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ARTICLE INFO ABSTRACT

JEL classification: In this paper, we consider the compound Poisson insurance risk model and analyze the optimal dividend strategy
G22 (that maximizes the expected present value of dividend payments until ruin) when dividends can only be paid

61 periodically as lump sums. If one makes the usual assumption that dividends can be paid from the available
Cad surplus, then the optimal strategies are often of band or barrier type, resulting in a ruin probability of one
Keywords: (e.g. Albrecher et al. (2011a)). As opposed to such an assumption, we propose that dividends can only be paid

from a certain fraction of the gains (i.e. positive increment of the process between successive dividend decision
times), and such a constraint allows the surplus process to have a positive survival probability. Some theoretical
properties of the value function and the optimal strategy are derived in connection to the Bellman equation.
These properties suggest that a bang-bang type of control can be a candidate for the optimal strategy, where
dividend is paid at the highest possible amount as long as the surplus is high enough. The dividend function
under the candidate strategy is subsequently derived under exponential inter-observation times and claims with
a rational Laplace transform, and we also provide specific numerical examples with (mixed) exponential claims

Periodic observation
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where the proposed strategy is optimal in such cases.

1. Introduction

Dividend payout strategies are a crucial component of insurance
risk management, balancing the competing interests of policyholders
and shareholders. While existing models often implicitly assume con-
tinuous dividend decisions due to their theoretical tractability under a
continuous-time stochastic process, insurers operate under periodic de-
cision schedules in the real world. Unlike previous models where divi-
dends can be paid from the entire surplus, in this paper we introduce a
novel constraint: dividends can only be paid from a fraction of the gains.
This allows for a positive survival probability and aligns better with real-
world insurance practices; otherwise, unrestricted dividend payments
could lead to premature ruin.

To begin, we define the classical compound Poisson risk model
{S;},50, which describes the surplus evolution of an insurance company
over time via

N[
S,=u+ct=Y X, 120, .1
i=1
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where u > 0 is the initial surplus, and ¢ > 0 is the premium rate per unit
time. In addition, the claim number process {N, },5 is a Poisson process
with intensity 4 > 0, and the claim amounts {X;}?, form a sequence of
independent and identically distributed (i.i.d.) random variables with
common density p and Laplace transform p. It is further assumed that
{N;}i»0 and {X;}??, are mutually independent. The positive security
loading condition of the model is given by ¢ > AE[X] with X being a
generic claim amount. For later use, we will denote the set of real num-
bers by R, the set of non-negative real numbers by R*, the set of negative
real numbers by R™, the set of non-negative integers by N, and the set
of positive integers by N.

The risk process (1.1) is often the baseline model where various mod-
ifications are considered by different researchers. In particular, the im-
portance of dividend payout in insurance risk models was discussed by
de Finetti (1957). See also Albrecher and Thonhauser (2009) and Avanzi
(2009) for comprehensive reviews. The expected discounted dividends
payable to the shareholders can indeed be regarded as the value of firm
in corporate finance, and this present value can be a quantity that the
company tries to maximize. In such an optimization problem, there is
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$\{S_t\}_{t\geq 0}$


\begin {equation}\label {model_poisson} S_t=u+ct-\sum _{i=1}^{N_t}X_i,\qquad t\geq 0,\end {equation}
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$Y_n$
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$\theta $


\begin {equation*}E=\{(u,y): u\in \mathbb {R}^+\text {~and~}y \in \mathbb {R}^{-}\}\cup \{(u,y): u\ge y\text {~and~}y \in \mathbb {R}^{+}\},\end {equation*}
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$\{(u,y): u\in \mathbb {R}^+\text {~and~}y \in \mathbb {R}^{-}\}$
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$[0,\theta y^+]$
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$\theta \in (0,1)$


$\{U_n\}_{n=0}^\infty $


$\{Z_n\}_{n=0}^\infty $


\begin {equation}\label {UnDef} U_n=U_{n-1} - {}_{n-1}{f}(U_{n-1}, Y_{n-1}) + Y_n, \qquad n\in \mathbb {N},\end {equation}


$(U_0,Y_0)$
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$U_n=u\ge y$


$\theta y$


$u-\theta y$


$\pi =({}_{0}{f},{}_{1}{f},\ldots )$


\begin {equation}\label {VuyPiDef} V(u,y;\pi )= \mathbb {E}_{u,y}\left [\sum _{n=0}^{\tau -1}e^{-\delta Z_n }{}_{n}{f}(U_n,Y_n)\right ], \qquad (u,y)\in E,\end {equation}
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$V(u,y;\pi )$


