma ,\theta )$


$(\gamma ,\theta )=(1,0.1)$


$b^*=0.86$


$b^*>0$


$b^*$


$x$


$\frac {\mathrm {d}}{\mathrm {d}x}\widetilde {V}(x;b^*)>1$


$x$


$\frac {\mathrm {d}}{\mathrm {d}x}\widetilde {V}(x;b^*)<1$


$1/3$


$2/3$


$p(x)=2\big (\frac {3}{2}e^{-\frac {3}{2}x}\big )+(-1)(3e^{-3x})$


\begin {equation}\label {pdfMixExp} p(x)=\frac {1}{3} \left (\frac {1}{2}e^{-\frac {1}{2}x}\right )+\frac {2}{3}(2e^{-2x}).\end {equation}


$\widetilde {V}(u;b)$


$b$


$b^*$


$u$


$b^*$


$f_{b^*}$


$V(u,y;b^*)$


$V(u,y)=V(u,y;b^*)$


$V(u,y)$


$V(u,y)=V(u,y;b^*)$


$u$


$y$


$b^*$


$\gamma $


$\theta $


$\widetilde {V}(u;b^*)$


$\gamma $


$\theta $


$b^*>0$


$\widetilde {V}(u;b^*)$


$\widetilde {V}(u;b^*)$


$\theta =0.2$


$\widetilde {V}(u;b^*)$


$u$


$\gamma =0.5$


$\widetilde {V}(u;b^*)$


$u$


$\theta =0.2$


$\gamma =5$


$\widetilde {V}(u;b^*)$


$u$


$\widetilde {V}(u;b^*)$


$\mathbb {E}[Y^+]$


$\mathbb {E}[Y^+]$


$\mathbb {E}[Y^-]$


$\theta =0.2$


$\gamma =0.5$


$\gamma =5$


$\mathbb {E}[Y^-]$


$Y^-=\max (-Y,0)=Y^+-Y$


\begin {equation*}\mathbb {E}[Y^-] = \frac {A}{\rho _\gamma ^{2}}\bigg |_{\delta =0} - \frac {c-\lambda \mathbb {E}[X]}{\gamma }\end {equation*}


$\mathbb {E}[Y^+]$


$\mathbb {E}[Y^-]$


$\mathbb {E}[Y^-]$


$\mathbb {E}[Y^+]$


$u$


$\mathbb {E}[Y^+]$


$\mathbb {E}[Y^-]$


$\widetilde {V}(u;b^*)$


$u$


$u$


$\widetilde {V}(u;b^*)$


$\gamma $


$u$


$\widetilde {V}(u;b^*)$


$\gamma =0.5$


$u=7$


$\gamma =5$


$u=20$


$\gamma $


$u$


$\widetilde {V}(u;b^*)$


$X$


$\mathbb {E}[(X-\mathbb {E}[X])^3]/(\operatorname {Var}(X))^{3/2}$


$p(x)=\frac {3}{5} (0.6340e^{-0.6340x})+\frac {2}{5}(7.4641e^{-7.4641x})$


$p(x)=\frac {1}{10} (0.3204e^{-0.3204x})+\frac {9}{10}(1.3084e^{-1.3084x})$


$\theta =0.2$


$\widetilde {V}(u;b^*)$


$u$


$\gamma =0.5$


$\widetilde {V}(u;b^*)$


$u$


$\theta =0.2$


$\gamma =5$


$u$


$\widetilde {V}(u;b^*)$


$u$


$\widetilde {V}(u;b^*)$


$\mathbb {E}[Y^+]$


$\mathbb {E}[Y^-]$


$\mathbb {E}[Y^+]$


$\mathbb {E}[Y^-]$


$\theta =0.2$


$\mathbb {E}[Y^+]$


$\mathbb {E}[Y^-]$


$\theta $


$\theta <\mathbb {E}[Y] /\mathbb {E}[Y^+]$


$u$


$y$


$u$


$m=1$


$C_1$


$C_2$


$D$


$E_1$


$b$


$b^*$


$V$


$\mathcal {T}$


$\mathcal {T}$


$b$


$\theta $


$\pi ^*=(f^*,f^*,\ldots )$


$f^*$


$V$


$(u,y)\in E$


\begin {equation*}\mathcal {T}_\circ \beta (u,y) \le \left (\mathbb {E}[e^{-\delta T}] + \frac {H_2}{H_1}\mathbb {E}[e^{-\delta T}Y^+]\right ) (H_1+H_2y^+).\end {equation*}


$H_1$


$H_2$


\begin {equation}\label {Tcirclebound} \mathcal {T}_\circ \beta (u,y) \le \alpha \beta (u,y),\end {equation}


\begin {equation*}\alpha = \mathbb {E}[e^{-\delta T}] + \frac {H_2}{H_1}\mathbb {E}[e^{-\delta T}Y^+]\end {equation*}


$\alpha \in (0,1)$


$\mathbb {E}[e^{-\delta T}]<1$


$\mathbb {E}[e^{-\delta T}Y^+]>0$


$H_1$


$H_2$


\begin {equation}\label {supnormDef} ||v||_\beta = \sup _{(u,y)\in E} \frac {|v(u,y)|}{\beta (u,y)}, \qquad v\in \mathbb {M}_\beta ^\star ,\end {equation}


$(\mathbb {M}_\beta ^\star ,||\cdot ||_\beta )$


$\mathcal {T}_f$


$\mathcal {T}$


$\mathbb {M}_\beta $


$\mathbb {M}_\beta ^\star $


$v,w\in \mathbb {M}_\beta ^\star $


$f$


$f(u,y)\in [0,\theta y^+]$


$(u,y)\in E$


\begin {equation*}\sup _f \mathcal {T}_fv - \sup _f \mathcal {T}_fw \le \sup _f (\mathcal {T}_fv - \mathcal {T}_fw).\end {equation*}


$(u,y)\in E$


\begin {align*}&\mathcal {T}v(u, y) - \mathcal {T}w(u, y)\notag \\ & \leq \sup _{a\in [0, \theta y^+]} \int _0^\infty \int _{a-u}^\infty e^{-\delta t} \{v(u-a+x,x) - w(u-a+x,x)\}Q(\mathrm {d}x, \mathrm {d}t) \notag \\ & \le ||v-w||_\beta \sup _{a\in [0, \theta y^+]} \int _0^\infty \int _{a-u}^\infty e^{-\delta t} \beta (u-a+x,x) Q(\mathrm {d}x, \mathrm {d}t),\end {align*}


$\mathcal {T}_\circ \beta (u, y)$


\begin {equation*}\mathcal {T}v(u, y) - \mathcal {T}w(u, y) \le \alpha ||v-w||_\beta \,\beta (u,y).\end {equation*}


$v$


$w$


\begin {equation*}\mathcal {T}w(u, y) - \mathcal {T}v(u, y) \le \alpha ||v-w||_\beta \,\beta (u,y).\end {equation*}


$\mathcal {T}v - \mathcal {T}w$


\begin {equation*}||\mathcal {T}v - \mathcal {T}w||_\beta \le \alpha ||v-w||_\beta .\end {equation*}


$\alpha \in (0,1)$


$\mathcal {T}$


$(\mathbb {M}_\beta ^\star ,||\cdot ||_\beta )$


$y\in \mathbb {R}$


$u_2\ge u_1$


$(u_1,y)\in E$


$(u_2,y)\in E$


$(u_2,y)$


$(u_1,y)$


$V(u_1,y)$


$(u_1,y)$


$u_2-u_1$


$(u_2,y)$


$V(u_2,y)\ge V(u_1,y)$


$u\in \mathbb {R}^+$


$y_2\ge y_1$


$(u,y_1)\in E$


$(u,y_2)\in E$


$(u,y_2)$


$[0,\theta y_2^+]$


$[0,\theta y_1^+]$


$(u,y_1)$


$V(u,y_2)\ge V(u,y_1)$


$G$


$u_2\ge u_1\ge 0$


\begin {align*}G(u_2)&=\int _0^\infty \int _{-u_2}^\infty e^{-\delta t} V(u_2+x, x)Q(\mathrm {d}x, \mathrm {d}t)\\ &\ge \int _0^\infty \int _{-u_1}^\infty e^{-\delta t} V(u_2+x, x)Q(\mathrm {d}x, \mathrm {d}t)\\ &\ge \int _0^\infty \int _{-u_1}^\infty e^{-\delta t} V(u_1+x, x)Q(\mathrm {d}x, \mathrm {d}t)\\ &=G(u_1),\end {align*}


$V$


$V(u,y)=V(u,0)$


$u\in \mathbb {R}^+$


$y\in \mathbb {R}^-$


$V(u_1,y_1)$


$V(u_2,y_2)$


$y_2\ge y_1\ge 0$


$u_2\ge u_1+\theta (y_2-y_1)$


\begin {align}V(u_2,y_2) &= \sup _{a\in [0,\theta y_2]} \{a+G(u_2-a)\}\nonumber \\ &\ge \sup _{\overline {a}\in [0,\theta y_1]} \{\theta (y_2-y_1)+\overline {a}+G(u_2-\theta (y_2-y_1)-\overline {a})\} \label {Inequality1}\\ &\ge \sup _{\overline {a}\in [0,\theta y_1]} \{\theta (y_2-y_1)+\overline {a}+G(u_1-\overline {a})\} \label {Inequality2}\\ &= \theta (y_2-y_1) + \sup _{\overline {a}\in [0,\theta y_1]} \{\overline {a}+G(u_1-\overline {a})\}\nonumber \\ &= \theta (y_2-y_1) + V(u_1,y_1).\nonumber \end {align}


$\overline {a}\in [0,\theta y_1]$


$\theta (y_2-y_1)+\overline {a}\in [\theta (y_2-y_1),\theta y_2]\subset [0,\theta y_2]$


$\theta (y_2-y_1)+\overline {a}$


$(u_2,y_2)$


$a\in [0,\theta y_2]$


$u_2-\theta (y_2-y_1)\ge u_1$


$G$


$u\in \mathbb {R}^+$


$y\in \mathbb {R}^-$


$f$


$f(u,y)=0$


$u\ge y\ge 0$


$(u-f^*(u,y), y-(1/\theta )f^*(u, y))$


$E$


$a=0$


\begin {equation}\label {fstarProofStep} V\left (u-f^*(u,y), y-\frac {1}{\theta }f^*(u, y)\right )\geq G(u-f^*(u, y)).\end {equation}


$V(u, y)-f^*(u, y)$


\begin {equation*}V\left (u-f^*(u,y), y-\frac {1}{\theta }f^*(u, y)\right )\geq V(u, y)-f^*(u, y).\end {equation*}


$(u_1,y_1)=(u-f^*(u,y), y-(1/\theta )f^*(u, y))$


$(u_2,y_2)=(u,y)$


\begin {equation*}V(u, y)-V\left (u-f^*(u,y), y-\frac {1}{\theta }f^*(u, y)\right )\geq f^*(u, y).\end {equation*}


\begin {equation*}V\left (u-f^*(u,y), y-\frac {1}{\theta }f^*(u, y)\right )=G(u-f^*(u, y)).\end {equation*}


$(u-f^*(u,y), y-(1/\theta )f^*(u, y))$


$a=0$


$f^*$


$V$


$f^*$


$V$


$f^*$


$f^*(u-f^*(u,y), y-(1/\theta )f^*(u,y))>0$


$(u-f^*(u,y), y-(1/\theta )f^*(u, y))$


\begin {align}\label {theorem2proofstep} &V\left (u-f^*(u,y), y-\frac {1}{\theta }f^*(u, y)\right )\nonumber \\ &= f^*\left (u-f^*(u,y), y-\frac {1}{\theta }f^*(u, y)\right ) \notag \\ & \quad + G\left (u-f^*(u,y) - f^* \left (u-f^*(u,y), y-\frac {1}{\theta }f^*(u, y)\right )\right ).\end {align}


$(u,y)$


$f^*(u,y)+f^*(u-f^*(u,y), y-(1/\theta )f^*(u,y))$


$f^*(u-f^*(u,y), y-(1/\theta )f^*(u,y)) \le \theta y - f^*(u,y)$


$f^*(u,y)+f^*(u-f^*(u,y), y-(1/\theta )f^*(u,y)) \le \theta y$


\begin {align*}&f^*(u, y) +f^*\left (u-f^*(u,y), y-\frac {1}{\theta }f^*(u, y)\right ) \notag \\ & \quad + G\left (u-f^*(u,y) - f^* \left (u-f^*(u,y), y-\frac {1}{\theta }f^*(u, y)\right )\right ) \nonumber \\ &=f^*(u, y)+V\left (u-f^*(u,y), y-\frac {1}{\theta }f^*(u, y)\right )\\ &=V(u, y),\end {align*}


$f^*(u,y)+f^*(u-f^*(u,y), y-(1/\theta )f^*(u,y))$


$V(u,y)$


$f^*(u-f^*(u,y), y-(1/\theta )f^*(u,y))>0$


$f^*(u,y)+f^*(u-f^*(u,y), y-(1/\theta )f^*(u,y))>f^*(u, y)$


$f^*(u,y)$


$V(u,y)$


$f^*(u-f^*(u,y), y-(1/\theta )f^*(u,y))$


$f^*$


\begin {align}\label {V1-IEintegral1plus2} &\int _{\frac {b-u}{1-\theta }}^ \infty \left [\theta x + \widetilde {V}_2(u+(1-\theta )x)\right ]g_{\delta ,-}(x)\mathrm {d}x \notag \\ & \quad +\int _{b-u}^{\frac {b-u}{1-\theta }} \left [(u+x-b)+ \widetilde {V}(b;b)\right ] g_{\delta ,-}(x)\mathrm {d}x \nonumber \\ =&~\frac {A}{1-\theta } \left (\int _b^\infty \widetilde {V}_2(x) e^{-\frac {\rho _\gamma }{1-\theta }x}\mathrm {d}x\right )e^{\frac {\rho _\gamma }{1-\theta }u} + \frac {A}{\rho _\gamma ^2} e^{-\rho _\gamma b} e^{\rho _\gamma u} - \frac {(1-\theta )A}{\rho _\gamma ^2} e^{-\frac {\rho _\gamma }{1-\theta }b} e^{\frac {\rho _\gamma }{1-\theta }u}\nonumber \\ &+ \widetilde {V}(b;b) \frac {A}{\rho _\gamma } e^{-\rho _\gamma b} e^{\rho _\gamma u} - \widetilde {V}(b;b) \frac {A}{\rho _\gamma } e^{-\frac {\rho _\gamma }{1-\theta }b} e^{\frac {\rho _\gamma }{1-\theta }u} ,\end {align}


$u$


\begin {align}\label {V1-IEintegral1plus2Operator} &\left (\frac {\mathrm {d}}{\mathrm {d}u}-\rho _\gamma \right ) \left (\frac {\mathrm {d}}{\mathrm {d}u}-\frac {\rho _\gamma }{1-\theta }\right ) \left (\int _{\frac {b-u}{1-\theta }}^ \infty \left [\theta x + \widetilde {V}_2(u+(1-\theta )x)\right ]g_{\delta ,-}(x)\mathrm {d}x \right . \notag \\ & \quad \left . + \int _{b-u}^{\frac {b-u}{1-\theta }} \left [(u+x-b)+ \widetilde {V}_1(b)\right ]g_{\delta ,-}(x)\mathrm {d}x \right )\nonumber \\ &=0.\end {align}


\begin {equation}\label {V1-IEintegral3Operator} \left (\frac {\mathrm {d}}{\mathrm {d}u}-\rho _{\gamma }\right ) \int _0^{b-u}\widetilde {V}_1(u+x)g_{\delta ,-}(x)\mathrm {d}x = -A\widetilde {V}_1(u).\end {equation}


\begin {align}\label {V1-IEintegral4Operator} &\left [\prod _{\ell =1}^m \left (\frac {\mathrm {d}}{\mathrm {d}u}+R_{\gamma ,\ell }\right )\right ] \int _0^u\widetilde {V}_1(u-x)g_{\delta ,+}(x)\mathrm {d}x \notag \\ & = \sum _{j=1}^m B_j\left [\prod _{\ell =1, \ell \ne j}^m \left (\frac {\mathrm {d}}{\mathrm {d}u}+R_{\gamma ,\ell }\right )\right ]\widetilde {V}_1(u).\end {align}


$(\mathrm {d}/\mathrm {d}u-\rho _\gamma ) (\mathrm {d}/\mathrm {d}u-\rho _\gamma /(1-\theta )) \prod _{\ell =1}^m(\mathrm {d}/\mathrm {d}u+R_{\gamma ,\ell })$


$(m+2)$


\begin {align}\label {V1-ODE} &\left (\frac {\mathrm {d}}{\mathrm {d}u}-\rho _\gamma \right ) \left (\frac {\mathrm {d}}{\mathrm {d}u}-\frac {\rho _\gamma }{1-\theta }\right ) \left [\prod _{\ell =1}^m \left (\frac {\mathrm {d}}{\mathrm {d}u}+R_{\gamma ,\ell }\right )\right ] \widetilde {V}_1(u)\nonumber \\ =& -A \left (\frac {\mathrm {d}}{\mathrm {d}u}-\frac {\rho _\gamma }{1-\theta }\right ) \left [\prod _{\ell =1}^m \left (\frac {\mathrm {d}}{\mathrm {d}u}+R_{\gamma ,\ell }\right )\right ]\widetilde {V}_1(u)\nonumber \\ &+\sum _{j=1}^m B_j \left (\frac {\mathrm {d}}{\mathrm {d}u}-\rho _\gamma \right ) \left (\frac {\mathrm {d}}{\mathrm {d}u}-\frac {\rho _\gamma }{1-\theta }\right ) \left [\prod _{\ell =1, \ell \ne j}^m \left (\frac {\mathrm {d}}{\mathrm {d}u}+R_{\gamma ,\ell }\right )\right ]\widetilde {V}_1(u).\end {align}