$\pi $


\begin {equation*}V(u,y)=\sup _{\pi } V(u,y;\pi ), \qquad (u,y)\in E.\end {equation*}
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$\theta $
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$\theta $
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$\{\widetilde {U}_n\}_{n=0}^\infty $


\begin {equation*}\widetilde {U}_n = U_n-{}_{n}{f}(U_n, Y_n) = \widetilde {U}_{n-1}+Y_n-{}_{n}{f}(U_n, Y_n), \qquad n\in \mathbb {N},\end {equation*}
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\begin {equation}\label {PSLC} \mathbb {E}[Y] - \theta \mathbb {E}[Y^+]>0.\end {equation}


$\{\widetilde {U}^{\text {max}}_n\}_{n=0}^\infty $
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$\theta Y^+$


$\mathbb {R}^+$


$\theta $
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$u$


\begin {equation}\label {optimalstrategy1} f_b(u,y)=\left \{ \begin {array}{ll} 0,&\qquad 0\le u\le b,\\ \min (u-b,\theta y),&\qquad b<u\le b+y,\\ \theta y,&\qquad u>b+y,\\ \end {array} \right .\end {equation}


$\square $


$v$


$E \to \mathbb {R}^+$


$(u,y)$


$a\in [0, \theta y^+]$


\begin {equation*}\int _0^\infty \int _{a-u}^\infty e^{-\delta t} v(u-a+x,x)Q(\mathrm {d}x, \mathrm {d}t),\end {equation*}
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$\mathbb {M}=\{v: E \to \mathbb {R}^+ \text {~measurable}\}$


\begin {equation}\label {operatorDef} \mathcal {T}_\circ v(u, y)=\sup _{a\in [0, \theta y^+]}\int _0^\infty \int _{a-u}^\infty e^{-\delta t} v(u-a+x,x)Q(\mathrm {d}x, \mathrm {d}t), \qquad (u,y)\in E.\end {equation}


$\mathcal {T}_\circ $


$V(u,y)$


\begin {equation}\label {VuyBounds} \theta y^++\theta \frac {\mathbb {E}[e^{-\delta T}Y^+]}{1-\mathbb {E}[e^{-\delta T} 1_{\{Y \geq 0\}}]}\leq V(u,y)\leq \theta y^++\theta \frac {\mathbb {E}[e^{-\delta T}Y^+]}{1-\mathbb {E}[e^{-\delta T}]}, \qquad (u,y)\in E.\end {equation}
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\begin {align}\label {BoundingFn} \beta (u,y)=H_1+H_2y^+, \qquad (u,y)\in E.\end {align}
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\begin {align}\label {operatorBound} \lim _{n\rightarrow \infty }\mathcal {T}_\circ ^n \beta =0.\end {align}


\begin {equation}\label {VBoundingFn} V \le C \beta ,\end {equation}
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\begin {align}\label {operatorBoundstep} \int _0^\infty \int _{a-u}^\infty e^{-\delta t} \beta (u-a+x,x)Q(\mathrm {d}x, \mathrm {d}t) &= \int _0^\infty \int _{a-u}^\infty e^{-\delta t} (H_1+H_2x^+)Q(\mathrm {d}x, \mathrm {d}t)\nonumber \\ & \le \int _0^\infty \int _{-\infty }^\infty e^{-\delta t} (H_1+H_2x^+)Q(\mathrm {d}x, \mathrm {d}t)\nonumber \\ &=H_1\mathbb {E}[e^{-\delta T}] + H_2\mathbb {E}[e^{-\delta T}Y^+],\end {align}


\begin {equation}\label {operatorTcircleBound} \mathcal {T}_\circ \beta (u, y) \le H_1\mathbb {E}[e^{-\delta T}] + H_2\mathbb {E}[e^{-\delta T}Y^+].\end {equation}
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\begin {align*}V(u,y)&\leq \theta y^++\theta \mathbb {E}\left [\sum _{n=1}^\infty e^{-\delta Z_n}Y_n^+\right ] \notag \\ &= \theta y^++\theta \sum _{n=1}^\infty \mathbb {E} \left [\left (\prod _{k=1}^{n-1}e^{-\delta T_k}\right ) \left (e^{-\delta T_n}Y_n^+\right )\right ].\end {align*}
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$\{U_n\}_{n=1}^\infty $