$s$


\begin {align*}&(s-\rho _\gamma ) \left (s-\frac {\rho _\gamma }{1-\theta }\right ) \prod _{\ell =1}^m (s+R_{\gamma ,\ell }) \notag \\ =& -A \left (s-\frac {\rho _\gamma }{1-\theta }\right ) \prod _{\ell =1}^m (s+R_{\gamma ,\ell })\nonumber \\ &+\sum _{j=1}^m B_j (s-\rho _\gamma ) \left (s-\frac {\rho _\gamma }{1-\theta }\right ) \prod _{\ell =1, \ell \ne j}^m (s+R_{\gamma ,\ell }),\end {align*}


$\rho _\gamma /(1-\theta )$


$m+1$


$\{r_i\}_{i=1}^{m+1}$


$s$


\begin {equation}\label {LundEq2} 1=\frac {A}{\rho _\gamma -s} +\sum _{j=1}^m\frac {B_j}{s+R_{\gamma ,j}}.\end {equation}


\begin {align*}\frac {A}{\rho _\gamma -s} +\sum _{j=1}^m\frac {B_j}{s+R_{\gamma ,j}} &= \mathbb {E}\left [ e^{-\delta T_1-s\big (\sum _{i=1}^{N_{T_1}}X_i-cT_1\big )}\right ] \notag \\ & = \frac {\gamma }{\gamma +\delta -\{cs-\lambda [1-\widehat {p}(s)]\}}.\end {align*}


$\gamma =0$


$\{r_i\}_{i=1}^{m+1}$


$\rho _0$


$\{-R_{0,j}\}_{j=1}^m$


$\{C_i\}_{i=1}^{m+1}$


$D$


$w$


$\{s_i\}_{i=1}^m$


$m$


$s$


$\{E_i\}_{i=1}^m$


\begin {align}\label {V1-IEintegral1plus2v2} &\int _{\frac {b-u}{1-\theta }}^ \infty \left [\theta x + \widetilde {V}_2(u+(1-\theta )x)\right ]g_{\delta ,-}(x)\mathrm {d}x \notag \\ & \quad + \int _{b-u}^{\frac {b-u}{1-\theta }} \left [(u+x-b)+ \widetilde {V}_2(b)\right ]g_{\delta ,-}(x)\mathrm {d}x \nonumber \\ =&~A\left (\frac {w}{\rho _\gamma }e^{-\frac {\rho _\gamma }{1-\theta }b} + \sum _{i=1}^m \frac {E_i}{\rho _\gamma -(1-\theta )s_i}e^{-\left (\frac {\rho _\gamma }{1-\theta }-s_i\right )b}\right )e^{\frac {\rho _\gamma }{1-\theta }u} + \frac {A}{\rho _\gamma ^2} e^{-\rho _\gamma b} e^{\rho _\gamma u} \notag \\ & \quad - \frac {(1-\theta )A}{\rho _\gamma ^2} e^{-\frac {\rho _\gamma }{1-\theta }b} e^{\frac {\rho _\gamma }{1-\theta }u} +\left ( \sum _{i=1}^{m+1}C_i e^{r_ib} + De^{\frac {\rho _\gamma }{1-\theta }b} \right ) \frac {A}{\rho _\gamma } e^{-\rho _\gamma b} e^{\rho _\gamma u} \nonumber \\ & \quad - \left ( w + \sum _{i=1}^m E_i e^{s_ib} \right ) \frac {A}{\rho _\gamma } e^{-\frac {\rho _\gamma }{1-\theta }b} e^{\frac {\rho _\gamma }{1-\theta }u}.\end {align}


$\widetilde {V}(b;b)$


$\widetilde {V}_1(b)$


$\widetilde {V}_2(b)$


$\widetilde {V}(u;b)$


$u=b$


\begin {align}\label {V1-IEintegral3} \int _0^{b-u}\widetilde {V}_1(u+x)g_{\delta ,-}(x)\mathrm {d}x =&~ A \sum _{i=1}^{m+1} \frac {C_i}{\rho _\gamma -r_i} e^{r_iu} - A \sum _{i=1}^{m+1} \frac {C_i}{\rho _\gamma -r_i} e^{-(\rho _\gamma -r_i)b}e^{\rho _\gamma u}\nonumber \\ &-AD\frac {1-\theta }{\rho _\gamma \theta } e^{\frac {\rho _\gamma }{1-\theta }u} + AD\frac {1-\theta }{\rho _\gamma \theta } e^{\frac {\rho _\gamma \theta }{1-\theta }b} e^{\rho _\gamma u}.\end {align}


\begin {align}\label {V1-IEintegral4} \int _0^u\widetilde {V}_1(u-x)g_{\delta ,+}(x)\mathrm {d}x =&\sum _{i=1}^{m+1} C_i \left (\sum _{j=1}^m \frac {B_j}{R_{\gamma ,j}+r_i}\right ) e^{r_iu} \notag \\ & +D\sum _{j=1}^m \frac {B_j}{\frac {\rho _\gamma }{1-\theta }+R_{\gamma ,j}} e^{\frac {\rho _\gamma }{1-\theta }u}\nonumber \\ &- \sum _{j=1}^m B_j \left ( \sum _{i=1}^{m+1} \frac {C_i}{R_{\gamma ,j}+r_i} +\frac {D}{\frac {\rho _\gamma }{1-\theta }+R_{\gamma ,j}} \right ) e^{-R_{\gamma ,j}u}.\end {align}


$e^{r_iu}$


$i=1,\ldots ,m+1$


$r_i$


$e^{\frac {\rho _\gamma }{1-\theta }u}$


\begin {align*}D =&~A\left (\frac {w}{\rho _\gamma }e^{-\frac {\rho _\gamma }{1-\theta }b} + \sum _{i=1}^m \frac {E_i}{\rho _\gamma -(1-\theta )s_i}e^{-\left (\frac {\rho _\gamma }{1-\theta }-s_i\right )b}\right )- \frac {(1-\theta )A}{\rho _\gamma ^2} e^{-\frac {\rho _\gamma }{1-\theta }b} \notag \\ & - \left ( w + \sum _{i=1}^m E_i e^{s_ib} \right ) \frac {A}{\rho _\gamma } e^{-\frac {\rho _\gamma }{1-\theta }b} -AD\frac {1-\theta }{\rho _\gamma \theta } +D\sum _{j=1}^m \frac {B_j}{\frac {\rho _\gamma }{1-\theta }+R_{\gamma ,j}},\end {align*}


$e^{\rho _\gamma u}$


\begin {align*}0 =&~ \frac {A}{\rho _\gamma ^2} e^{-\rho _\gamma b} + \left ( \sum _{i=1}^{m+1}C_i e^{r_ib} + De^{\frac {\rho _\gamma }{1-\theta }b} \right ) \frac {A}{\rho _\gamma } e^{-\rho _\gamma b} - A \sum _{i=1}^{m+1} \frac {C_i}{\rho _\gamma -r_i} e^{-(\rho _\gamma -r_i)b} \notag \\ & + AD\frac {1-\theta }{\rho _\gamma \theta } e^{\frac {\rho _\gamma \theta }{1-\theta }b},\end {align*}


$e^{-R_{\gamma ,j}u}$


\begin {align*}&\int _0^u \widetilde {V}(u-x;b)g_{\delta ,+}(x)\mathrm {d}x \notag \\ & = \int _0^{u-b} \widetilde {V}_2(u-x)g_{\delta ,+}(x)\mathrm {d}x + \int _{u-b}^u \widetilde {V}_1(u-x) g_{\delta ,+}(x)\mathrm {d}x,\end {align*}


\begin {align*}w + \sum _{i=1}^m E_i e^{s_iu} =&~ \frac {\theta A}{\rho _\gamma ^2} + w \left (\frac {A}{\rho _\gamma } + \sum _{j=1}^m \frac {B_j}{R_{\gamma ,j}} \right ) \notag \\ & + \sum _{i=1}^m E_i \left ( \frac {A}{\rho _\gamma -(1-\theta )s_i} + \sum _{j=1}^m \frac {B_j}{R_{\gamma ,j}+s_i} \right ) e^{s_iu}\\ &+\sum _{j=1}^m B_j \left ( \sum _{i=1}^{m+1} \frac {C_i}{R_{\gamma ,j}+r_i} (e^{(R_{\gamma ,j}+r_i)b}-1) \right . \notag \\ & \quad \left . + \frac {D}{\frac {\rho _\gamma }{1-\theta }+R_{\gamma ,j}} \left (e^{\left (\frac {\rho _\gamma }{1-\theta }+R_{\gamma ,j}\right )b}-1\right ) \right .\\ & \quad \left .- \frac {w}{R_{\gamma ,j}}e^{R_{\gamma ,j}b} - \sum _{i=1}^m \frac {E_i}{R_{\gamma ,j}+s_i} e^{(R_{\gamma ,j}+s_i)b} \right )e^{-R_{\gamma ,j}u}.\end {align*}


$e^{s_iu}$


$i=1,\ldots ,m$


$s_i$


$e^{-R_{\gamma ,j}u}$
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always a trade-off between (i) paying more dividends at earlier time 
points to take advantage of the time value of money (but risking earlier 
cessation of dividends due to possible early ruin) and (ii) paying divi-
dends in a more sustainable manner over a longer time horizon. Much of 
the research concerning continuous-time risk processes with dividends 
was conducted under the assumption that the risk process is observed 
continuously and dividend is paid immediately once certain criteria are 
met (e.g. surplus reaching a certain level). Specifically, if dividend can 
be paid from the available surplus then the optimal dividend strategy 
is often a band strategy (e.g. Gerber (1969)). In particular, for a spec-
trally negative Lévy risk process, Loeffen (2008) showed that if the Lévy 
measure has a completely monotone density then this collapses to a 
barrier strategy. However, the ruin probability is one under the afore-
mentioned band or barrier type strategy. To avoid such an undesirable 
consequence, a number of alternatives and related models have been 
proposed in the literature. For example, Avram et al. (2007) suggested 
a model with bail-out such that the beneficiaries of the dividend pay-
ments need to inject the necessary capital to keep the insurance com-
pany alive, and they showed that a double-barrier strategy (also known 
as a doubly reflected process) can be optimal in maximizing the dif-
ference between the expected present values of dividend payments and 
capital injections. See also e.g. Yao et al. (2011) for similar analysis in 
the dual risk model. Another way to allow for positive survival proba-
bility is to limit the amount of dividend paid by considering absolutely 
continuous dividend strategies and restricting the dividend rate (such 
that the surplus process still has a positive trend in the long run). In 
general, the optimal strategy under such assumptions has a band struc-
ture as well (see Azcue and Muler (2012)). When the Lévy measure has 
a completely monotone density, Kyprianou et al. (2012) proved that the 
optimal strategy is the one that pays dividend at the ceiling rate when-
ever the surplus process is above a certain level, and this is commonly 
known as a threshold strategy or a refracted process (e.g. Gerber and 
Shiu (2006), and Lin and Pavlova (2006)). As shown by Junca et al. 
(2019), the optimality of a threshold strategy remains valid when one 
further incorporates a terminal value at the ruin time (see also Thon-
hauser and Albrecher (2007)) or imposes a constraint on the Laplace 
transform of the ruin time.

However, in practice dividend decisions are made periodically (e.g. 
quarterly or semi-annually) rather than continuously, and this moti-
vated Albrecher et al. (2011b) to propose a risk model with periodic ob-
servations. A periodic observation scheme also has the advantage of only 
having lump sum dividends paid at the dividend decision time points as 
opposed to the presence of unrealistic continuous payment streams in 
the theoretically optimal barrier or threshold strategy under continuous 
observations. Since then, periodic observations have become a popu-
lar feature in various risk models, and ruin-related quantities such as 
the Gerber-Shiu expected discounted penalty function (Gerber and Shiu 
(1998)) and the expected discounted dividends until ruin are analyzed 
under more general aggregate claims process and/or modifications of 
the periodic observation scheme. See e.g. Avanzi et al. (2013, 2021), 
Choi and Cheung (2014), Zhang and Cheung (2016), and Noba et al. 
(2018). The case of Poisson observations often leads to particularly sim-
ple and insightful identities (e.g. Albrecher and Ivanovs (2013, 2017), 
Zhang et al. (2017), and Boxma and Mandjes (2023)).

In this paper, it is assumed that the insurer observes the surplus pro-
cess periodically at a sequence of random time points {𝑍𝑛}∞𝑛=0 (with the 
definition 𝑍0 = 0) to decide whether or not to pay a dividend. The time 
lengths 𝑇𝑛 = 𝑍𝑛 −𝑍𝑛−1 (for 𝑛 ∈ ℕ) between observations are assumed 
to form an i.i.d. sequence that is independent of {𝑁𝑡}𝑡≥0 and {𝑋𝑖}∞𝑖=1
(and hence {𝑆𝑡}𝑡≥0). All quantities are defined on a probability space 
(Ω, ,ℙ). For 𝑛 ∈ ℕ, the increment 𝑌𝑛 of the surplus process {𝑆𝑡}𝑡≥0 is 
defined as the difference between the surplus levels at time 𝑍𝑛 and at 
time 𝑍𝑛−1 (and one can write 𝑌𝑛 = 𝑆𝑍𝑛

− 𝑆𝑍𝑛−1
). Note that {(𝑇𝑛, 𝑌𝑛)}∞𝑛=1

form a sequence of i.i.d. random vectors (with a generic pair denoted 
by (𝑇 , 𝑌 )). We propose that the insurer can choose to pay a dividend at 
the time point 𝑍𝑛 (𝑛 ∈ ℕ) if (i) the observed pre-dividend surplus level 

at time 𝑍𝑛 is positive; and (ii) the pre-dividend surplus level at time 𝑍𝑛
is larger than the post-dividend surplus level at time 𝑍𝑛−1 (i.e. there is a 
gain in the 𝑛-th observation period so that 𝑌𝑛 is positive). Like Albrecher 
et al. (2011b, 2013), the event of ruin is only checked at the time points 
{𝑍𝑛}∞𝑛=0. An objective is to find a strategy (among a suitably defined ad-
missible set of dividend payment strategies) to maximize the expected 
present value of dividends paid until ruin.

At a first glance, one may think that a similar research problem has 
already been considered by Albrecher et al. (2011a). However, their 
work assumed that at a dividend decision time the insurer is allowed 
to pay out dividend from its entire surplus, i.e. the only constraint is 
that the dividend payment cannot exceed what the insurer has. They 
showed that the optimal strategy is in general a band strategy (and this 
collapses to a barrier strategy in both the Brownian motion risk model 
and the compound Poisson model with exponential claims), which leads 
to a ruin probability of one. See also Remark 1 in Section 2. Their find-
ings can be regarded as a ‘periodic analogue’ of the previous results by 
Gerber (1969) and Loeffen (2008) who considered the case of continu-
ous observations. Clearly, the situation of almost sure ruin is undesirable 
for the policyholders who expect the insurer to be able to pay claims. 
Motivated by this, we would like to maximize the expected discounted 
dividends until ruin (for the shareholders’ interest) while taking into 
account the survival of the process (for the policyholders’ interest). To 
this end, we shall impose a restriction such that the insurer can only 
pay a lump sum dividend out of (a fraction 𝜃 of) its realized gain from 
the previous observation period. Such a novel idea is somewhat a ‘peri-
odic analogue’ of restricting the dividend rate to be bounded (and paid 
out from part of the premium income) among absolutely continuous 
strategies when the surplus is monitored continuously. It is worthwhile 
to point out that, apart from the interpretations in the insurance busi-
ness, the techniques and stochastic models used for optimal dividend 
problems are often applicable to operations research as well. For ex-
ample, concerning cost minimization in a continuously observed Lévy 
process, Baurdoux and Yamazaki (2015) showed that double reflection 
is optimal under singular control whereas Hernández-Hernández et al. 
(2016) proved that refraction is optimal among absolutely continuous 
strategies. Continuous-time models with periodic actions have also been 
recently introduced to inventory problems. In particular, Section 3.1 in 
Albrecher et al. (2017) considered periodic depletion of inventory while 
Pérez et al. (2020) analyzed periodic replenishment of inventory.

This paper is organized as follows. Section 2 first starts by formu-
lating the research problem as a Markov decision model without im-
posing any distributional assumptions on the inter-observation times or 
the claim amounts. Subsequently, the Bellman equation is derived with 
the uniqueness of its solution proved, and various properties of the value 
function (such as bounds and monotonicity) and the optimal strategy are 
discussed. In particular, a derived property of the maximizer of the Bell-
man equation suggests that a bang-bang control may be optimal. Such a 
strategy resembles a periodic threshold type of dividend strategy consid-
ered by Cheung and Zhang (2019) apart from some modifications, and 
is described in Section 3.1. In Section 3.2, we focus on the case where 
the inter-observation times are exponentially distributed and the claim 
amounts have a rational Laplace transform, where an explicit expression 
for the expected present value of the dividends paid until ruin under 
the candidate strategy is derived. Section 4 is concerned with numerical 
illustrations using the derived explicit formulas, and some concrete ex-
amples are provided under (mixed) exponential claims to demonstrate 
that the proposed strategy can be optimal. Section 5 ends the paper 
with some concluding remarks. Proofs of various lemmas, theorems and 
proposition are collected in the Appendix.