$U_n=U_{n-1}-\theta Y_{n-1}^++Y_n$


$n\in \mathbb {N}$


$Y_1,\ldots ,Y_n$


$U_1,\ldots ,U_n$


$1_{\{U_1,\ldots ,U_n \geq 0\}}$


$1_{\{Y_1,\ldots ,Y_n \geq 0\}}$
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\begin {align}\label {BellEq} &V(u, y)=\sup _{a\in [0, \theta y^+]}\left \{a+\int _0^\infty \int _{a-u}^\infty e^{-\delta t} V(u-a+x,x)Q(\mathrm {d}x, \mathrm {d}t)\right \},\notag \\ &\quad (u,y)\in E,\end {align}
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\begin {equation*}V(u_2, y_2)-V(u_1, y_1)\geq \theta ( y_2-y_1),\qquad y_2\geq y_1\geq 0; u_2\geq u_1+\theta (y_2-y_1).\end {equation*}
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\begin {align}\label {V1-IE} \widetilde {V}_1(u)=& \int _{\frac {b-u}{1-\theta }}^ \infty \left [\theta x + \widetilde {V}_2(u+(1-\theta )x)\right ]g_{\delta ,-}(x)\mathrm {d}x \nonumber \\ &+\int _{b-u}^{\frac {b-u}{1-\theta }} \left [(u+x-b)+ \widetilde {V}(b;b)\right ]g_{\delta ,-}(x)\mathrm {d}x \nonumber \\ &+\int _0^{b-u}\widetilde {V}_1(u+x)g_{\delta ,-}(x)\mathrm {d}x +\int _0^u\widetilde {V}_1(u-x)g_{\delta ,+}(x)\mathrm {d}x,\end {align}
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\begin {equation}\label {g+} g_{\delta ,+}(x)=\sum _{j=1}^mB_j e^{-R_{\gamma ,j}x},\qquad x\ge 0,\end {equation}


\begin {equation*}B_j = \frac {\gamma }{c} \frac {L_{1,m}(-R_{\gamma ,j})}{(\rho _\gamma +R_{\gamma ,j})\prod _{\ell =1,\ell \ne j}^{m}(R_{\gamma ,\ell }-R_{\gamma ,j})}, \qquad j=1,\ldots ,m.\end {equation*}


$1/\gamma $


$m$


$\widetilde {V}(u;b)$


\begin {equation}\label {V1SolForm} \widetilde {V}_1(u)=\sum _{i=1}^{m+1}C_i e^{r_iu} + De^{\frac {\rho _\gamma }{1-\theta }u},\qquad 0\le u\le b,\end {equation}


\begin {equation}\label {V2SolForm} \widetilde {V}_2(u) = w + \sum _{i=1}^m E_i e^{s_iu},\qquad u\ge b.\end {equation}


$\{r_i\}_{i=1}^{m+1}$


$m+1$


$\gamma =0$


$w$


\begin {equation}\label {wDef} w = \frac {\theta A/\rho _\gamma ^2}{1-A/\rho _\gamma - \sum _{j=1}^m B_j/R_{\gamma ,j}} = \frac {\theta A}{\rho _\gamma ^2} \frac {\gamma +\delta }{\delta },\end {equation}


$\{s_i\}_{i=1}^m$


$s$


\begin {equation}\label {LundEq3} 1=\frac {A}{\rho _\gamma -(1-\theta )s} +\sum _{j=1}^m \frac {B_j}{s+R_{\gamma ,j}},\end {equation}


$m$


$\{C_i\}_{i=1}^{m+1}$


$D$


$\{E_i\}_{i=1}^m$


$2m+2$


\begin {align}\label {LinearEq1} D& \left (\sum _{j=1}^m \frac {B_j}{\frac {\rho _\gamma }{1-\theta }+R_{\gamma ,j}} - \frac {(1-\theta )A}{\rho _\gamma \theta } -1\right )e^{\frac {\rho _\gamma }{1-\theta }b} \notag \\ &\quad + \sum _{i=1}^m E_i \left (\frac {1}{\rho _\gamma -(1-\theta )s_i} - \frac {1}{\rho _\gamma }\right ) Ae^{s_ib} = \frac {(1-\theta )A}{\rho _\gamma ^2},\end {align}


\begin {equation}\label {LinearEq2} \sum _{i=1}^{m+1} \frac {C_ir_i}{\rho _\gamma -r_i} e^{r_ib} - \frac {D}{\theta } e^{\frac {\rho _\gamma }{1-\theta }b} = \frac {1}{\rho _\gamma },\end {equation}


\begin {equation}\label {LinearEq3} \sum _{i=1}^{m+1} \frac {C_i}{R_{\gamma ,j}+r_i} +\frac {D}{\frac {\rho _\gamma }{1-\theta }+R_{\gamma ,j}} =0,\qquad j=1,\ldots ,m,\end {equation}


\begin {align}\label {LinearEq4} &\sum _{i=1}^{m+1} \frac {C_i}{R_{\gamma ,j}+r_i} e^{r_ib} + \frac {D}{\frac {\rho _\gamma }{1-\theta }+R_{\gamma ,j}} e^{\frac {\rho _\gamma }{1-\theta }b} - \sum _{i=1}^m \frac {E_i}{R_{\gamma ,j}+s_i} e^{s_ib} = \frac {w}{R_{\gamma ,j}},\notag \\ &\qquad j=1,\ldots ,m.\end {align}


$\{C_i\}_{i=1}^{m+1}$


$D$


$\{E_i\}_{i=1}^m$


$b$


$\rho _\gamma $


$\{-R_{\gamma ,j}\}_{j=1}^m$


$\{r_i\}_{i=1}^{m+1}$


$\{s_i\}_{i=1}^{m+1}$


$b$


$b^*$


$\widetilde {V}(u;b)$


$b$


$\square $


\begin {equation}\label {EY+} \mathbb {E}[Y^+] = \int _0^\infty xg_{0,-}(x)\mathrm {d}x = \frac {A}{\rho _\gamma ^{2}}\bigg |_{\delta =0}\end {equation}


\begin {equation}\label {EY} \mathbb {E}[Y] = \frac {c-\lambda \mathbb {E}[X]}{\gamma }.\end {equation}


\begin {equation}\label {PSLCEx} \frac {c-\lambda \mathbb {E}[X]}{\gamma }-\theta \frac {A}{\rho _\gamma ^{2}}\bigg |_{\delta =0}>0,\end {equation}


$n=1$


$\square $


$\widetilde {V}(u;b)$


$g_{\delta ,-}$


$g_{\delta ,+}$


$L_{1,m}$


$m$


$g_{\delta ,-}$


$g_{\delta ,+}$


$\widetilde {V}_1$


$\widetilde {V}_2$


$\square $


$\lambda =1$


$c=1.5$


$\delta =0.01$


$\theta $


$\theta $


$\gamma $


$\gamma $


$\infty $


$\theta $


$\gamma =1$


$\theta =0.2$


$\widetilde {V}(u;b)$


$b$


$u$


$b^*=3.17$


$u$


$V(u,y;b^*)$


$f_{b^*}$


$b^*$


$f_{b^*}(u,y)$


$y=2$


$a+\widetilde {V}(u-a;b^*)-V(u,2;b^*)$


$(u,a)$


$u\ge y=2$


$a\in [0,\theta y^+]=[0,0.4]$


$a+\widetilde {V}(u-a;b^*)-V(u,2;b^*)$


$a+\widetilde {V}(u-a;b^*)-V(u,2;b^*)$


$a\in [0,0.4]$


$a+\widetilde {V}(u-a;b^*)$


$u$


$f^*(u,2)$


$u$


$f_{b^*}(u,2)$


$y$


$f_{b^*}^\infty $


$f_{b^*}$


$f^*(u,y)=f_{b^*}(u,y)$


$b=b^*$


$V(u,y)$


\begin {equation}\label {Vdecompose} V(u,y) = f_{b^*}(u,y) + \widetilde {V}(u-f_{b^*}(u,y);b^*).\end {equation}