2.  Dividend payout model as a Markov decision process

2.1.  Problem formulation
To optimize periodic dividend payouts under the proposed con-

straints, we now formulate a Markov decision process and follow closely 
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the notation in Albrecher et al. (2011a) and the textbook by Bäuerle and 
Rieder (2011). Specifically, our Markov decision model is defined on the 
state space
𝐸 = {(𝑢, 𝑦) ∶ 𝑢 ∈ ℝ+ and 𝑦 ∈ ℝ−} ∪ {(𝑢, 𝑦) ∶ 𝑢 ≥ 𝑦 and 𝑦 ∈ ℝ+},

where 𝑢 ∈ ℝ+ denotes the current surplus level and 𝑦 ∈ ℝ denotes the 
latest increment. Here we adopt the convention that the increment 𝑦 has 
already been included in the current surplus 𝑢: (i) if a loss is made most 
recently then the current surplus has to be non-negative in order for the 
insurer to survive and possibly pay dividends in the future (correspond-
ing to {(𝑢, 𝑦) ∶ 𝑢 ∈ ℝ+ and 𝑦 ∈ ℝ−}); and (ii) if the insurer has a gain 
most recently then the current surplus must be no less than the amount 
of the gain (corresponding to {(𝑢, 𝑦) ∶ 𝑢 ≥ 𝑦 and 𝑦 ∈ ℝ+}). At each obser-
vation time point, the insurer has to decide a dividend payout 𝑎 ∈ ℝ+

with the action space being ℝ+. Precisely, given the state (𝑢, 𝑦) ∈ 𝐸, the 
dividend payment 𝑎 (i.e. the one-stage reward) is restricted to the ad-
missible set [0, 𝜃𝑦+] where 𝑦+ = max(0, 𝑦) and 𝜃 ∈ (0, 1), so that it is only 
possible to pay a dividend if the process has a positive increment and no 
dividend can be paid otherwise. The controlled surplus process {𝑈𝑛}∞𝑛=0
at the observation time points {𝑍𝑛}∞𝑛=0 (prior to dividend payment) is 
then described by
𝑈𝑛 = 𝑈𝑛−1 − 𝑛−1𝑓 (𝑈𝑛−1, 𝑌𝑛−1) + 𝑌𝑛, 𝑛 ∈ ℕ, (2.1)

where (𝑈0, 𝑌0) is the initial information that is known, and 𝑗𝑓 ∶ 𝐸 → ℝ+

(for 𝑗 ∈ ℕ0) is a decision rule which is measurable and 𝑗𝑓 (𝑢, 𝑦) ∈ [0, 𝜃𝑦+]. 
For the controlled process, the number of observations before ruin is 𝜏 =
inf{𝑛 ∈ ℕ0|𝑈𝑛 < 0} and therefore the ruin time is 𝑍𝜏 . Note that our above 
formulation ensures that ruin cannot be directly caused by a dividend 
payment because the payment of a positive dividend at time 𝑍𝑛 is only 
possible when 𝑌𝑛 = 𝑦 > 0 (and ruin did not occur before) and in such 
a case the pre-dividend surplus level must satisfy 𝑈𝑛 = 𝑢 ≥ 𝑦, and with 
the dividend payment capped at 𝜃𝑦 we observe that the post-dividend 
surplus level must be no less than 𝑢 − 𝜃𝑦 which is positive. Under the 
dividend policy 𝜋 = (0𝑓, 1𝑓,…) that consists of the decision rules, the 
expected present value of dividends until ruin is given by

𝑉 (𝑢, 𝑦;𝜋) = 𝔼𝑢,𝑦

[𝜏−1
∑

𝑛=0
𝑒−𝛿𝑍𝑛 𝑛𝑓 (𝑈𝑛, 𝑌𝑛)

]

, (𝑢, 𝑦) ∈ 𝐸, (2.2)

where 𝛿 > 0 is the force of interest and the expectation 𝔼𝑢,𝑦 is taken 
under the initial condition (𝑈0, 𝑌0) = (𝑢, 𝑦). The insurer aims to maximize 
the function 𝑉 (𝑢, 𝑦;𝜋) by choosing an admissible strategy 𝜋, and the 
optimization problem is given by
𝑉 (𝑢, 𝑦) = sup

𝜋
𝑉 (𝑢, 𝑦;𝜋), (𝑢, 𝑦) ∈ 𝐸.

As in Albrecher et al. (2011a), in order to have a well-defined 
and non-trivial research problem, it is assumed that ℙ(0 < 𝑇 < ∞) = 1, 
ℙ(𝑌 < 0) > 0, and 𝔼[𝑌 +] < ∞. While our general analysis regarding op-
timality and expected discounted dividends does not require the spec-
ification of 𝜃 as long as 𝜃 ∈ (0, 1), the range of 𝜃 that will guarantee a 
positive survival probability is discussed follows. Clearly, in the absence 
of dividend payments, the discretely observed surplus process {𝑆𝑍𝑛

}∞𝑛=0
constitutes a random walk with generic increment 𝑌 . For the controlled 
surplus process {𝑈𝑛}∞𝑛=0 representing the pre-dividend surplus levels at 
the observation time points {𝑍𝑛}∞𝑛=0 defined via (2.1), the corresponding 
post-dividend surplus process {𝑈𝑛}∞𝑛=0 is given by

𝑈𝑛 = 𝑈𝑛 − 𝑛𝑓 (𝑈𝑛, 𝑌𝑛) = 𝑈𝑛−1 + 𝑌𝑛 − 𝑛𝑓 (𝑈𝑛, 𝑌𝑛), 𝑛 ∈ ℕ,

where the 𝑛-th increment is 𝑌𝑛 − 𝑛𝑓 (𝑈𝑛, 𝑌𝑛). Because the payment of a 
dividend itself cannot directly lead to ruin, the ruin times of {𝑈𝑛}∞𝑛=0
and {𝑈𝑛}∞𝑛=0 coincide. While {𝑈𝑛}∞𝑛=0 is generally not a random walk as 
this depends on the dividend policy 𝜋 = (0𝑓, 1𝑓,…), the particular pro-
cess (denoted by {𝑈max

𝑛 }∞𝑛=0) that implements a policy to always pay the 
maximum possible dividend 𝜃𝑌𝑛 when 𝑌𝑛 is positive can be regarded as 
a random walk with increment 𝑌𝑛 − 𝜃𝑌𝑛1{𝑌𝑛>0}, where 1𝐴 is the indica-
tor function of the event 𝐴. Since 𝑌𝑛 − 𝑛𝑓 (𝑈𝑛, 𝑌𝑛) ≥ 𝑌𝑛 − 𝜃𝑌𝑛1{𝑌𝑛>0} (i.e. 

the increment of {𝑈𝑛}∞𝑛=0 is no less than that of {𝑈max
𝑛 }∞𝑛=0), the ruin 

probability of {𝑈𝑛}∞𝑛=0 (and hence {𝑈𝑛}∞𝑛=0) must be upper bounded by 
that of {𝑈max

𝑛 }∞𝑛=0. The random walk {𝑈max
𝑛 }∞𝑛=0 has a positive trend if 

its increment 𝑌𝑛 − 𝜃𝑌𝑛1{𝑌𝑛>0} has a positive mean, i.e.

𝔼[𝑌 ] − 𝜃𝔼[𝑌 +] > 0. (2.3)

Using the results from e.g. Theorems 2 and 7 in Part I of Prabhu (1998), 
the above condition ensures that {𝑈max

𝑛 }∞𝑛=0 has a positive survival prob-
ability (under non-negative initial surplus) and will drift to infinity in 
the long run. Therefore, the equivalent condition 𝜃 < 𝔼[𝑌 ]∕𝔼[𝑌 +] is suf-
ficient for ensuring that {𝑈𝑛}∞𝑛=0 has a ruin probability that is strictly 
less than one. Intuitively, the condition (2.3) means that, on average, 
the increment 𝑌  between successive observations (before consideration 
of dividend) needs to be sufficient to pay out the maximal possible divi-
dend 𝜃𝑌 + at an observation time point so that the insurer’s surplus will 
grow over time.

Remark 1. It is important to point out our novel gain-based constraint 
must lead to a different optimal periodic strategy compared to the case 
under a traditional constraint. As mentioned before, when Albrecher 
et al. (2011a) assumed the traditional constraint of allowing the insurer 
to pay from the available surplus, they showed that a band strategy 
is optimal. In simple terms, in a band strategy, the set ℝ+ of surplus 
levels is partitioned into a number of bands. There are two types of 
bands that alternate, representing ‘habitable zone’ and ‘non-habitable 
zone’ respectively. If the (pre-dividend) surplus level is observed to be 
in a habitable zone, then no dividend is paid. On the other hand, if the 
(pre-dividend) surplus level falls into a non-habitable zone, then a div-
idend is paid to reduce the surplus level to the upper boundary of the 
habitable zone below. See Definition 4.1 and Remark 4.2 in Albrecher 
et al. (2011a) for the formal mathematical definition. From Lemma 3.4 
in Albrecher et al. (2011a), it is also known that the uppermost band 
in their optimal periodic strategy is non-habitable, and this implies ruin 
occurs with probability one. (A barrier strategy is a band strategy with 
a single non-habitable zone on top of a habitable zone.) Although such 
a band strategy is optimal under the traditional constraint, it can lead 
to the undesirable situation where a net loss occurring within an obser-
vation period brings the surplus level down to a non-habitable zone and 
a dividend needs to be paid despite the loss. With our proposed gain-
based constraint, a dividend can only be paid from a fraction 𝜃 of the 
latest gain (i.e. if the latest increment is positive), but prior gains that 
have accumulated before (and have already become part of the surplus) 
cannot be used to pay a dividend. Therefore, the afore-mentioned un-
desirable situation cannot happen, and the resulting optimal periodic 
strategy must be of a different form. Note also that our decision rule is 
defined on two-dimensional state space consisting of the surplus level 𝑢
and the latest increment 𝑦, and this presents a more challenging prob-
lem than the decision rule that only depends on 𝑢 under the traditional 
constraint. Our proposed class of threshold-type strategies (see (3.1) in 
Section 3) as a candidate of the optimal strategy does not contain or 
belong to the class of band strategies. □

2.2.  Bellman equation, and properties of value function and optimal policy

For a measurable function 𝑣: 𝐸 → ℝ+, state (𝑢, 𝑦) and action 𝑎 ∈
[0, 𝜃𝑦+], the transition law is given by

∫

∞

0 ∫

∞

𝑎−𝑢
𝑒−𝛿𝑡𝑣(𝑢 − 𝑎 + 𝑥, 𝑥)𝑄(d𝑥, d𝑡),

where 𝑄 is the joint distribution of the increment 𝑌  and the time 𝑇
between successive observations, the dummy 𝑥 represents the next in-
crement of the surplus process, and the lower limit of the inner integral 
ensures that dividend payments cease once ruin has occurred. We de-
fine the operator ◦ which acts on the set 𝕄 = {𝑣 ∶ 𝐸 → ℝ+ measurable}
by 
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◦𝑣(𝑢, 𝑦) = sup
𝑎∈[0,𝜃𝑦+]∫

∞

0 ∫

∞

𝑎−𝑢
𝑒−𝛿𝑡𝑣(𝑢 − 𝑎 + 𝑥, 𝑥)𝑄(d𝑥, d𝑡), (𝑢, 𝑦) ∈ 𝐸.

(2.4)

We have the following lemma regarding some first properties of the 
value function and the operator ◦, where the proof is provided in
Appendix A.1.
Lemma 1. 

(a) (Bounds for value function.) The value function 𝑉 (𝑢, 𝑦) of the optimal 
dividend problem satisfies the two-sided bounds

𝜃𝑦+ + 𝜃 𝔼[𝑒−𝛿𝑇 𝑌 +]
1 − 𝔼[𝑒−𝛿𝑇 1{𝑌≥0}]

≤ 𝑉 (𝑢, 𝑦) ≤ 𝜃𝑦+ + 𝜃 𝔼[𝑒−𝛿𝑇 𝑌 +]
1 − 𝔼[𝑒−𝛿𝑇 ]

, (𝑢, 𝑦) ∈ 𝐸.

(2.5)

(b) (Convergence result for upper bounding function.) For any 𝐻1,𝐻2 >
0, define the upper bounding function 
𝛽(𝑢, 𝑦) = 𝐻1 +𝐻2𝑦

+, (𝑢, 𝑦) ∈ 𝐸. (2.6)

The function 𝛽 satisfies 
lim
𝑛→∞

 𝑛
◦ 𝛽 = 0. (2.7)

Note that the terminology ‘upper bounding function’ follows from 
Bäuerle and Rieder (2011), as it is evident from (A.2) that the func-
tion (2.6) satisfies Definition 7.1.2 therein. Based on the upper bound-
ing function (2.6), we define the set 𝕄𝛽 = {𝑣 ∈ 𝕄 ∶ 𝑣 ≤ 𝜂𝛽 for some 𝜂 ∈
ℝ+}. Specification on how to select 𝐻1 and 𝐻2 will be made in Theo-
rem 2. For later use, define the operator

𝑓 𝑣(𝑢, 𝑦) = 𝑓 (𝑢, 𝑦) + ∫

∞

0 ∫

∞

𝑓 (𝑢,𝑦)−𝑢
𝑒−𝛿𝑡𝑣(𝑢 − 𝑓 (𝑢, 𝑦) + 𝑥, 𝑥)𝑄(d𝑥, d𝑡),

(𝑢, 𝑦) ∈ 𝐸, (2.8)

where 𝑓 ∶ 𝐸 → ℝ+ is a decision rule and 𝑣 ∈ 𝕄𝛽 . The maximal operator 
of this Markov decision model is given by
 𝑣(𝑢, 𝑦) = sup

𝑓
𝑓 𝑣(𝑢, 𝑦), (𝑢, 𝑦) ∈ 𝐸. (2.9)

If a decision rule 𝑓 is such that 𝑓 𝑣 =  𝑣, then 𝑓 is a maximizer of 𝑣.
Then, we have the following theorem concerning the Bellman equa-

tion with the proof given in Appendix A.2.
Theorem 1. (Bellman equation and optimal stationary policy.) The 
value function 𝑉 ∈ 𝕄𝛽 of the optimal dividend problem satisfies the Bellman 
equation

𝑉 (𝑢, 𝑦) = sup
𝑎∈[0,𝜃𝑦+]

{

𝑎 + ∫

∞

0 ∫

∞

𝑎−𝑢
𝑒−𝛿𝑡𝑉 (𝑢 − 𝑎 + 𝑥, 𝑥)𝑄(d𝑥, d𝑡)

}

,

(𝑢, 𝑦) ∈ 𝐸, (2.10)

which is equivalent to 𝑉 =  𝑉 . There exists maximizer(s) of 𝑉 , and every 
maximizer 𝑓 ∗ defines an optimal stationary policy 𝜋∗ = (𝑓 ∗, 𝑓 ∗,…) that is 
also optimal among history-dependent dividend policies.

The Bellman equation (2.10) can also be conveniently rewritten as
𝑉 (𝑢, 𝑦) = sup

𝑎∈[0,𝜃𝑦+]
{𝑎 + 𝐺(𝑢 − 𝑎)}, (𝑢, 𝑦) ∈ 𝐸, (2.11)

where

𝐺(𝑢) = ∫

∞

0 ∫

∞

−𝑢
𝑒−𝛿𝑡𝑉 (𝑢 + 𝑥, 𝑥)𝑄(d𝑥, d𝑡), 𝑢 ∈ ℝ+. (2.12)

Moreover, if 𝑓 ∗ is a maximizer of 𝑉 , then
𝑉 (𝑢, 𝑦) = 𝑓 ∗(𝑢, 𝑦) + 𝐺(𝑢 − 𝑓 ∗(𝑢, 𝑦)), (𝑢, 𝑦) ∈ 𝐸. (2.13)

A natural question that arises is whether the Bellman equation (2.10) 
has a unique solution (i.e. whether the operator   has a unique fixed 
point). The answer is affirmative according to the next theorem where 
the proof is delayed to Appendix A.3.

Theorem 2. (Uniqueness of fixed point of the Bellman equation.) With 
the positive constants 𝐻1 and 𝐻2 selected to satisfy

𝔼[𝑒−𝛿𝑇 ] +
𝐻2
𝐻1

𝔼[𝑒−𝛿𝑇 𝑌 +] < 1, (2.14)

we define the set 𝕄⋆
𝛽 = {𝑣 ∶ 𝐸 → ℝ measurable and |𝑣| ≤ 𝜂𝛽 for some 𝜂 ∈

ℝ+} using the upper bounding function (2.6). Then, the operator   has a 
unique fixed point 𝑣∗ in 𝕄⋆

𝛽  such that 𝑣∗ =  𝑣∗.

Remark 2. Denote 𝑉𝑓 (𝑢, 𝑦) = 𝑉 (𝑢, 𝑦; 𝑓∞) as the value of (2.2) with the 
policy 𝜋 chosen to be the stationary one 𝑓∞ = (𝑓, 𝑓 ,…). Because each 
dividend payment is non-negative, our model belongs to the class of 
positive Markov decision models (see Chapter 7.4 of Bäuerle and Rieder 
(2011)). Therefore, it is known from Theorem 7.4.5 in Bäuerle and 
Rieder (2011) that 𝑉𝑓  is a fixed point of   (i.e. 𝑉𝑓 =  𝑉𝑓 ) if and only if 
the stationary policy 𝑓∞ is optimal. In other words, if we are able to com-
pute 𝑉𝑓  under a stationary policy 𝑓∞ and if 𝑉𝑓  is such that 𝑉𝑓 =  𝑉𝑓 , 
then 𝑓∞ is an optimal policy. □

The following lemma provides some further properties of the value 
function (see Appendix A.4 for its proof).
Lemma 2. 

(a) (Monotonocity of value function.) The value function 𝑉 (𝑢, 𝑦) is in-
creasing (i.e. non-decreasing) in both 𝑢 and 𝑦 for (𝑢, 𝑦) ∈ 𝐸.

(b) (Difference of value functions.) The value function satisfies the prop-
erty

𝑉 (𝑢2, 𝑦2) − 𝑉 (𝑢1, 𝑦1) ≥ 𝜃(𝑦2 − 𝑦1), 𝑦2 ≥ 𝑦1 ≥ 0; 𝑢2 ≥ 𝑢1 + 𝜃(𝑦2 − 𝑦1).

Some crucial properties of 𝑓 ∗ are given in the following theorem 
where the proof can be found in Appendix A.5.
Theorem 3. (Properties of maximizer of Bellman equation.) Each max-
imizer 𝑓 ∗ of 𝑉  satisfies

𝑉 (𝑢, 𝑦) − 𝑓 ∗(𝑢, 𝑦) = 𝑉
(

𝑢 − 𝑓 ∗(𝑢, 𝑦), 𝑦 − 1
𝜃
𝑓 ∗(𝑢, 𝑦)

)

, (𝑢, 𝑦) ∈ 𝐸. (2.15)

Specifically, if 𝑓 ∗ is the largest maximizer then it satisfies

𝑓 ∗
(

𝑢 − 𝑓 ∗(𝑢, 𝑦), 𝑦 − 1
𝜃
𝑓 ∗(𝑢, 𝑦)

)

= 0, (𝑢, 𝑦) ∈ 𝐸. (2.16)

The result (2.16) concerning the largest maximizer can be intuitively 
interpreted as follows. Given the initial state (𝑢, 𝑦) such that 0 < 𝑦 ≤ 𝑢, 
suppose that the insurer looks at the possibility of paying a dividend 
of size 𝑓 ∗(𝑢, 𝑦) ∈ [0, 𝜃𝑦]. Doing so will cause the surplus level to fall to 
𝑢 − 𝑓 ∗(𝑢, 𝑦). Moreover, after paying out 𝑓 ∗(𝑢, 𝑦) the insurer is still eli-
gible to pay a further dividend of 𝜃𝑦 − 𝑓 ∗(𝑢, 𝑦), and therefore the re-
maining ‘unused increment’ is equivalent to 𝑦 − (1∕𝜃)𝑓 ∗(𝑢, 𝑦) since the 
constraint 𝑓 ∗(𝑢, 𝑦) ∈ [0, 𝜃𝑦] means that the insurer is allowed to pay 𝜃
unit of dividend for every unit of (positive) increment. Consequently, 
a dividend payment of 𝑓 ∗(𝑢, 𝑦) effectively moves the state from (𝑢, 𝑦) to 
(𝑢 − 𝑓 ∗(𝑢, 𝑦), 𝑦 − (1∕𝜃)𝑓 ∗(𝑢, 𝑦)). If 𝑓 ∗(𝑢, 𝑦) is the largest maximizer, then 
no further should be paid from the state (𝑢 − 𝑓 ∗(𝑢, 𝑦), 𝑦 − (1∕𝜃)𝑓 ∗(𝑢, 𝑦)), 
which explains (2.16).

It is important to note that the results in this section are valid in gen-
eral as no specific distributional assumptions on the inter-observation 
times or the claim amounts need to be made. Although determining 
an optimal dividend strategy that is applicable in general can be chal-
lenging in the present context (see Section 5 for future research), the 
theoretical results will be crucial for us in the numerical analysis in Sec-
tion 4. In particular, in Section 3.1 we shall propose a candidate strategy 
which satisfies the necessary property of the largest maximizer 𝑓 ∗ de-
veloped in Theorem 3. Explicit formula for the value of the candidate 
strategy is subsequently derived in Proposition 1 in Section 3.2 under 
specific distributional assumptions. This will be utilized in the specific 
examples in Section 4 to (numerically) verify that it is indeed a fixed 
point of the operator  , and hence the proposed strategy is optimal in 
those cases according to Remark 2 concerning positive Markov decision 
models.
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3.  Threshold type strategy as a candidate optimal strategy

3.1.  Proposed form of optimal strategy

We consider a stationary policy with decision rule of the form

𝑓𝑏(𝑢, 𝑦) =

⎧

⎪

⎨

⎪

⎩

0, 0 ≤ 𝑢 ≤ 𝑏,
min(𝑢 − 𝑏, 𝜃𝑦), 𝑏 < 𝑢 ≤ 𝑏 + 𝑦,
𝜃𝑦, 𝑢 > 𝑏 + 𝑦,

(3.1)

where 𝑏 ≥ 0 is a fixed threshold level. Here it is understood that we fo-
cus on the case 0 < 𝑦 ≤ 𝑢 because one must have 𝑓𝑏(𝑢, 𝑦) = 0 outside this 
domain. The form of our proposed strategy (3.1) is motivated by a bang-
bang type of control which can be optimal in dividend problems (e.g. 
Gerber and Shiu (2006)). In a bang-bang strategy, the insurer would 
pay out the maximum possible dividend amount as long as the surplus 
level is high enough; otherwise no dividend is paid. Therefore, there is 
a critical level 𝑏 such that no dividend is paid if the current observed 
surplus level 𝑢 is below 𝑏 (first case in (3.1)). If the surplus level 𝑢 − 𝑦
prior to adding the increment 𝑦 was already greater than 𝑏, then the 
surplus process is deemed safe and the maximum possible amount 𝜃𝑦
is paid as a dividend since the dividend payment cannot cause the sur-
plus to fall below 𝑏 (third case in (3.1)). The trickiest situation is when 
the increment 𝑦 has brought the surplus from below to above 𝑏. In this 
case, one still wants to pay as much dividend as possible provided that 
this does not make the surplus fall below 𝑏 (second case in (3.1)). The 
strategy (3.1) can also be equivalently written as

𝑓𝑏(𝑢, 𝑦) =

⎧

⎪

⎨

⎪

⎩

0, 0 ≤ 𝑢 ≤ 𝑏,
𝑢 − 𝑏, 𝑏 < 𝑢 ≤ 𝑏 + 𝜃𝑦,
𝜃𝑦, 𝑢 > 𝑏 + 𝜃𝑦.

(3.2)

From the strategy (3.1) (or (3.2)), it is clear that if a positive dividend 
𝑓𝑏(𝑢, 𝑦) is paid from a state (𝑢, 𝑦), then it must be of size 𝑢 − 𝑏 or 𝜃𝑦. In 
the first case with 𝑓𝑏(𝑢, 𝑦) = 𝑢 − 𝑏, one has

𝑓𝑏
(

𝑢 − 𝑓𝑏(𝑢, 𝑦), 𝑦 −
1
𝜃
𝑓𝑏(𝑢, 𝑦)

)

= 𝑓𝑏
(

𝑏, 𝑦 − 1
𝜃
(𝑢 − 𝑏)

)

= 0,

where the last equality follows from the first piece of (3.1). In the second 
case with 𝑓𝑏(𝑢, 𝑦) = 𝜃𝑦, we have

𝑓𝑏
(

𝑢 − 𝑓𝑏(𝑢, 𝑦), 𝑦 −
1
𝜃
𝑓𝑏(𝑢, 𝑦)

)

= 𝑓𝑏(𝑢 − 𝜃𝑦, 0) = 0,

where the final equality is due to the fact that no dividend can be paid 
if the latest increment is non-positive. From the above two equalities, 
we observe that the proposed strategy (3.1) satisfies (2.16) provided in 
Theorem 3, which is a necessary condition that the largest maximizer 
𝑓 ∗ must satisfy. (Note also that (2.16) is obviously satisfied when no 
dividend is paid in the first piece of (3.1), i.e. 𝑓𝑏(𝑢, 𝑦) = 0.) A candi-
date for the optimal strategy would be (3.1) implemented at an optimal 
threshold level 𝑏∗, denoted by 𝑓𝑏∗ .

Fig. 1 shows a sample path of the surplus process under the proposed 
strategy (3.1) (or (3.2)), where the initial increment 𝑌0 = 𝑦 is negative 
(so that no dividend is paid at time 0) and the dividend payout fraction 
is 𝜃 = 0.5.

Remark 3. At a first thought, the periodic threshold type dividend strat-
egy analyzed by Cheung and Zhang (2019) may be used as a candidate 
strategy. Specifically, the decision rule 𝑓 therein is given by

𝑓 (𝑢, 𝑦) =

⎧

⎪

⎨

⎪

⎩

0, 0 ≤ 𝑢 ≤ 𝑏,
𝜃(𝑢 − 𝑏), 𝑏 < 𝑢 ≤ 𝑏 + 𝑦,
𝜃𝑦, 𝑢 > 𝑏 + 𝑦,

(3.3)

for some fixed threshold level 𝑏. However, it can be easily checked that
(2.16) is not satisfied by (3.3) due to the way the middle piece is defined.
□

We would like to determine the expected discounted dividends until 
ruin under the proposed stationary strategy with decision rule (3.1) de-
pending on an arbitrary threshold level 𝑏 ≥ 0 that we will later optimize 

Fig. 1. Sample path under proposed threshold strategy at 𝑏 (assuming 𝜃 = 0.5
and 𝑦 < 0).

with respect to. Such an expectation will be denoted by 𝑉 (𝑢, 𝑦; 𝑏), since 
the strategy 𝜋 in (2.2) can now be specified via the threshold level 𝑏. 
Like in Albrecher et al. (2011a), we further denote the corresponding 
expected discounted dividends until ruin by 𝑉 (𝑢; 𝑏) supposing that no 
dividend can be paid at time 0. It is easy to see that 𝑉 (𝑢; 𝑏) admits the 
representation

𝑉 (𝑢; 𝑏) = ∫

∞

0 ∫

∞

−𝑢
𝑒−𝛿𝑡𝑉 (𝑢 + 𝑥, 𝑥; 𝑏)𝑄(d𝑥, d𝑡)

because one would follow the strategy (3.1) at the first observation time. 
Moreover, we have
𝑉 (𝑢, 𝑦; 𝑏) = 𝑓𝑏(𝑢, 𝑦) + 𝑉 (𝑢 − 𝑓𝑏(𝑢, 𝑦); 𝑏). (3.4)

If the proposed strategy with threshold 𝑏∗ is an optimal strategy, then 
the Bellman equation (2.10) is satisfied so that
𝑉 (𝑢, 𝑦; 𝑏∗) = sup

𝑎∈[0,𝜃𝑦+]
{𝑎 + 𝑉 (𝑢 − 𝑎; 𝑏∗)}, (3.5)

where 𝑓𝑏∗ (𝑢, 𝑦) is a maximizer of the right-hand side. Note that if one 
utilizes the operator (2.9) and applies it to 𝑉 (𝑢, 𝑦; 𝑏), then
 𝑉 (𝑢, 𝑦; 𝑏) = sup

𝑎∈[0,𝜃𝑦+]
{𝑎 + 𝑉 (𝑢 − 𝑎; 𝑏)},

and therefore the condition (3.5) can be conveniently expressed as
𝑉 (𝑢, 𝑦; 𝑏∗) =  𝑉 (𝑢, 𝑦; 𝑏∗), (3.6)

or simply 𝑉𝑓𝑏∗ =  𝑉𝑓𝑏∗  according to the notation in Remark 2.

3.2.  Expected discounted dividends for exponential inter-observation times

In order to numerically verify the optimality of the proposed thresh-
old strategy in Section 4, we shall utilize an explicit formula for 𝑉 (𝑢, 𝑦; 𝑏). 
Thanks to (3.4), it is sufficient to determine the dividend function 
𝑉 (𝑢; 𝑏). Note that an explicit formula will also allow us to perform op-
timization to find the optimal threshold level 𝑏∗ (given the proposed 
strategy), so that the candidate value function of the Markov decision 
model will be 𝑉 (𝑢, 𝑦; 𝑏∗). If 𝑉 (𝑢, 𝑦; 𝑏∗) satisfies the fixed point property
(3.6), then Remark 2 asserts that a stationary policy with decision rule 
𝑓𝑏∗  is optimal.

The derivation of 𝑉 (𝑢; 𝑏) requires specification of the joint distribu-
tion 𝑄 of (𝑌 , 𝑇 ). Note that the quantity ∫ ∞

0 𝑒−𝛿𝑡𝑄(d𝑥, d𝑡) can be in general 
written as

∫

∞

0
𝑒−𝛿𝑡𝑄(d𝑥, d𝑡) = 𝔼[𝑒−𝛿𝑇 1{𝑌 >0;𝑌∈d𝑥}] + 𝔼[𝑒−𝛿𝑇 1{𝑌 <0;𝑌∈d𝑥}].

In particular, when the inter-observation times are Erlang distributed, it 
is known from Section 3.2 in Albrecher et al. (2013) that we can write

∫

∞

0
𝑒−𝛿𝑡𝑄(d𝑥, d𝑡) = {𝑔𝛿,−(𝑥)𝐼{𝑥>0} + 𝑔𝛿,+(−𝑥)𝐼{𝑥<0}}d𝑥,
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where, following the notation therein, 𝑔𝛿,− is the discounted density for 
the case where the increment is positive (i.e. there is gain between suc-
cessive observations), and 𝑔𝛿,+ is the discounted density for the case 
where the increment is negative (i.e. there is loss between successive 
observations). General expressions for these densities are given by their 
(3.15) and (3.18). Then the Bellman equation (2.10) becomes

𝑉 (𝑢, 𝑦) = sup
𝑎∈[0,𝜃𝑦+]

{

𝑎 + ∫

∞

0
𝑉 (𝑢 − 𝑎 + 𝑥, 𝑥)𝑔𝛿,−(𝑥)d𝑥

+∫

𝑢−𝑎

0
𝑉 (𝑢 − 𝑎 − 𝑥,−𝑥)𝑔𝛿,+(𝑥)d𝑥

}

,

where only single integrals appear on the right-hand side (instead of 
double integral as in (2.10)).

As one expects 𝑉 (𝑢; 𝑏) to be of different functional forms depending 
on whether 0 ≤ 𝑢 ≤ 𝑏 or 𝑢 ≥ 𝑏, we shall write

𝑉 (𝑢; 𝑏) =
{

𝑉1(𝑢), 0 ≤ 𝑢 ≤ 𝑏,
𝑉2(𝑢), 𝑢 ≥ 𝑏,

(3.7)

and the dependence of 𝑉1 and 𝑉2 on 𝑏 is suppressed for convenience. 
Then one has the integral equation

𝑉1(𝑢) =∫

∞

𝑏−𝑢
1−𝜃

[

𝜃𝑥 + 𝑉2(𝑢 + (1 − 𝜃)𝑥)
]

𝑔𝛿,−(𝑥)d𝑥

+ ∫

𝑏−𝑢
1−𝜃

𝑏−𝑢

[

(𝑢 + 𝑥 − 𝑏) + 𝑉 (𝑏; 𝑏)
]

𝑔𝛿,−(𝑥)d𝑥

+ ∫

𝑏−𝑢

0
𝑉1(𝑢 + 𝑥)𝑔𝛿,−(𝑥)d𝑥 + ∫

𝑢

0
𝑉1(𝑢 − 𝑥)𝑔𝛿,+(𝑥)d𝑥, (3.8)

for 0 ≤ 𝑢 ≤ 𝑏 and 

𝑉2(𝑢) =∫

∞

0

[

𝜃𝑥 + 𝑉2(𝑢 + (1 − 𝜃)𝑥)
]

𝑔𝛿,−(𝑥)d𝑥 + ∫

𝑢

0
𝑉 (𝑢 − 𝑥; 𝑏)𝑔𝛿,+(𝑥)d𝑥,

(3.9)

for 𝑢 ≥ 𝑏. It is clear from the above two integral equations that 𝑉 (𝑢; 𝑏) is 
continuous at 𝑢 = 𝑏 (and therefore 𝑉 (𝑏; 𝑏) may be taken as 𝑉1(𝑏) or 𝑉2(𝑏)
in (3.7)).

In order to derive an explicit expression for 𝑉 (𝑢; 𝑏), one will need to 
solve the integral equations (3.8) and (3.9) for 𝑉1 and 𝑉2. This in turn 
requires explicit formulas for the densities 𝑔𝛿,− and 𝑔𝛿,+. To this end, we 
assume that inter-observation times are exponential with mean 1∕𝛾 and 
the Laplace transform 𝑝(𝑠) of the claim amounts is rational of order 𝑚. 
The latter means that 𝑝(𝑠) = 𝐿2,𝑚−1(𝑠)∕𝐿1,𝑚(𝑠), where 𝐿2,𝑚−1 is polyno-
mial of degree (at most) 𝑚 − 1 and 𝐿1,𝑚 is another polynomial of degree 
𝑚. Without loss of generality, it is assumed that 𝐿1,𝑚 has leading coef-
ficient 1 and the polynomials 𝐿2,𝑚−1 and 𝐿1,𝑚 have no common zeros. 
From Chapter 4 in Bladt and Nielsen (2017), it is known that the class of 
distributions with a rational Laplace transform is equivalent to the class 
of matrix exponential distributions, which is dense in the set of positive 
continuous distributions. Consider the Lundberg equation (in 𝑠)
𝑐𝑠 − (𝜆 + 𝛾 + 𝛿) + 𝜆𝑝(𝑠) = 0, (3.10)

and define 𝜌𝛾 > 0 to be the unique positive root with the remaining roots 
{−𝑅𝛾,𝑗}𝑚𝑗=1 having negative real parts. From the special case of (3.15) 
and (4.2) in Albrecher et al. (2013) (with 𝑛 = 1 in their notation), it is 
known that
𝑔𝛿,−(𝑥) = 𝐴𝑒−𝜌𝛾𝑥, 𝑥 > 0, (3.11)

where

𝐴 =
𝛾
𝑐

𝐿1,𝑚(𝜌𝛾 )
∏𝑚

𝑗=1(𝜌𝛾 + 𝑅𝛾,𝑗 )
.

Moreover, from Albrecher et al. (2013)’s (4.3) and the preceding equa-
tion therein (again with 𝑛 = 1), we have

𝑔𝛿,+(𝑥) =
𝑚
∑

𝑗=1
𝐵𝑗𝑒

−𝑅𝛾,𝑗𝑥, 𝑥 ≥ 0, (3.12)

where

𝐵𝑗 =
𝛾
𝑐

𝐿1,𝑚(−𝑅𝛾,𝑗 )

(𝜌𝛾 + 𝑅𝛾,𝑗 )
∏𝑚

𝓁=1,𝓁≠𝑗 (𝑅𝛾,𝓁 − 𝑅𝛾,𝑗 )
, 𝑗 = 1,… , 𝑚.