$V(u,y)$


$u$


$y$


$V(u,y)$


$(u,y)$


$0\le y \le u$


$V(u,y)$


$u$


$y$


$\gamma $


$\theta $


$b^*$


$(\gamma ,\theta )=(1,0.2)$


$(\gamma ,\theta )$


$b^*$


$u$


$b^*$


$\gamma $


$\theta $


$b^*$


$b^*$


$\gamma $


$\theta $


$\gamma $


$\gamma $


$b^*$


$\gamma $


$b^*$


$b^*$


$\theta $


$\gamma $


$\theta $


$b^*$


$\theta $


$b^*=0$


$\gamma $


$\theta $


$\widetilde {V}(u;b^*)$


$u$


$\widetilde {V}(u;b^*)$


$u$


$(\gamma ,\theta )$


$\widetilde {V}(u;b^*)$


$V(u,y) = \widetilde {V}(u;b^*)$


$f_{b^*}(u,y)=0$


$Y_0$


$y\le 0$


$U_0$


$u\le b^*$


$\widetilde {V}(u;b^*)$


$u$


$\gamma =1$


$\widetilde {V}(u;b^*)$


$\theta $


$\theta $


$\theta $


$\widetilde {V}(u;b^*)$


$\theta =0.2$


$\widetilde {V}(u;b^*)$


$\gamma $


$b^*$


$\frac {\mathrm {d}}{\mathrm {d}u}\widetilde {V}(u;b^*)$


$u$


$\frac {\mathrm {d}}{\mathrm {d}u}\widetilde {V}(u;b^*)$


$u$


$(\gamma ,\theta )$


$\widetilde {V}(u;b^*)$


$u$


$u$


$(\gamma ,\theta )=(1,0.2)$


\begin {equation}\label {EfficientCompany} \frac {\mathrm {d}}{\mathrm {d}u}\widetilde {V}(u;b^*)\bigg |_{u=b^*}=1\end {equation}


$b^*=3.17$


\begin {equation}\label {EfficientCompany2} \frac {\mathrm {d}}{\mathrm {d}u}\widetilde {V}(u;b^*)>1\text {~~for~~} 0\le u< b^*\text {~~and~~} \frac {\mathrm {d}}{\mathrm {d}u}\widetilde {V}(u;b^*)<1\text {~~for~~} u> b^*.\end {equation}


$(\gamma ,\theta )$


$(\gamma ,\theta )=(1,0.1)$


$b^*=0.86$


$b^*>0$


$b^*$


$x$


$\frac {\mathrm {d}}{\mathrm {d}x}\widetilde {V}(x;b^*)>1$


$x$


$\frac {\mathrm {d}}{\mathrm {d}x}\widetilde {V}(x;b^*)<1$


$1/3$


$2/3$


$p(x)=2\big (\frac {3}{2}e^{-\frac {3}{2}x}\big )+(-1)(3e^{-3x})$


\begin {equation}\label {pdfMixExp} p(x)=\frac {1}{3} \left (\frac {1}{2}e^{-\frac {1}{2}x}\right )+\frac {2}{3}(2e^{-2x}).\end {equation}


$\widetilde {V}(u;b)$


$b$


$b^*$


$u$


$b^*$


$f_{b^*}$


$V(u,y;b^*)$


$V(u,y)=V(u,y;b^*)$


$V(u,y)$


$V(u,y)=V(u,y;b^*)$


$u$


$y$


$b^*$


$\gamma $


$\theta $


$\widetilde {V}(u;b^*)$


$\gamma $


$\theta $


$b^*>0$


$\widetilde {V}(u;b^*)$


$\widetilde {V}(u;b^*)$


$\theta =0.2$


$\widetilde {V}(u;b^*)$


$u$


$\gamma =0.5$


$\widetilde {V}(u;b^*)$


$u$


$\theta =0.2$


$\gamma =5$


$\widetilde {V}(u;b^*)$


$u$


$\widetilde {V}(u;b^*)$


$\mathbb {E}[Y^+]$


$\mathbb {E}[Y^+]$


$\mathbb {E}[Y^-]$


$\theta =0.2$


$\gamma =0.5$


$\gamma =5$


$\mathbb {E}[Y^-]$


$Y^-=\max (-Y,0)=Y^+-Y$


\begin {equation*}\mathbb {E}[Y^-] = \frac {A}{\rho _\gamma ^{2}}\bigg |_{\delta =0} - \frac {c-\lambda \mathbb {E}[X]}{\gamma }\end {equation*}