With such information, an explicit expression for computing the ex-
pected present value of dividends payable until ruin is provided in the 
next proposition, with the proof available in Appendix A.6.
Proposition 1. (Expected discounted dividends for threshold strat-
egy.) Suppose that the inter-observation times are exponentially distributed 
with mean 1∕𝛾 and the claim amounts have a rational Laplace transform of 
order 𝑚. The expected present value of dividends payable until ruin 𝑉 (𝑢; 𝑏)
(defined in a piecewise manner in (3.7)) is given by

𝑉1(𝑢) =
𝑚+1
∑

𝑖=1
𝐶𝑖𝑒

𝑟𝑖𝑢 +𝐷𝑒
𝜌𝛾
1−𝜃 𝑢, 0 ≤ 𝑢 ≤ 𝑏, (3.13)

and

𝑉2(𝑢) = 𝑤 +
𝑚
∑

𝑖=1
𝐸𝑖𝑒

𝑠𝑖𝑢, 𝑢 ≥ 𝑏. (3.14)

In (3.13), the quantities {𝑟𝑖}𝑚+1𝑖=1  are the 𝑚 + 1 roots of a special case of the 
Lundberg equation (3.10) with 𝛾 = 0. In (3.14), the quantity 𝑤 is explicitly 
given by

𝑤 =
𝜃𝐴∕𝜌2𝛾

1 − 𝐴∕𝜌𝛾 −
∑𝑚

𝑗=1 𝐵𝑗∕𝑅𝛾,𝑗
= 𝜃𝐴

𝜌2𝛾

𝛾 + 𝛿
𝛿

, (3.15)

and {𝑠𝑖}𝑚𝑖=1 satisfy the equation (in 𝑠)

1 = 𝐴
𝜌𝛾 − (1 − 𝜃)𝑠

+
𝑚
∑

𝑗=1

𝐵𝑗

𝑠 + 𝑅𝛾,𝑗
, (3.16)

and are those 𝑚 roots with negative real parts. In addition, the constants 
{𝐶𝑖}𝑚+1𝑖=1 , 𝐷 and {𝐸𝑖}𝑚𝑖=1 can be solved from a system of 2𝑚 + 2 linear equa-
tions consisting of

𝐷

( 𝑚
∑

𝑗=1

𝐵𝑗
𝜌𝛾
1−𝜃 + 𝑅𝛾,𝑗

−
(1 − 𝜃)𝐴

𝜌𝛾𝜃
− 1

)

𝑒
𝜌𝛾
1−𝜃 𝑏

+
𝑚
∑

𝑖=1
𝐸𝑖

(

1
𝜌𝛾 − (1 − 𝜃)𝑠𝑖

− 1
𝜌𝛾

)

𝐴𝑒𝑠𝑖𝑏 =
(1 − 𝜃)𝐴

𝜌2𝛾
, (3.17)

𝑚+1
∑

𝑖=1

𝐶𝑖𝑟𝑖
𝜌𝛾 − 𝑟𝑖

𝑒𝑟𝑖𝑏 − 𝐷
𝜃
𝑒

𝜌𝛾
1−𝜃 𝑏 = 1

𝜌𝛾
, (3.18)

𝑚+1
∑

𝑖=1

𝐶𝑖
𝑅𝛾,𝑗 + 𝑟𝑖

+ 𝐷
𝜌𝛾
1−𝜃 + 𝑅𝛾,𝑗

= 0, 𝑗 = 1,… , 𝑚, (3.19)

and
𝑚+1
∑

𝑖=1

𝐶𝑖
𝑅𝛾,𝑗 + 𝑟𝑖

𝑒𝑟𝑖𝑏 + 𝐷
𝜌𝛾
1−𝜃 + 𝑅𝛾,𝑗

𝑒
𝜌𝛾
1−𝜃 𝑏 −

𝑚
∑

𝑖=1

𝐸𝑖
𝑅𝛾,𝑗 + 𝑠𝑖

𝑒𝑠𝑖𝑏 = 𝑤
𝑅𝛾,𝑗

,

𝑗 = 1,… , 𝑚. (3.20)

Remark 4. Note that {𝐶𝑖}𝑚+1𝑖=1 , 𝐷 and {𝐸𝑖}𝑚𝑖=1 all depend on the threshold 
level 𝑏 via the coefficient matrix of the linear system, but the roots 𝜌𝛾 , 
{−𝑅𝛾,𝑗}𝑚𝑗=1, {𝑟𝑖}𝑚+1𝑖=1  and {𝑠𝑖}𝑚+1𝑖=1  of various Lundberg equations do not 
depend on 𝑏. This is particularly important when inputting the formulas 
in software like Mathematica, as one would like to determine the optimal 
threshold level 𝑏∗ that maximizes 𝑉 (𝑢; 𝑏) with respect to 𝑏 (see numerical 
examples). □

Remark 5. Under exponential inter-observation times and claim 
amounts with a rational Laplace transform, the expected net gain is 
given by

𝔼[𝑌 +] = ∫

∞

0
𝑥𝑔0,−(𝑥)d𝑥 = 𝐴

𝜌2𝛾

|

|

|

|𝛿=0
(3.21)
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and the expected increment is

𝔼[𝑌 ] = 𝑐 − 𝜆𝔼[𝑋]
𝛾

. (3.22)

The condition (2.3) that guarantees a positive survival probability is 
thus reduced to
𝑐 − 𝜆𝔼[𝑋]

𝛾
− 𝜃 𝐴

𝜌2𝛾

|

|

|

|𝛿=0
> 0, (3.23)

which is the same as Equation (12) in Cheung and Zhang (2019) with 
𝑛 = 1. □

Remark 6. In principle, the same methodology as in the proof of Propo-
sition 1 is also applicable to obtain an explicit expression for 𝑉 (𝑢; 𝑏)
when the inter-observation times follow an Erlang distribution (while 
retaining claim amounts with a rational Laplace transform). In such a 
case, 𝑔𝛿,− and 𝑔𝛿,+ will further involve ‘Erlang’ terms rather than just ex-
ponential terms (see (3.15) and (4.3) in Albrecher et al. (2013)), and 
therefore the derivation will be far more tedious. Moreover, the ap-
proach typically involves solving of Lundberg-type equations that are 
equivalent to polynomial equations of higher order, where the presence 
of complex roots could possibly cause computational issues, a common 
problem in ruin theory. (The same problem also arises if the polyno-
mial 𝐿1,𝑚 of the claim’s rational Laplace transform is of high order 𝑚.) 
However, for claim amount distributions that do not possess a rational 
Laplace transform, the densities 𝑔𝛿,− and 𝑔𝛿,+ do not generally admit 
nice analytic form, and this could make it difficult (if not impossible) to 
solve the integral equations (3.8) and (3.9) for 𝑉1 and 𝑉2. □

4.  Numerical illustrations

In this section, it is assumed that the inter-observation times are ex-
ponentially distributed, and we demonstrate that the proposed threshold 
strategy is optimal via some specific examples. We shall consider a total 
of five claim amount distributions that have a rational Laplace trans-
form and the same mean of one. Our calculations have been carried out 
using Mathematica. We assume in all numerical examples that the Pois-
son claim arrival rate is 𝜆 = 1, the incoming premium rate is 𝑐 = 1.5, and 
the force of interest for discounting dividend payments is 𝛿 = 0.01. To 
ensure the insurer has a positive survival probability, it is important to 
set the dividend payout fraction 𝜃 appropriately such that the condition
(3.23) holds. From such a condition, we observe that the upper bound 
for 𝜃 is dependent on the choice of the Poissonian observation frequency 
𝛾. We have checked that for each of the claim amount distributions, the 
upper bound decreases from 1 to 1/3 as 𝛾 increases from 0 to ∞. With 
this in mind, we shall consider values 𝜃 up to 0.3.

4.1.  Exponential claims

We start by studying the case where each claim amount follows an 
exponential distribution with mean one. First, we fix the mean of the 
exponential inter-observation times to be one (i.e. 𝛾 = 1) and 𝜃 = 0.2. 
Since explicit formula for 𝑉 (𝑢; 𝑏) under the strategy (3.1) has been ob-
tained in Section 3.2, numerical maximization can be performed with 
respect to 𝑏. While such an optimization should in principle be car-
ried out for each initial surplus level 𝑢, it is found that the optimal 
threshold level 𝑏∗ = 3.17 does not depend on 𝑢. To demonstrate that 
𝑉 (𝑢, 𝑦; 𝑏∗) under the proposed strategy 𝑓𝑏∗  (i.e. strategy (3.1) imple-
mented at 𝑏∗) satisfies the fixed point property (3.6) (or equivalently
(3.5)) with 𝑓𝑏∗ (𝑢, 𝑦) a maximizer on the right-hand side of (3.5), we fix 
𝑦 = 2 and analyze the quantity 𝑎 + 𝑉 (𝑢 − 𝑎; 𝑏∗) − 𝑉 (𝑢, 2; 𝑏∗) as a function 
of (𝑢, 𝑎) for 𝑢 ≥ 𝑦 = 2 and 𝑎 ∈ [0, 𝜃𝑦+] = [0, 0.4]. The 3D plot in Fig. 2a 
shows that 𝑎 + 𝑉 (𝑢 − 𝑎; 𝑏∗) − 𝑉 (𝑢, 2; 𝑏∗) is non-positive with a maximum 
value of zero achieved at the reddest part of the plot. When viewed from 
above, we obtain the contour plot in Fig. 2b. The reddest part of Fig. 2b 
can be regarded as a plot of the maximizer 𝑎 ∈ [0, 0.4] of 𝑎 + 𝑉 (𝑢 − 𝑎; 𝑏∗)
as a function of 𝑢, which is provided separately in Fig. 3. This exactly 

coincides with 𝑓𝑏∗ (𝑢, 2). Further numerical checks reveal that the fixed 
point property is also satisfied for other values of 𝑦. According to Re-
mark 2, this is sufficient for us to conclude that our proposed station-
ary strategy 𝑓∞

𝑏∗  with decision rule 𝑓𝑏∗  is optimal and hence we write 
𝑓 ∗(𝑢, 𝑦) = 𝑓𝑏∗ (𝑢, 𝑦). We have also checked that the fixed point property 
does not hold true if (i) the current strategy is implemented at another 
(non-optimal) threshold level; or (ii) Cheung and Zhang (2019)’s peri-
odic threshold strategy (3.3) is implemented. Because the optimality of 
our proposed strategy has been verified, by utilizing (3.4) at 𝑏 = 𝑏∗ we 
can compute the value function 𝑉 (𝑢, 𝑦) of the optimal dividend problem 
by

𝑉 (𝑢, 𝑦) = 𝑓𝑏∗ (𝑢, 𝑦) + 𝑉 (𝑢 − 𝑓𝑏∗ (𝑢, 𝑦); 𝑏∗). (4.1)

Fig. 4 plots of 𝑉 (𝑢, 𝑦) as a function of (𝑢, 𝑦) for 0 ≤ 𝑦 ≤ 𝑢. As expected, 
𝑉 (𝑢, 𝑦) is increasing in both 𝑢 and 𝑦 (see Lemma 2(a)). It is important to 
point out that, all the above (and the subsequent) checks and plots are 
possible thanks to the explicit formulas from Section 3.2.

Next, we shall study the impact of a change in the observation fre-
quency 𝛾 and the dividend payout fraction 𝜃 on the optimal threshold 𝑏∗. 
Like the previous case where (𝛾, 𝜃) = (1, 0.2), for every other pair of (𝛾, 𝜃)
it is also found that 𝑏∗ does not depend on 𝑢, and the proposed threshold 
strategy (3.1) at 𝑏∗ is optimal. We observe from Fig. 5a that 𝑏∗ increases 
with 𝛾 for each fixed 𝜃. There are two intuitive reasons which could ex-
plain this phenomenon. First, suppose that we consider a process with 
a higher value of 𝛾. If one maintains the same threshold level as before, 
then the insurer could be paying dividend too soon (due to frequent 
dividend decisions), possibly leading to inadequate surplus and hence 
early ruin (as ruin is also monitored more frequently). This could be a 
disadvantage in the long run because dividend payments could cease 
early. Therefore, as 𝛾 increases, a higher threshold level 𝑏∗ is needed, 
meaning that the insurer is required to have achieved a higher surplus 
level before paying out dividends. This helps keep the process safe from 
potential early ruin so that more dividends can be paid in the long run 
in order to maximize dividend payout. On the other hand, we can also 
look into a process with a smaller value of 𝛾 to arrive at the same con-
clusion. Since dividend decisions are rarely made, dividends will hardly 
be paid if one does not alter the threshold level. To maximize dividend 
payout, the insurer will need to make sure a dividend can be paid as 
soon as possible when an opportunity (i.e. dividend decision) arises by 
implementing a lower threshold level 𝑏∗. Otherwise, the insurer will 
need to wait for a long period before a dividend can be paid which is a 
disadvantage due to the time value of money. Turning to Fig. 5b, we see 
that 𝑏∗ increases with 𝜃 for each fixed 𝛾. Recall that a higher 𝜃 means 
a larger fraction of the insurer’s gains can be paid as dividends. If the 
same threshold level is retained, then too much dividend might be paid 
which can possibly increase the risk of ruin. Setting a higher threshold 
can help mitigate such risk by allowing the insurer to accumulate more 
surplus before dividend payout, ensuring more dividends can be paid in 
the long run for maximization purposes. This explains why the optimal 
threshold 𝑏∗ should be higher as 𝜃 increases. It is also noted that 𝑏∗ = 0
when 𝛾 or 𝜃 is low.

Fig. 6 plots the dividend function 𝑉 (𝑢; 𝑏∗) against 𝑢 for different com-
binations of (𝛾, 𝜃). Recall that 𝑉 (𝑢; 𝑏∗) is the expected discounted divi-
dends until ruin when no dividend is paid at the start. From (4.1), one 
has 𝑉 (𝑢, 𝑦) = 𝑉 (𝑢; 𝑏∗) when 𝑓𝑏∗ (𝑢, 𝑦) = 0, which happens when the initial 
increment 𝑌0 is non-positive (i.e. 𝑦 ≤ 0) or when the initial surplus 𝑈0
does not exceed the optimal threshold (i.e. 𝑢 ≤ 𝑏∗). The function 𝑉 (𝑢; 𝑏∗)
is increasing in 𝑢, which is expected. For fixed 𝛾 = 1, Fig. 6a indicates 
that 𝑉 (𝑢; 𝑏∗) increases in 𝜃. As 𝜃 is the maximum portion of the gain that 
can be paid out as dividend, a larger 𝜃 indeed represents less of a con-
straint in the optimization problem, leading to an increase in 𝑉 (𝑢; 𝑏∗). 
From Fig. 6b, it can be seen that for fixed 𝜃 = 0.2 the quantity 𝑉 (𝑢; 𝑏∗) in-
creases in 𝛾. This suggests that more frequent dividend decisions would 
increase dividend payments. In this case, even the process is also fre-
quently monitored for ruin, the resulting increase in the optimal thresh-
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Fig. 2. Plot of 𝑎 + 𝑉 (𝑢 − 𝑎; 𝑏∗) − 𝑉 (𝑢, 2; 𝑏∗) under exponential claims.

Fig. 3. Plot of 𝑓 ∗(𝑢, 2) against 𝑢 under exponential claims.

Fig. 4. Plot of 𝑉 (𝑢, 𝑦) against 𝑢 and 𝑦 under exponential claims.

old 𝑏∗ (see Fig. 5) does benefit the shareholders in the form of sustainable 
dividend payments in the long run.

Finally, in Fig. 7 we evaluate dd𝑢𝑉 (𝑢; 𝑏∗) as a function of 𝑢 for selected 
pairs of (𝛾, 𝜃). In all cases, such a derivative is positive since 𝑉 (𝑢; 𝑏∗)
increases in 𝑢. Moreover, the derivative decreases in 𝑢, suggesting that 
the marginal benefit of the shareholders decreases as the surplus level 
increases. In particular, when (𝛾, 𝜃) = (1, 0.2), we observe that
d
d𝑢

𝑉 (𝑢; 𝑏∗)
|

|

|

|𝑢=𝑏∗
= 1 (4.2)

at the optimal threshold level 𝑏∗ = 3.17, and also
d
d𝑢

𝑉 (𝑢; 𝑏∗) > 1  for  0 ≤ 𝑢 < 𝑏∗  and  d
d𝑢

𝑉 (𝑢; 𝑏∗) < 1  for  𝑢 > 𝑏∗. (4.3)

Numerical tests for other pairs of (𝛾, 𝜃) (such as (𝛾, 𝜃) = (1, 0.1) where 
𝑏∗ = 0.86) show that (4.2) and (4.3) hold true as long as 𝑏∗ > 0. Financial 
interpretation of (4.3) in terms of connection between dividend pay-
out and company efficiency can be found in Section 3 of Gerber and 
Shiu (2006). Specifically, with the optimal strategy being the proposed 
threshold strategy implemented at 𝑏∗, the insurance business is efficient 
when the observed surplus level 𝑥 is such that d

d𝑥𝑉 (𝑥; 𝑏∗) > 1, and there-
fore it is better for the insurer to retain the funds and not to pay divi-
dends. In contrast, an observed surplus level 𝑥 such that d

d𝑥𝑉 (𝑥; 𝑏∗) < 1
indicates that the business is inefficient, and thus it is more advanta-
geous for the insurer to pay as much dividend as possible rather than 
keeping the money.

4.2.  Mixed exponential and sum of exponentials claims

For now, we consider two more different claim size distributions, 
namely

• a sum of two independent exponential random variables (with re-
spective means 1∕3 and 2∕3) so that 𝑝(𝑥) = 2

( 3
2 𝑒

− 3
2 𝑥
)

+ (−1)(3𝑒−3𝑥); 
and

• a mixture of two exponential distributions specified by the density

𝑝(𝑥) = 1
3

( 1
2
𝑒−

1
2 𝑥
)

+ 2
3
(2𝑒−2𝑥). (4.4)

Both distributions possess the same mean of 1 but they have variances 
of 0.5556 and 2 respectively (where the exponential claim distribution 
in Section 4.1 has mean 1 and variance 1). The same analyses as in the 
case of exponential claims have been performed. We can confirm that 
very similar results have been obtained, and the same interpretations 
are applicable. Instead of reproducing Figs. 2–7 for these two claim dis-
tributions, we summarize some major findings as follows.
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Fig. 5. Impact of 𝛾 and 𝜃 on 𝑏∗ under exponential claims.

Fig. 6. Plot of 𝑉 (𝑢; 𝑏∗) against 𝑢 under exponential claims.

Fig. 7. Plot of d
d𝑢
𝑉 (𝑢; 𝑏∗) against 𝑢 under exponential claims.

(i) Maximizing 𝑉 (𝑢; 𝑏) with respect to the threshold level 𝑏 leads to an 
optimal threshold 𝑏∗ that does not depend on 𝑢.

(ii) Under the proposed strategy (3.1) implemented at 𝑏∗ (written as 𝑓𝑏∗ ), 
the resulting dividend function 𝑉 (𝑢, 𝑦; 𝑏∗) satisfies the fixed point 
property (3.6). Such a strategy is optimal so that the value function 
is 𝑉 (𝑢, 𝑦) = 𝑉 (𝑢, 𝑦; 𝑏∗).

(iii) The value function 𝑉 (𝑢, 𝑦), given by 𝑉 (𝑢, 𝑦) = 𝑉 (𝑢, 𝑦; 𝑏∗) or (4.1), in-
creases in 𝑢 and 𝑦.

(iv) The optimal threshold 𝑏∗ increases in 𝛾 and 𝜃.
(v) The dividend function 𝑉 (𝑢; 𝑏∗) increases in 𝛾 and 𝜃.
(vi) The conditions (4.2) and (4.3) hold true when 𝑏∗ > 0.

To get further insights about the impact of claim variance on 𝑉 (𝑢; 𝑏∗), 
we would like to compare the values of 𝑉 (𝑢; 𝑏∗) across the three 

Table 1 
Expected net gain 𝔼[𝑌 +] and expected net loss 𝔼[𝑌 −] for different claim 
variances when 𝜃 = 0.2.

𝛾 = 0.5 𝛾 = 5

 Mean  Variance 𝔼[𝑌 +] 𝔼[𝑌 −] 𝔼[𝑌 +] 𝔼[𝑌 −]

 Sum exp  1  0.5556  1.2986  0.2986  0.2228  0.1228
 Exp  1  1  1.3660  0.3660  0.2299  0.1299
 Mix exp  1  2  1.4794  0.4794  0.2358  0.1358

claim amount distributions. Throughout the analysis we fix 𝜃 = 0.2, and 
𝑉 (𝑢; 𝑏∗) is plotted as a function of 𝑢 when 𝛾 = 0.5 (Fig. 8a) and when 
𝛾 = 5 (Fig. 8b). The labels ‘Sum exp’, ‘Exp’ and ‘Mix exp’ in the figures 
correspond to a sum of exponentials, exponential and a mixture of ex-
ponentials, respectively, which have increasing variance. Although our 
intuition may suggest that 𝑉 (𝑢; 𝑏∗) shall decrease as the claim variance 
increases (which makes the surplus process riskier), we observe from 
Fig. 8 that this is generally not true. Indeed, for larger values of 𝑢 the 
function 𝑉 (𝑢; 𝑏∗) increases with the claim variance. The same observa-
tion was also made by Cheung and Zhang (2019)’s Section 5.2 regarding 
their strategy (3.3), and we can apply similar reasoning to explain such a 
phenomenon. It is important to first recall that dividend is paid from the 
insurer’s gain between successive observation time points. Therefore, 
we shall look at the values of the expected net gain 𝔼[𝑌 +] which can 
be computed via (3.21). These are provided in Table 1 for 𝛾 = 0.5 and 
𝛾 = 5. The corresponding values of the expected net loss 𝔼[𝑌 −] (where 
𝑌 − = max(−𝑌 , 0) = 𝑌 + − 𝑌 ) are also given, which can be evaluated as

𝔼[𝑌 −] = 𝐴
𝜌2𝛾

|

|

|

|𝛿=0
− 𝑐 − 𝜆𝔼[𝑋]

𝛾

due to (3.22). We see from Table 1 that as the variance of the claim dis-
tribution increases, both 𝔼[𝑌 +] and 𝔼[𝑌 −] increase. While the increase 
in 𝔼[𝑌 −] agrees with our intuition of having a riskier business (which 
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Fig. 8. Plot of 𝑉 (𝑢; 𝑏∗) against 𝑢 for three claim distributions with different variances when 𝜃 = 0.2.

Fig. 9. Plot of 𝑉 (𝑢; 𝑏∗) against 𝑢 for three claim distributions with different skewness when 𝜃 = 0.2.

Table 2 
Expected net gain 𝔼[𝑌 +] and expected net loss 𝔼[𝑌 −] for different skewness 
when 𝜃 = 0.2.

𝛾 = 0.5 𝛾 = 5

 Mean  Variance  Skewness 𝔼[𝑌 +] 𝔼[𝑌 −] 𝔼[𝑌 +] 𝔼[𝑌 −]

 Mix exp (low skewness)  1  2  2.5222  1.4928  0.4928  0.2421  0.1421
 Mix exp (medium skewness)  1  2  3.3588  1.4794  0.4794  0.2358  0.1358
 Mix exp (high skewness)  1  2  4.8284  1.4560  0.4560  0.2329  0.1329

may tend to decrease dividend payments due to earlier ruin), a higher 
value of 𝔼[𝑌 +] means that more dividends can possibly be paid from the 
gains. For large initial surplus 𝑢, the ruin probability is small anyway, 
and therefore the increase in dividends due to an increase in 𝔼[𝑌 +] out-
weighs the increased risk arising from an increase in 𝔼[𝑌 −]. As a result, 
𝑉 (𝑢; 𝑏∗) increases with the variance of the claim amounts for large 𝑢. In 
contrast, when the initial surplus 𝑢 is small, the surplus process is more 
susceptible to increased risk and early ruin, thereby causing 𝑉 (𝑢; 𝑏∗) to 
decrease in the claim variance. Interestingly, when 𝛾 increases, the sur-
plus level 𝑢 after which 𝑉 (𝑢; 𝑏∗) increases with the claim variance be-
comes higher. In particular, when 𝛾 = 0.5 the switch happens at around 
𝑢 = 7 while for 𝛾 = 5 this occurs around 𝑢 = 20. This can be attributed to 
the fact that an increase in 𝛾 leads to more frequent monitoring of the 
process for ruin, and consequently a larger value of 𝑢 is needed for the 
process to stay away from ruin.

The above discussion focuses on the impact of the variance of the 
claim distribution on the expected discounted dividends while keeping 
the mean of the claim amount fixed. In what follows, we would like 
to briefly investigate how the skewness of the claim amount may im-
pact 𝑉 (𝑢; 𝑏∗). (The skewness of the claim amount 𝑋 is given by 𝔼[(𝑋 −
𝔼[𝑋])3]∕(Var(𝑋))3∕2.) Three different mixtures of exponentials will be 

considered, and they have the same mean 1 and the same variance 2 
but different degree of skewness. In addition to the mixture of exponen-
tials with density (4.4) possessing a skewness of 3.3588, we additionally 
utilize the mixture 𝑝(𝑥) = 3

5 (0.6340𝑒
−0.6340𝑥) + 2

5 (7.4641𝑒
−7.4641𝑥) with a 

lower skewness of 2.5222 and the mixture 𝑝(𝑥) = 1
10 (0.3204𝑒

−0.3204𝑥) +
9
10 (1.3084𝑒

−1.3084𝑥) with a higher skewness of 4.8284. The results (i)-(vi) 
stated at the beginning of Section 4.2 are also valid for these two new 
claim distributions. Fixing 𝜃 = 0.2, we plot 𝑉 (𝑢; 𝑏∗) against the surplus 
level 𝑢 when 𝛾 = 0.5 (Fig. 9a) and when 𝛾 = 5 (Fig. 9b). For small values 
of 𝑢, it is observed that 𝑉 (𝑢; 𝑏∗) increases as the claim distribution be-
comes more positively skewed. On the other hand, for larger values of 
𝑢 the dividend function 𝑉 (𝑢; 𝑏∗) decreases in the skewness of the claim 
amount. Such a phenomenon can be interpreted in the same manner as 
we did for Fig. 8 by calculating the expected net gain 𝔼[𝑌 +] and the ex-
pected net loss 𝔼[𝑌 −] in Table 2 and noting that an increase in skewness 
in our case results in lower values of both 𝔼[𝑌 +] and 𝔼[𝑌 −].

5.  Concluding remarks

One of the aims of the paper is to formulate a dividend problem 
with periodic observations such that the insurer has a positive survival 
probability when the optimal dividend strategy is implemented. To this 
end, we propose a novel gain-based constraint where dividend can only 
be paid from a fraction 𝜃 of the gain between successive observations 
(rather than implementing the traditional constraint of allowing to pay 
from the entire available surplus). As mentioned in Section 2.1, it is 
sufficient to set 𝜃 < 𝔼[𝑌 ]∕𝔼[𝑌 +]. Through specific numerical examples, 
it is demonstrated that a threshold type periodic strategy (i.e. one that 
pays the highest possible dividend when the surplus is above a certain 
threshold) is optimal.
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Naturally, one would wonder whether general sufficient conditions 
under which our proposed threshold strategy is optimal can be estab-
lished. This will indeed be very difficult for a number of reasons. First, 
we recall that our novel gain-based constraint restricts dividend pay-
ment to be paid from the latest increment (if it is positive), and the 
decision rule is based on a two-dimensional state space (i.e. the sur-
plus level 𝑢 and the latest increment 𝑦). This is more complex than the 
optimal periodic dividend problem considered by the main reference 
Albrecher et al. (2011a), which is concerned with the traditional con-
straint where the state space consists of 𝑢 only. Even Albrecher et al. 
(2011a) were able to show that the optimal strategy is generally in the 
form of a band strategy in their setting (see also Remark 1), it does 
not appear possible to determine the number of bands in the optimal 
strategy at the outset. As in their Section 7, they need to first deter-
mine the dividend function under specific distributional assumptions 
(e.g. exponential inter-observation times and Erlang(2) claim amounts) 
by fixing the number of bands before verifying the fixed point property 
numerically with all the model parameters specified. Indeed, our nu-
merical approach in Section 4 was motivated by the one in Albrecher 
et al. (2011a). Second, we note that, assuming the simplest situation of 
exponential inter-observation times and exponential claims, Albrecher 
et al. (2011a) showed in their Section 5 that the optimal periodic strat-
egy is a barrier strategy under the traditional constraint (i.e. the band 
strategy collapses to a barrier strategy). However, their method to an-
alytically prove that the value of a barrier strategy is a fixed point of 
their Bellman equation relies on the availability of an explicit expres-
sion for the optimal dividend barrier. The determination of the optimal 
barrier in their case is possible because the expected present value of 
dividend payments under a barrier strategy is a simple function of the 
barrier level, thanks to the fact that one only needs to determine the 
dividend function in a single layer (i.e. below the barrier). However, in 
our proposed threshold strategy, there are two interconnecting layers 
(see the integral equations (3.8) and (3.9)) from which the respective 
dividend functions need to be solved for. Even for exponential claims 
(𝑚 = 1 in Proposition 1), the coefficients 𝐶1, 𝐶2, 𝐷 and 𝐸1 appearing 
in the dividend functions (3.13) and (3.14) need to be solved from a 
system of four linear equations, and they all depend on the threshold 
level 𝑏 (see Remark 4 in Section 3.2). This makes it impossible to get 
an explicit formula for the optimal threshold 𝑏∗ by taking derivative for 
maximization, making any analytic attempt to prove that the fixed point 
property is satisfied extremely hard.

For future research, it will be an interesting topic to develop dif-
ferent methodologies to derive sufficient conditions for the optimality 
of our proposed threshold strategy under a gain-based constraint. Such 
conditions may be related to the complete monotonicity of the claim 
distribution as shown by Kyprianou et al. (2012) in the case of con-
tinuous observations under the constraint of a bounded dividend rate. 
However, this is far from trivial in the present context of periodic ob-
servations because the observation scheme (i.e. the distribution of the 
inter-observation times) may also play a role in specifying the sufficient 
conditions. Moreover, the verification of optimality in Kyprianou et al. 
(2012) is largely based on (i) an expression of the value of their pro-
posed continuously observed threshold strategy in terms of the scale 
function; and (ii) the properties of the scale function in Lévy processes 
where the Lévy measure has a completely monotone density. But in our 
case of a periodically observed process, it is unclear how the scale func-
tion can be applied to obtain the expected discounted dividends under 
our proposed threshold strategy. Another related research question is 
the form of the optimal strategy in cases where the proposed thresh-
old strategy is not optimal, and this is not easy either. Nevertheless, 
our work provides a starting point as the largest maximizer of 𝑉  must
satisfy (2.16).

Concerning numerical procedure to approximate the value function 
and hence an optimal periodic strategy under our gain-based constraint, 
the existence of a unique fixed point of   due to it being a contraction 
mapping (see Theorem 2) may suggest that one could iteratively ap-

ply the operator   to an initial guess function to obtain the solution 
to the Bellman equation. However, since the state space and the action 
space are both continuous, discretization or grid-based methods will be 
required and these will be subject to the curse of dimensionality. The 
design of efficient numerical algorithms can be important for future re-
search as well.

We also wish to point out that it is not our primary objective here 
to maximize the expected present value of dividends paid until ruin 
such that the resulting ruin probability is no larger than a given tol-
erance level. Indeed, dividend optimization under a ruin probability 
constraint presents a very challenging research problem. While this has 
been considered in models with continuous observations, exact solutions 
are not available in the literature. The existing results include numeri-
cal schemes and approximation procedures (see Grandits (2015), Hipp 
(2018, 2019), and Albrecher et al. (2025)), and the optimal strategy is 
no longer a threshold strategy. Added complexity is anticipated if the 
observations are periodic. As an alternative, one may restrict the set of 
admissible strategies to be periodic threshold strategies and optimize 
dividends subject to a ruin probability constraint. Since the expected 
discounted dividends and the ruin probability can both be determined 
under a periodic threshold strategy, numerical optimization can be per-
formed with respect to threshold level 𝑏 and the dividend fraction 𝜃. 
See Dickson and Drekic (2006) for similar ideas in the context of con-
tinuous observations. Another interesting research problem will be to 
take into account the risk-sensitivity of the insurance company via max-
imizing the expected utility of the discounted dividends (see Bäuerle 
and Jaśkiewicz (2015)). We leave these as open questions for future 
research. 
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Appendix A. 

A.1.  Proof of Lemma 1

(a) If each increment 𝑌𝑛 (for 𝑛 ∈ ℕ0) is replaced by 𝑌 +
𝑛 , then the value 

function for the modified process clearly increases and the modified 
process will never experience ruin even when dividend is paid at the 
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maximum possible amount 𝜃𝑌 +
𝑛  at each observation time 𝑍𝑛. Due to 

the time value of money, it is optimal to pay such maximum amount 
at the earliest opportunity, and therefore we have

𝑉 (𝑢, 𝑦) ≤ 𝜃𝑦+ + 𝜃𝔼

[ ∞
∑

𝑛=1
𝑒−𝛿𝑍𝑛𝑌 +

𝑛

]

= 𝜃𝑦+ + 𝜃
∞
∑

𝑛=1
𝔼

[(𝑛−1
∏

𝑘=1
𝑒−𝛿𝑇𝑘

)

(

𝑒−𝛿𝑇𝑛𝑌 +
𝑛
)

]

.

The upper bound in (2.5) then follows by the mutual independence 
of 𝑇1,… , 𝑇𝑛−1 and (𝑇𝑛, 𝑌𝑛).