$\mathbb {E}[Y^+]$


$\mathbb {E}[Y^-]$


$\mathbb {E}[Y^-]$


$\mathbb {E}[Y^+]$


$u$


$\mathbb {E}[Y^+]$


$\mathbb {E}[Y^-]$


$\widetilde {V}(u;b^*)$


$u$


$u$


$\widetilde {V}(u;b^*)$


$\gamma $


$u$


$\widetilde {V}(u;b^*)$


$\gamma =0.5$


$u=7$


$\gamma =5$


$u=20$


$\gamma $


$u$


$\widetilde {V}(u;b^*)$


$X$


$\mathbb {E}[(X-\mathbb {E}[X])^3]/(\operatorname {Var}(X))^{3/2}$


$p(x)=\frac {3}{5} (0.6340e^{-0.6340x})+\frac {2}{5}(7.4641e^{-7.4641x})$


$p(x)=\frac {1}{10} (0.3204e^{-0.3204x})+\frac {9}{10}(1.3084e^{-1.3084x})$


$\theta =0.2$


$\widetilde {V}(u;b^*)$


$u$


$\gamma =0.5$


$\widetilde {V}(u;b^*)$


$u$


$\theta =0.2$


$\gamma =5$


$u$


$\widetilde {V}(u;b^*)$


$u$


$\widetilde {V}(u;b^*)$


$\mathbb {E}[Y^+]$


$\mathbb {E}[Y^-]$


$\mathbb {E}[Y^+]$


$\mathbb {E}[Y^-]$


$\theta =0.2$


$\mathbb {E}[Y^+]$


$\mathbb {E}[Y^-]$


$\theta $


$\theta <\mathbb {E}[Y] /\mathbb {E}[Y^+]$


$u$


$y$


$u$


$m=1$


$C_1$


$C_2$


$D$


$E_1$


$b$


$b^*$


$V$


$\mathcal {T}$


$\mathcal {T}$


$b$


$\theta $


$\pi ^*=(f^*,f^*,\ldots )$


$f^*$


$V$


$(u,y)\in E$


\begin {equation*}\mathcal {T}_\circ \beta (u,y) \le \left (\mathbb {E}[e^{-\delta T}] + \frac {H_2}{H_1}\mathbb {E}[e^{-\delta T}Y^+]\right ) (H_1+H_2y^+).\end {equation*}


$H_1$


$H_2$


\begin {equation}\label {Tcirclebound} \mathcal {T}_\circ \beta (u,y) \le \alpha \beta (u,y),\end {equation}


\begin {equation*}\alpha = \mathbb {E}[e^{-\delta T}] + \frac {H_2}{H_1}\mathbb {E}[e^{-\delta T}Y^+]\end {equation*}


$\alpha \in (0,1)$


$\mathbb {E}[e^{-\delta T}]<1$


$\mathbb {E}[e^{-\delta T}Y^+]>0$


$H_1$


$H_2$


\begin {equation}\label {supnormDef} ||v||_\beta = \sup _{(u,y)\in E} \frac {|v(u,y)|}{\beta (u,y)}, \qquad v\in \mathbb {M}_\beta ^\star ,\end {equation}


$(\mathbb {M}_\beta ^\star ,||\cdot ||_\beta )$


$\mathcal {T}_f$


$\mathcal {T}$


$\mathbb {M}_\beta $


$\mathbb {M}_\beta ^\star $


$v,w\in \mathbb {M}_\beta ^\star $


$f$


$f(u,y)\in [0,\theta y^+]$


$(u,y)\in E$


\begin {equation*}\sup _f \mathcal {T}_fv - \sup _f \mathcal {T}_fw \le \sup _f (\mathcal {T}_fv - \mathcal {T}_fw).\end {equation*}


$(u,y)\in E$


\begin {align*}&\mathcal {T}v(u, y) - \mathcal {T}w(u, y)\notag \\ & \leq \sup _{a\in [0, \theta y^+]} \int _0^\infty \int _{a-u}^\infty e^{-\delta t} \{v(u-a+x,x) - w(u-a+x,x)\}Q(\mathrm {d}x, \mathrm {d}t) \notag \\ & \le ||v-w||_\beta \sup _{a\in [0, \theta y^+]} \int _0^\infty \int _{a-u}^\infty e^{-\delta t} \beta (u-a+x,x) Q(\mathrm {d}x, \mathrm {d}t),\end {align*}


$\mathcal {T}_\circ \beta (u, y)$


\begin {equation*}\mathcal {T}v(u, y) - \mathcal {T}w(u, y) \le \alpha ||v-w||_\beta \,\beta (u,y).\end {equation*}


$v$


$w$


\begin {equation*}\mathcal {T}w(u, y) - \mathcal {T}v(u, y) \le \alpha ||v-w||_\beta \,\beta (u,y).\end {equation*}