Concerning the lower bound, one can consider a specific admis-
sible strategy that pays the maximal dividend at each observation 
time until ruin occurs. This leads to

𝑉 (𝑢, 𝑦) ≥ 𝜃𝑦+ + 𝜃𝔼𝑢,𝑦

[ ∞
∑

𝑛=1
𝑒−𝛿𝑍𝑛𝑌 +

𝑛 1{𝑈1 ,…,𝑈𝑛≥0}

]

,

where it is understood that the surplus levels {𝑈𝑛}∞𝑛=1 are specific to 
the afore-mentioned strategy, i.e. 𝑈𝑛 = 𝑈𝑛−1 − 𝜃𝑌 +

𝑛−1 + 𝑌𝑛 for 𝑛 ∈ ℕ. 
It is clear that if 𝑌1,… , 𝑌𝑛 are all non-negative then 𝑈1,… , 𝑈𝑛 are 
all non-negative as well. Therefore, one can lower bound the above 
expectation by replacing 1{𝑈1 ,…,𝑈𝑛≥0} by 1{𝑌1 ,…,𝑌𝑛≥0} so that

𝑉 (𝑢, 𝑦) ≥ 𝜃𝑦+ + 𝜃𝔼

[ ∞
∑

𝑛=1
𝑒−𝛿𝑍𝑛𝑌 +

𝑛 1{𝑌1 ,…,𝑌𝑛≥0}

]

= 𝜃𝑦+ + 𝜃
∞
∑

𝑛=1
𝔼

[(𝑛−1
∏

𝑘=1
𝑒−𝛿𝑇𝑘1{𝑌𝑘≥0}

)

(

𝑒−𝛿𝑇𝑛𝑌 +
𝑛
)

]

,

from which the lower bound in (2.5) follows.
(b) From the upper bound in (2.5), it is clear that

𝑉 ≤ 𝐶𝛽, (A.1)

for some positive constant 𝐶, where 𝛽 is the upper bounding function 
defined in (2.6). For 𝑎 ∈ [0, 𝜃𝑦+] and (𝑢, 𝑦) ∈ 𝐸, it is noted that

∫

∞

0 ∫

∞

𝑎−𝑢
𝑒−𝛿𝑡𝛽(𝑢 − 𝑎 + 𝑥, 𝑥)𝑄(d𝑥, d𝑡) = ∫

∞

0 ∫

∞

𝑎−𝑢
𝑒−𝛿𝑡(𝐻1 +𝐻2𝑥

+)𝑄(d𝑥, d𝑡)

≤ ∫

∞

0 ∫

∞

−∞
𝑒−𝛿𝑡(𝐻1 +𝐻2𝑥

+)𝑄(d𝑥, d𝑡)

= 𝐻1𝔼[𝑒−𝛿𝑇 ] +𝐻2𝔼[𝑒−𝛿𝑇 𝑌 +], (A.2)

where the inequality follows from the non-negativity of the inte-
grand. Therefore, taking supremum and using the definition of the 
operator (2.4) yields

◦𝛽(𝑢, 𝑦) ≤ 𝐻1𝔼[𝑒−𝛿𝑇 ] +𝐻2𝔼[𝑒−𝛿𝑇 𝑌 +]. (A.3)

Recursively, it can be seen that

 𝑛
◦ 𝛽 ≤ 𝐻1(𝔼[𝑒−𝛿𝑇 ])𝑛 +𝐻2(𝔼[𝑒−𝛿𝑇 ])𝑛−1𝔼[𝑒−𝛿𝑇 𝑌 +], 𝑛 ∈ ℕ.

Letting 𝑛 → ∞ gives rise to (2.7).

A.2.  Proof of Theorem 1

The results are a direct consequence of Theorems 7.1.8 and 7.2.1 
in Bäuerle and Rieder (2011) (see also Theorem 3.2 in Albrecher et al. 
(2011a)). In particular, the properties (2.7) and (A.1) from Lemma 1 
imply that the integrability assumption (A) and the convergence as-
sumption (C) on pp.195–196 as well as the structure assumption (SA) 
on p.199 of Bäuerle and Rieder (2011) are satisfied. Therefore, 𝜋∗ =
(𝑓 ∗, 𝑓 ∗,…) is an optimal stationary policy, where 𝑓 ∗ is a maximizer of 
𝑉 . Moreover, history-dependent policies do not improve the expected 
present value of dividend payments until ruin (see Remark 7.1.3 in 
Bäuerle and Rieder (2011)).

A.3.  Proof of Theorem 2

The proof follows closely that of Lemma 7.3.3 in Bäuerle and Rieder 
(2011). First, from (A.3) we can get, for (𝑢, 𝑦) ∈ 𝐸,

◦𝛽(𝑢, 𝑦) ≤
(

𝔼[𝑒−𝛿𝑇 ] +
𝐻2
𝐻1

𝔼[𝑒−𝛿𝑇 𝑌 +]
)

(𝐻1 +𝐻2𝑦
+).

Therefore, if 𝐻1 and 𝐻2 satisfy (2.14), then we have
◦𝛽(𝑢, 𝑦) ≤ 𝛼𝛽(𝑢, 𝑦), (A.4)

where

𝛼 = 𝔼[𝑒−𝛿𝑇 ] +
𝐻2
𝐻1

𝔼[𝑒−𝛿𝑇 𝑌 +]

is such that 𝛼 ∈ (0, 1). It is important to note that, with 𝔼[𝑒−𝛿𝑇 ] < 1 and 
𝔼[𝑒−𝛿𝑇 𝑌 +] > 0, we can always choose a large value of 𝐻1 and/or a small 
positive value of 𝐻2 to ensure that (2.14) is satisfied.

Next, defining the weighted supremum norm

||𝑣||𝛽 = sup
(𝑢,𝑦)∈𝐸

|𝑣(𝑢, 𝑦)|
𝛽(𝑢, 𝑦)

, 𝑣 ∈ 𝕄⋆
𝛽 , (A.5)

it is known that (𝕄⋆
𝛽 , || ⋅ ||𝛽 ) is a Banach space. For the remainder of this 

proof, we shall extend the domain on which the operators 𝑓  (in (2.8)) 
and   (in (2.9)) can act on from 𝕄𝛽 to 𝕄⋆

𝛽 . Suppose that 𝑣,𝑤 ∈ 𝕄⋆
𝛽 . With 

𝑓 a decision rule satisfying 𝑓 (𝑢, 𝑦) ∈ [0, 𝜃𝑦+] for (𝑢, 𝑦) ∈ 𝐸, we have
sup
𝑓

𝑓 𝑣 − sup
𝑓

𝑓𝑤 ≤ sup
𝑓
(𝑓 𝑣 − 𝑓𝑤).

Utilizing the definitions (2.9) and (2.8) on the left-hand side and the 
right-hand side respectively leads to, for (𝑢, 𝑦) ∈ 𝐸,

 𝑣(𝑢, 𝑦) −  𝑤(𝑢, 𝑦)

≤ sup
𝑎∈[0,𝜃𝑦+]∫

∞

0 ∫

∞

𝑎−𝑢
𝑒−𝛿𝑡{𝑣(𝑢 − 𝑎 + 𝑥, 𝑥) −𝑤(𝑢 − 𝑎 + 𝑥, 𝑥)}𝑄(d𝑥, d𝑡)

≤ ||𝑣 −𝑤||𝛽 sup
𝑎∈[0,𝜃𝑦+]∫

∞

0 ∫

∞

𝑎−𝑢
𝑒−𝛿𝑡𝛽(𝑢 − 𝑎 + 𝑥, 𝑥)𝑄(d𝑥, d𝑡),

where the last inequality follows from the definition (A.5). Noting from 
the definition (2.4) that the supremum of the integral above is simply 
◦𝛽(𝑢, 𝑦), further use of the bound (A.4) gives rise to
 𝑣(𝑢, 𝑦) −  𝑤(𝑢, 𝑦) ≤ 𝛼||𝑣 −𝑤||𝛽 𝛽(𝑢, 𝑦).

Similarly, reversing the roles of 𝑣 and 𝑤 in the above argument yields
 𝑤(𝑢, 𝑦) −  𝑣(𝑢, 𝑦) ≤ 𝛼||𝑣 −𝑤||𝛽 𝛽(𝑢, 𝑦).

Combining the above two inequalities, one can take the weighted supre-
mum norm on  𝑣 −  𝑤 to see that
|| 𝑣 −  𝑤||𝛽 ≤ 𝛼||𝑣 −𝑤||𝛽 .

Since 𝛼 ∈ (0, 1), the operator   is contracting on (𝕄⋆
𝛽 , || ⋅ ||𝛽 ), and the 

statement of the theorem follows from the Banach’s fixed point theorem 
(e.g. Theorem A.3.5 in Bäuerle and Rieder (2011)).

A.4.  Proof of Lemma 2

(a) First, for fixed 𝑦 ∈ ℝ, we consider 𝑢2 ≥ 𝑢1 such that (𝑢1, 𝑦) ∈ 𝐸 and 
(𝑢2, 𝑦) ∈ 𝐸. For a surplus process starting with the initial condition 
(𝑢2, 𝑦), one can implement a strategy that is optimal for the initial 
condition (𝑢1, 𝑦), resulting in expected discounted dividend payments 
of 𝑉 (𝑢1, 𝑦). Note that the ruin event of this process (if it ever happens) 
will not happen earlier than the process starting with (𝑢1, 𝑦) as it 
always has 𝑢2 − 𝑢1 units of surplus in excess of the latter process. The 
optimal strategy under the initial condition (𝑢2, 𝑦) cannot be inferior 
to the afore-mentioned strategy, implying 𝑉 (𝑢2, 𝑦) ≥ 𝑉 (𝑢1, 𝑦).

Second, for fixed 𝑢 ∈ ℝ+, we suppose 𝑦2 ≥ 𝑦1 with (𝑢, 𝑦1) ∈ 𝐸 and 
(𝑢, 𝑦2) ∈ 𝐸. Starting with (𝑢, 𝑦2), the optimization on the right-hand 
side of (2.10) is performed over the interval [0, 𝜃𝑦+2 ] which is wider 
than the interval [0, 𝜃𝑦+1 ] if one has instead started with (𝑢, 𝑦1). There-
fore, one must have 𝑉 (𝑢, 𝑦2) ≥ 𝑉 (𝑢, 𝑦1).
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(b) For later use, we start by observing that the function 𝐺 defined in
(2.12) is increasing. Specifically, for 𝑢2 ≥ 𝑢1 ≥ 0 we have

𝐺(𝑢2) = ∫

∞

0 ∫

∞

−𝑢2
𝑒−𝛿𝑡𝑉 (𝑢2 + 𝑥, 𝑥)𝑄(d𝑥, d𝑡)

≥ ∫

∞

0 ∫

∞

−𝑢1
𝑒−𝛿𝑡𝑉 (𝑢2 + 𝑥, 𝑥)𝑄(d𝑥, d𝑡)

≥ ∫

∞

0 ∫

∞

−𝑢1
𝑒−𝛿𝑡𝑉 (𝑢1 + 𝑥, 𝑥)𝑄(d𝑥, d𝑡)

= 𝐺(𝑢1),

where the second line follows by the non-negativity of the integrand 
and the third line is due to the fact that 𝑉  is increasing (see part (a)). 
Next, we note that 𝑉 (𝑢, 𝑦) = 𝑉 (𝑢, 0) for 𝑢 ∈ ℝ+ and 𝑦 ∈ ℝ− because 
no dividend can be paid at time 0 if the initial increment is negative. 
So we focus on comparing 𝑉 (𝑢1, 𝑦1) and 𝑉 (𝑢2, 𝑦2) when 𝑦2 ≥ 𝑦1 ≥ 0, 
and we set the constraint 𝑢2 ≥ 𝑢1 + 𝜃(𝑦2 − 𝑦1). Then, one has from
(2.11) that
𝑉 (𝑢2, 𝑦2) = sup

𝑎∈[0,𝜃𝑦2]
{𝑎 + 𝐺(𝑢2 − 𝑎)}

≥ sup
𝑎∈[0,𝜃𝑦1]

{𝜃(𝑦2 − 𝑦1) + 𝑎 + 𝐺(𝑢2 − 𝜃(𝑦2 − 𝑦1) − 𝑎)} (A.6)

≥ sup
𝑎∈[0,𝜃𝑦1]

{𝜃(𝑦2 − 𝑦1) + 𝑎 + 𝐺(𝑢1 − 𝑎)} (A.7)

= 𝜃(𝑦2 − 𝑦1) + sup
𝑎∈[0,𝜃𝑦1]

{𝑎 + 𝐺(𝑢1 − 𝑎)}

= 𝜃(𝑦2 − 𝑦1) + 𝑉 (𝑢1, 𝑦1).

The inequality (A.6) can be explained as follows. For any 𝑎 ∈ [0, 𝜃𝑦1], 
one has 𝜃(𝑦2 − 𝑦1) + 𝑎 ∈ [𝜃(𝑦2 − 𝑦1), 𝜃𝑦2] ⊂ [0, 𝜃𝑦2]. In other words, 
𝜃(𝑦2 − 𝑦1) + 𝑎 is an admissible action at position (𝑢2, 𝑦2), and such 
an action cannot be better than an optimal action 𝑎 ∈ [0, 𝜃𝑦2]. The 
inequality (A.7) holds because 𝑢2 − 𝜃(𝑦2 − 𝑦1) ≥ 𝑢1 according to the 
assumption and 𝐺 is an increasing function.

A.5.  Proof of Theorem 3

When 𝑢 ∈ ℝ+ and 𝑦 ∈ ℝ−, a decision rule 𝑓 must satisfy 𝑓 (𝑢, 𝑦) = 0
(and the same is true for a maximizer), and therefore (2.15) and (2.16) 
become trivial. It is sufficient to consider the case 𝑢 ≥ 𝑦 ≥ 0 in this proof.

For now we consider the case where we start with the initial condi-
tion (𝑢 − 𝑓 ∗(𝑢, 𝑦), 𝑦 − (1∕𝜃)𝑓 ∗(𝑢, 𝑦)) which must belong to the state space 
𝐸. We proceed to utilize the Bellman equation (2.11) under such ini-
tial condition and choose the action 𝑎 = 0 which cannot outperform a 
maximizer. This results in
𝑉
(

𝑢 − 𝑓 ∗(𝑢, 𝑦), 𝑦 − 1
𝜃
𝑓 ∗(𝑢, 𝑦)

)

≥ 𝐺(𝑢 − 𝑓 ∗(𝑢, 𝑦)). (A.8)

From (2.13), the expression on the right-hand side of (A.8) equals 
𝑉 (𝑢, 𝑦) − 𝑓 ∗(𝑢, 𝑦) and thus

𝑉
(

𝑢 − 𝑓 ∗(𝑢, 𝑦), 𝑦 − 1
𝜃
𝑓 ∗(𝑢, 𝑦)

)

≥ 𝑉 (𝑢, 𝑦) − 𝑓 ∗(𝑢, 𝑦).

On the other hand, application of Lemma 2(b) with (𝑢1, 𝑦1) = (𝑢 −
𝑓 ∗(𝑢, 𝑦), 𝑦 − (1∕𝜃)𝑓 ∗(𝑢, 𝑦)) and (𝑢2, 𝑦2) = (𝑢, 𝑦) leads to

𝑉 (𝑢, 𝑦) − 𝑉
(

𝑢 − 𝑓 ∗(𝑢, 𝑦), 𝑦 − 1
𝜃
𝑓 ∗(𝑢, 𝑦)

)

≥ 𝑓 ∗(𝑢, 𝑦).

Combining the above two inequalities gives rise to the desired result
(2.15).

Next, because of (2.13), the result (2.15) can be written as

𝑉
(

𝑢 − 𝑓 ∗(𝑢, 𝑦), 𝑦 − 1
𝜃
𝑓 ∗(𝑢, 𝑦)

)

= 𝐺(𝑢 − 𝑓 ∗(𝑢, 𝑦)).

Comparison with (2.11) reveals that under the initial state (𝑢 −
𝑓 ∗(𝑢, 𝑦), 𝑦 − (1∕𝜃)𝑓 ∗(𝑢, 𝑦)) the action 𝑎 = 0 is optimal. However, as the 
uniqueness of 𝑓 ∗ may not be guaranteed, one cannot conclude that
(2.16) must hold true. Hence, we shall focus on the largest maximizer 
of 𝑉 .

Suppose that 𝑓 ∗ is the largest maximizer of 𝑉 . It remains to show 
that 𝑓 ∗ satisfies (2.16). Suppose on the contrary that 𝑓 ∗(𝑢 − 𝑓 ∗(𝑢, 𝑦), 𝑦 −
(1∕𝜃)𝑓 ∗(𝑢, 𝑦)) > 0. Using (2.13) under the initial state (𝑢 − 𝑓 ∗(𝑢, 𝑦), 𝑦 −
(1∕𝜃)𝑓 ∗(𝑢, 𝑦)) yields

𝑉
(

𝑢 − 𝑓 ∗(𝑢, 𝑦), 𝑦 − 1
𝜃
𝑓 ∗(𝑢, 𝑦)

)

= 𝑓 ∗
(

𝑢 − 𝑓 ∗(𝑢, 𝑦), 𝑦 − 1
𝜃
𝑓 ∗(𝑢, 𝑦)

)

+ 𝐺
(

𝑢 − 𝑓 ∗(𝑢, 𝑦) − 𝑓 ∗
(

𝑢 − 𝑓 ∗(𝑢, 𝑦), 𝑦 − 1
𝜃
𝑓 ∗(𝑢, 𝑦)

))

. (A.9)

Note that if one starts with an initial state of (𝑢, 𝑦), then a divi-
dend payment of 𝑓 ∗(𝑢, 𝑦) + 𝑓 ∗(𝑢 − 𝑓 ∗(𝑢, 𝑦), 𝑦 − (1∕𝜃)𝑓 ∗(𝑢, 𝑦)) is admissi-
ble because 𝑓 ∗(𝑢 − 𝑓 ∗(𝑢, 𝑦), 𝑦 − (1∕𝜃)𝑓 ∗(𝑢, 𝑦)) ≤ 𝜃𝑦 − 𝑓 ∗(𝑢, 𝑦) and hence 
𝑓 ∗(𝑢, 𝑦) + 𝑓 ∗(𝑢 − 𝑓 ∗(𝑢, 𝑦), 𝑦 − (1∕𝜃)𝑓 ∗(𝑢, 𝑦)) ≤ 𝜃𝑦. Then we study the ex-
pression

𝑓 ∗(𝑢, 𝑦) + 𝑓 ∗
(

𝑢 − 𝑓 ∗(𝑢, 𝑦), 𝑦 − 1
𝜃
𝑓 ∗(𝑢, 𝑦)

)

+ 𝐺
(

𝑢 − 𝑓 ∗(𝑢, 𝑦) − 𝑓 ∗
(

𝑢 − 𝑓 ∗(𝑢, 𝑦), 𝑦 − 1
𝜃
𝑓 ∗(𝑢, 𝑦)

))

= 𝑓 ∗(𝑢, 𝑦) + 𝑉
(

𝑢 − 𝑓 ∗(𝑢, 𝑦), 𝑦 − 1
𝜃
𝑓 ∗(𝑢, 𝑦)

)

= 𝑉 (𝑢, 𝑦),

where the two equalities follow from (A.9) and (2.15) respec-
tively. The above result implies that 𝑓 ∗(𝑢, 𝑦) + 𝑓 ∗(𝑢 − 𝑓 ∗(𝑢, 𝑦), 𝑦 −
(1∕𝜃)𝑓 ∗(𝑢, 𝑦)) is also a maximizer of 𝑉 (𝑢, 𝑦) (see (2.11)). Conse-
quently, with 𝑓 ∗(𝑢 − 𝑓 ∗(𝑢, 𝑦), 𝑦 − (1∕𝜃)𝑓 ∗(𝑢, 𝑦)) > 0 we have 𝑓 ∗(𝑢, 𝑦) +
𝑓 ∗(𝑢 − 𝑓 ∗(𝑢, 𝑦), 𝑦 − (1∕𝜃)𝑓 ∗(𝑢, 𝑦)) > 𝑓 ∗(𝑢, 𝑦), meaning that 𝑓 ∗(𝑢, 𝑦) is not 
the largest maximizer of 𝑉 (𝑢, 𝑦) and leading to a contradiction. There-
fore, 𝑓 ∗(𝑢 − 𝑓 ∗(𝑢, 𝑦), 𝑦 − (1∕𝜃)𝑓 ∗(𝑢, 𝑦)) cannot be positive (and the divi-
dend payout cannot be negative in our model) and one concludes that
(2.16) holds true for the largest maximizer 𝑓 ∗.

A.6.  Proof of Proposition 1

We start by handling the integral equation (3.8). Substitution of
(3.11) into the first two integrals in (3.8) followed by straightforward 
algebra gives rise to

∫

∞

𝑏−𝑢
1−𝜃

[

𝜃𝑥 + 𝑉2(𝑢 + (1 − 𝜃)𝑥)
]

𝑔𝛿,−(𝑥)d𝑥

+ ∫

𝑏−𝑢
1−𝜃

𝑏−𝑢

[

(𝑢 + 𝑥 − 𝑏) + 𝑉 (𝑏; 𝑏)
]

𝑔𝛿,−(𝑥)d𝑥

= 𝐴
1 − 𝜃

(

∫

∞

𝑏
𝑉2(𝑥)𝑒

−
𝜌𝛾
1−𝜃 𝑥d𝑥

)

𝑒
𝜌𝛾
1−𝜃 𝑢 + 𝐴

𝜌2𝛾
𝑒−𝜌𝛾 𝑏𝑒𝜌𝛾 𝑢 −

(1 − 𝜃)𝐴
𝜌2𝛾

𝑒−
𝜌𝛾
1−𝜃 𝑏𝑒

𝜌𝛾
1−𝜃 𝑢

+ 𝑉 (𝑏; 𝑏) 𝐴
𝜌𝛾

𝑒−𝜌𝛾 𝑏𝑒𝜌𝛾 𝑢 − 𝑉 (𝑏; 𝑏) 𝐴
𝜌𝛾

𝑒−
𝜌𝛾
1−𝜃 𝑏𝑒

𝜌𝛾
1−𝜃 𝑢, (A.10)

which is a sum of two exponential terms in 𝑢. Therefore, we have
( d
d𝑢

− 𝜌𝛾
)

(

d
d𝑢

−
𝜌𝛾

1 − 𝜃

)

(

∫

∞

𝑏−𝑢
1−𝜃

[

𝜃𝑥 + 𝑉2(𝑢 + (1 − 𝜃)𝑥)
]

𝑔𝛿,−(𝑥)d𝑥

+∫

𝑏−𝑢
1−𝜃

𝑏−𝑢

[

(𝑢 + 𝑥 − 𝑏) + 𝑉1(𝑏)
]

𝑔𝛿,−(𝑥)d𝑥

)

= 0. (A.11)

Regarding the third integral in (3.8), with the use of (3.11) it can readily 
be shown that
( d
d𝑢

− 𝜌𝛾
)

∫

𝑏−𝑢

0
𝑉1(𝑢 + 𝑥)𝑔𝛿,−(𝑥)d𝑥 = −𝐴𝑉1(𝑢). (A.12)

Following the analysis leading to Equation (49) in Cheung and Zhang 
(2019), the fourth integral in (3.8) satisfies
[ 𝑚
∏

𝓁=1

( d
d𝑢

+ 𝑅𝛾,𝓁

)

]

∫

𝑢

0
𝑉1(𝑢 − 𝑥)𝑔𝛿,+(𝑥)d𝑥
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=
𝑚
∑

𝑗=1
𝐵𝑗

[ 𝑚
∏

𝓁=1,𝓁≠𝑗

( d
d𝑢

+ 𝑅𝛾,𝓁

)

]

𝑉1(𝑢). (A.13)

Utilizing (A.11)-(A.13), we apply the operator (d∕d𝑢 − 𝜌𝛾 )(d∕d𝑢 −
𝜌𝛾∕(1 − 𝜃))

∏𝑚
𝓁=1(d∕d𝑢 + 𝑅𝛾,𝓁) to (3.8) to arrive at the (𝑚 + 2)-th order 

homogeneous ordinary differential equation
( d
d𝑢

− 𝜌𝛾
)

(

d
d𝑢

−
𝜌𝛾

1 − 𝜃

)

[ 𝑚
∏

𝓁=1

( d
d𝑢

+ 𝑅𝛾,𝓁

)

]

𝑉1(𝑢)

= − 𝐴
(

d
d𝑢

−
𝜌𝛾

1 − 𝜃

)

[ 𝑚
∏

𝓁=1

( d
d𝑢

+ 𝑅𝛾,𝓁

)

]

𝑉1(𝑢)

+
𝑚
∑

𝑗=1
𝐵𝑗

( d
d𝑢

− 𝜌𝛾
)

(

d
d𝑢

−
𝜌𝛾

1 − 𝜃

)

[ 𝑚
∏

𝓁=1,𝓁≠𝑗

( d
d𝑢

+ 𝑅𝛾,𝓁

)

]

𝑉1(𝑢). (A.14)

The characteristic equation (in 𝑠) is given by

(𝑠 − 𝜌𝛾 )
(

𝑠 −
𝜌𝛾

1 − 𝜃

) 𝑚
∏

𝓁=1
(𝑠 + 𝑅𝛾,𝓁)

= − 𝐴
(

𝑠 −
𝜌𝛾

1 − 𝜃

) 𝑚
∏

𝓁=1
(𝑠 + 𝑅𝛾,𝓁)

+
𝑚
∑

𝑗=1
𝐵𝑗 (𝑠 − 𝜌𝛾 )

(

𝑠 −
𝜌𝛾

1 − 𝜃

) 𝑚
∏

𝓁=1,𝓁≠𝑗
(𝑠 + 𝑅𝛾,𝓁),

which consists of the root 𝜌𝛾∕(1 − 𝜃) and the 𝑚 + 1 roots (namely {𝑟𝑖}𝑚+1𝑖=1 ) 
of the equation (in 𝑠)

1 = 𝐴
𝜌𝛾 − 𝑠

+
𝑚
∑

𝑗=1

𝐵𝑗

𝑠 + 𝑅𝛾,𝑗
. (A.15)

From Equations (3.2) and (4.1) in Albrecher et al. (2013), the right-hand 
side can be written as

𝐴
𝜌𝛾 − 𝑠

+
𝑚
∑

𝑗=1

𝐵𝑗

𝑠 + 𝑅𝛾,𝑗
= 𝔼

[

𝑒−𝛿𝑇1−𝑠
(

∑

𝑁𝑇1
𝑖=1 𝑋𝑖−𝑐𝑇1

)
]

=
𝛾

𝛾 + 𝛿 − {𝑐𝑠 − 𝜆[1 − 𝑝(𝑠)]}
.

Consequently, (A.15) is equivalent to a special case of (3.10) with 𝛾 =
0 (and therefore {𝑟𝑖}𝑚+1𝑖=1  is equivalent to the set consisting of 𝜌0 and 
{−𝑅0,𝑗}𝑚𝑗=1). The solution to (A.14) is thus in the form of (3.13), where 
{𝐶𝑖}𝑚+1𝑖=1  and 𝐷 are constants to be determined.

Next, we consider the integral equation (3.9) which is structurally 
identical to Equation (21) in Cheung and Zhang (2019). Following the 
procedure leading to Equation (57) therein, one has the result (3.14), 
where 𝑤 is given by (3.15), {𝑠𝑖}𝑚𝑖=1 are those 𝑚 roots with negative real 
parts of the equation (3.16) in 𝑠, and {𝐸𝑖}𝑚𝑖=1 are constants to be deter-
mined.

To find the unknown constants, we proceed by substituting the so-
lution forms (3.13) and (3.14) (along with (3.11) and (3.12)) into the 
integral equations (3.8) and (3.9) and evaluating various integrals. We 
begin by considering (3.8). First, (A.10) becomes

∫

∞

𝑏−𝑢
1−𝜃

[

𝜃𝑥 + 𝑉2(𝑢 + (1 − 𝜃)𝑥)
]

𝑔𝛿,−(𝑥)d𝑥

+ ∫

𝑏−𝑢
1−𝜃

𝑏−𝑢

[

(𝑢 + 𝑥 − 𝑏) + 𝑉2(𝑏)
]

𝑔𝛿,−(𝑥)d𝑥

= 𝐴

(

𝑤
𝜌𝛾

𝑒−
𝜌𝛾
1−𝜃 𝑏 +

𝑚
∑

𝑖=1

𝐸𝑖
𝜌𝛾 − (1 − 𝜃)𝑠𝑖

𝑒−
( 𝜌𝛾
1−𝜃 −𝑠𝑖

)

𝑏
)

𝑒
𝜌𝛾
1−𝜃 𝑢 + 𝐴

𝜌2𝛾
𝑒−𝜌𝛾 𝑏𝑒𝜌𝛾 𝑢

−
(1 − 𝜃)𝐴

𝜌2𝛾
𝑒−

𝜌𝛾
1−𝜃 𝑏𝑒

𝜌𝛾
1−𝜃 𝑢 +

(𝑚+1
∑

𝑖=1
𝐶𝑖𝑒

𝑟𝑖𝑏 +𝐷𝑒
𝜌𝛾
1−𝜃 𝑏

)

𝐴
𝜌𝛾

𝑒−𝜌𝛾 𝑏𝑒𝜌𝛾 𝑢

−

(

𝑤 +
𝑚
∑

𝑖=1
𝐸𝑖𝑒

𝑠𝑖𝑏

)

𝐴
𝜌𝛾

𝑒−
𝜌𝛾
1−𝜃 𝑏𝑒

𝜌𝛾
1−𝜃 𝑢. (A.16)

(In the second last term, we can replace 𝑉 (𝑏; 𝑏) by 𝑉1(𝑏) or 𝑉2(𝑏) thanks 
to the continuity of 𝑉 (𝑢; 𝑏) at 𝑢 = 𝑏.) Second, the third integral on the 
right-hand side of (3.8) is evaluated as

∫

𝑏−𝑢

0
𝑉1(𝑢 + 𝑥)𝑔𝛿,−(𝑥)d𝑥 = 𝐴

𝑚+1
∑

𝑖=1

𝐶𝑖
𝜌𝛾 − 𝑟𝑖

𝑒𝑟𝑖𝑢 − 𝐴
𝑚+1
∑

𝑖=1

𝐶𝑖
𝜌𝛾 − 𝑟𝑖

𝑒−(𝜌𝛾−𝑟𝑖)𝑏𝑒𝜌𝛾 𝑢

− 𝐴𝐷 1 − 𝜃
𝜌𝛾𝜃

𝑒
𝜌𝛾
1−𝜃 𝑢 + 𝐴𝐷 1 − 𝜃

𝜌𝛾𝜃
𝑒
𝜌𝛾 𝜃
1−𝜃 𝑏𝑒𝜌𝛾 𝑢. (A.17)

Third, the fourth integral in (3.8) is

∫

𝑢

0
𝑉1(𝑢 − 𝑥)𝑔𝛿,+(𝑥)d𝑥 =

𝑚+1
∑

𝑖=1
𝐶𝑖

( 𝑚
∑

𝑗=1

𝐵𝑗

𝑅𝛾,𝑗 + 𝑟𝑖

)

𝑒𝑟𝑖𝑢

+𝐷
𝑚
∑

𝑗=1

𝐵𝑗
𝜌𝛾
1−𝜃 + 𝑅𝛾,𝑗

𝑒
𝜌𝛾
1−𝜃 𝑢

−
𝑚
∑

𝑗=1
𝐵𝑗

(𝑚+1
∑

𝑖=1

𝐶𝑖
𝑅𝛾,𝑗 + 𝑟𝑖

+ 𝐷
𝜌𝛾
1−𝜃 + 𝑅𝛾,𝑗

)

𝑒−𝑅𝛾,𝑗𝑢.

(A.18)

Recall from (3.8) that (3.13) is equal to the sum of (A.16)-(A.18). We 
start by equating the coefficients of 𝑒𝑟𝑖𝑢 (for 𝑖 = 1,… , 𝑚 + 1). But this 
does not provide us with useful information because each 𝑟𝑖 satisfies
(A.15). Now, we equate the coefficients of 𝑒

𝜌𝛾
1−𝜃 𝑢 to arrive at

𝐷 = 𝐴

(

𝑤
𝜌𝛾

𝑒−
𝜌𝛾
1−𝜃 𝑏 +

𝑚
∑

𝑖=1

𝐸𝑖
𝜌𝛾 − (1 − 𝜃)𝑠𝑖

𝑒−
( 𝜌𝛾
1−𝜃 −𝑠𝑖

)

𝑏
)

−
(1 − 𝜃)𝐴

𝜌2𝛾
𝑒−

𝜌𝛾
1−𝜃 𝑏

−

(

𝑤 +
𝑚
∑

𝑖=1
𝐸𝑖𝑒

𝑠𝑖𝑏

)

𝐴
𝜌𝛾

𝑒−
𝜌𝛾
1−𝜃 𝑏 − 𝐴𝐷 1 − 𝜃

𝜌𝛾𝜃
+𝐷

𝑚
∑

𝑗=1

𝐵𝑗
𝜌𝛾
1−𝜃 + 𝑅𝛾,𝑗

,

where simplifications lead to (3.17). Similarly, equating the coefficients 
of 𝑒𝜌𝛾 𝑢 gives

0 = 𝐴
𝜌2𝛾

𝑒−𝜌𝛾 𝑏 +

(𝑚+1
∑

𝑖=1
𝐶𝑖𝑒

𝑟𝑖𝑏 +𝐷𝑒
𝜌𝛾
1−𝜃 𝑏

)

𝐴
𝜌𝛾

𝑒−𝜌𝛾 𝑏 − 𝐴
𝑚+1
∑

𝑖=1

𝐶𝑖
𝜌𝛾 − 𝑟𝑖

𝑒−(𝜌𝛾−𝑟𝑖)𝑏

+ 𝐴𝐷 1 − 𝜃
𝜌𝛾𝜃

𝑒
𝜌𝛾 𝜃
1−𝜃 𝑏,

which simplifies to (3.18). Finally, the coefficients of 𝑒−𝑅𝛾,𝑗𝑢 imply
(3.19).

Next, we look at (3.9) and note that we shall first decompose the 
second integral as

∫

𝑢

0
𝑉 (𝑢 − 𝑥; 𝑏)𝑔𝛿,+(𝑥)d𝑥

= ∫

𝑢−𝑏

0
𝑉2(𝑢 − 𝑥)𝑔𝛿,+(𝑥)d𝑥 + ∫

𝑢

𝑢−𝑏
𝑉1(𝑢 − 𝑥)𝑔𝛿,+(𝑥)d𝑥,

so as to substitute the solution forms (3.13) and (3.14). Omitting the 
details, (3.9) becomes

𝑤 +
𝑚
∑

𝑖=1
𝐸𝑖𝑒

𝑠𝑖𝑢 = 𝜃𝐴
𝜌2𝛾

+𝑤

(

𝐴
𝜌𝛾

+
𝑚
∑

𝑗=1

𝐵𝑗

𝑅𝛾,𝑗

)

+
𝑚
∑

𝑖=1
𝐸𝑖

(

𝐴
𝜌𝛾 − (1 − 𝜃)𝑠𝑖

+
𝑚
∑

𝑗=1

𝐵𝑗

𝑅𝛾,𝑗 + 𝑠𝑖

)

𝑒𝑠𝑖𝑢

+
𝑚
∑

𝑗=1
𝐵𝑗

(𝑚+1
∑

𝑖=1

𝐶𝑖
𝑅𝛾,𝑗 + 𝑟𝑖

(𝑒(𝑅𝛾,𝑗+𝑟𝑖)𝑏 − 1)

+ 𝐷
𝜌𝛾
1−𝜃 + 𝑅𝛾,𝑗

(

𝑒
( 𝜌𝛾
1−𝜃 +𝑅𝛾,𝑗

)

𝑏 − 1
)

− 𝑤
𝑅𝛾,𝑗

𝑒𝑅𝛾,𝑗𝑏 −
𝑚
∑

𝑖=1

𝐸𝑖
𝑅𝛾,𝑗 + 𝑠𝑖

𝑒(𝑅𝛾,𝑗+𝑠𝑖)𝑏

)

𝑒−𝑅𝛾,𝑗𝑢.

Equating the constant term on both sides does not yield any informa-
tion because of the first equality in (3.15). Equating the coefficients of 
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𝑒𝑠𝑖𝑢 (for 𝑖 = 1,… , 𝑚) does not reveal additional information either be-
cause each 𝑠𝑖 satisfies (3.16). Finally, with the help of (3.19), one ob-
tains (3.20) from the coefficients of 𝑒−𝑅𝛾,𝑗𝑢. 
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