$\mathcal {T}v - \mathcal {T}w$


\begin {equation*}||\mathcal {T}v - \mathcal {T}w||_\beta \le \alpha ||v-w||_\beta .\end {equation*}


$\alpha \in (0,1)$


$\mathcal {T}$


$(\mathbb {M}_\beta ^\star ,||\cdot ||_\beta )$


$y\in \mathbb {R}$


$u_2\ge u_1$


$(u_1,y)\in E$


$(u_2,y)\in E$


$(u_2,y)$


$(u_1,y)$


$V(u_1,y)$


$(u_1,y)$


$u_2-u_1$


$(u_2,y)$


$V(u_2,y)\ge V(u_1,y)$


$u\in \mathbb {R}^+$


$y_2\ge y_1$


$(u,y_1)\in E$


$(u,y_2)\in E$


$(u,y_2)$


$[0,\theta y_2^+]$


$[0,\theta y_1^+]$


$(u,y_1)$


$V(u,y_2)\ge V(u,y_1)$


$G$


$u_2\ge u_1\ge 0$


\begin {align*}G(u_2)&=\int _0^\infty \int _{-u_2}^\infty e^{-\delta t} V(u_2+x, x)Q(\mathrm {d}x, \mathrm {d}t)\\ &\ge \int _0^\infty \int _{-u_1}^\infty e^{-\delta t} V(u_2+x, x)Q(\mathrm {d}x, \mathrm {d}t)\\ &\ge \int _0^\infty \int _{-u_1}^\infty e^{-\delta t} V(u_1+x, x)Q(\mathrm {d}x, \mathrm {d}t)\\ &=G(u_1),\end {align*}


$V$


$V(u,y)=V(u,0)$


$u\in \mathbb {R}^+$


$y\in \mathbb {R}^-$


$V(u_1,y_1)$


$V(u_2,y_2)$


$y_2\ge y_1\ge 0$


$u_2\ge u_1+\theta (y_2-y_1)$


\begin {align}V(u_2,y_2) &= \sup _{a\in [0,\theta y_2]} \{a+G(u_2-a)\}\nonumber \\ &\ge \sup _{\overline {a}\in [0,\theta y_1]} \{\theta (y_2-y_1)+\overline {a}+G(u_2-\theta (y_2-y_1)-\overline {a})\} \label {Inequality1}\\ &\ge \sup _{\overline {a}\in [0,\theta y_1]} \{\theta (y_2-y_1)+\overline {a}+G(u_1-\overline {a})\} \label {Inequality2}\\ &= \theta (y_2-y_1) + \sup _{\overline {a}\in [0,\theta y_1]} \{\overline {a}+G(u_1-\overline {a})\}\nonumber \\ &= \theta (y_2-y_1) + V(u_1,y_1).\nonumber \end {align}


$\overline {a}\in [0,\theta y_1]$


$\theta (y_2-y_1)+\overline {a}\in [\theta (y_2-y_1),\theta y_2]\subset [0,\theta y_2]$


$\theta (y_2-y_1)+\overline {a}$


$(u_2,y_2)$


$a\in [0,\theta y_2]$


$u_2-\theta (y_2-y_1)\ge u_1$


$G$


$u\in \mathbb {R}^+$


$y\in \mathbb {R}^-$


$f$


$f(u,y)=0$


$u\ge y\ge 0$


$(u-f^*(u,y), y-(1/\theta )f^*(u, y))$


$E$


$a=0$


\begin {equation}\label {fstarProofStep} V\left (u-f^*(u,y), y-\frac {1}{\theta }f^*(u, y)\right )\geq G(u-f^*(u, y)).\end {equation}


$V(u, y)-f^*(u, y)$


\begin {equation*}V\left (u-f^*(u,y), y-\frac {1}{\theta }f^*(u, y)\right )\geq V(u, y)-f^*(u, y).\end {equation*}


$(u_1,y_1)=(u-f^*(u,y), y-(1/\theta )f^*(u, y))$


$(u_2,y_2)=(u,y)$


\begin {equation*}V(u, y)-V\left (u-f^*(u,y), y-\frac {1}{\theta }f^*(u, y)\right )\geq f^*(u, y).\end {equation*}


\begin {equation*}V\left (u-f^*(u,y), y-\frac {1}{\theta }f^*(u, y)\right )=G(u-f^*(u, y)).\end {equation*}


$(u-f^*(u,y), y-(1/\theta )f^*(u, y))$


$a=0$


$f^*$


$V$


$f^*$


$V$


$f^*$


$f^*(u-f^*(u,y), y-(1/\theta )f^*(u,y))>0$


$(u-f^*(u,y), y-(1/\theta )f^*(u, y))$


\begin {align}\label {theorem2proofstep} &V\left (u-f^*(u,y), y-\frac {1}{\theta }f^*(u, y)\right )\nonumber \\ &= f^*\left (u-f^*(u,y), y-\frac {1}{\theta }f^*(u, y)\right ) \notag \\ & \quad + G\left (u-f^*(u,y) - f^* \left (u-f^*(u,y), y-\frac {1}{\theta }f^*(u, y)\right )\right ).\end {align}


$(u,y)$


$f^*(u,y)+f^*(u-f^*(u,y), y-(1/\theta )f^*(u,y))$


$f^*(u-f^*(u,y), y-(1/\theta )f^*(u,y)) \le \theta y - f^*(u,y)$


$f^*(u,y)+f^*(u-f^*(u,y), y-(1/\theta )f^*(u,y)) \le \theta y$


\begin {align*}&f^*(u, y) +f^*\left (u-f^*(u,y), y-\frac {1}{\theta }f^*(u, y)\right ) \notag \\ & \quad + G\left (u-f^*(u,y) - f^* \left (u-f^*(u,y), y-\frac {1}{\theta }f^*(u, y)\right )\right ) \nonumber \\ &=f^*(u, y)+V\left (u-f^*(u,y), y-\frac {1}{\theta }f^*(u, y)\right )\\ &=V(u, y),\end {align*}


$f^*(u,y)+f^*(u-f^*(u,y), y-(1/\theta )f^*(u,y))$


$V(u,y)$


$f^*(u-f^*(u,y), y-(1/\theta )f^*(u,y))>0$


$f^*(u,y)+f^*(u-f^*(u,y), y-(1/\theta )f^*(u,y))>f^*(u, y)$


$f^*(u,y)$


$V(u,y)$


$f^*(u-f^*(u,y), y-(1/\theta )f^*(u,y))$


$f^*$


\begin {align}\label {V1-IEintegral1plus2} &\int _{\frac {b-u}{1-\theta }}^ \infty \left [\theta x + \widetilde {V}_2(u+(1-\theta )x)\right ]g_{\delta ,-}(x)\mathrm {d}x \notag \\ & \quad +\int _{b-u}^{\frac {b-u}{1-\theta }} \left [(u+x-b)+ \widetilde {V}(b;b)\right ] g_{\delta ,-}(x)\mathrm {d}x \nonumber \\ =&~\frac {A}{1-\theta } \left (\int _b^\infty \widetilde {V}_2(x) e^{-\frac {\rho _\gamma }{1-\theta }x}\mathrm {d}x\right )e^{\frac {\rho _\gamma }{1-\theta }u} + \frac {A}{\rho _\gamma ^2} e^{-\rho _\gamma b} e^{\rho _\gamma u} - \frac {(1-\theta )A}{\rho _\gamma ^2} e^{-\frac {\rho _\gamma }{1-\theta }b} e^{\frac {\rho _\gamma }{1-\theta }u}\nonumber \\ &+ \widetilde {V}(b;b) \frac {A}{\rho _\gamma } e^{-\rho _\gamma b} e^{\rho _\gamma u} - \widetilde {V}(b;b) \frac {A}{\rho _\gamma } e^{-\frac {\rho _\gamma }{1-\theta }b} e^{\frac {\rho _\gamma }{1-\theta }u} ,\end {align}


$u$


\begin {align}\label {V1-IEintegral1plus2Operator} &\left (\frac {\mathrm {d}}{\mathrm {d}u}-\rho _\gamma \right ) \left (\frac {\mathrm {d}}{\mathrm {d}u}-\frac {\rho _\gamma }{1-\theta }\right ) \left (\int _{\frac {b-u}{1-\theta }}^ \infty \left [\theta x + \widetilde {V}_2(u+(1-\theta )x)\right ]g_{\delta ,-}(x)\mathrm {d}x \right . \notag \\ & \quad \left . + \int _{b-u}^{\frac {b-u}{1-\theta }} \left [(u+x-b)+ \widetilde {V}_1(b)\right ]g_{\delta ,-}(x)\mathrm {d}x \right )\nonumber \\ &=0.\end {align}


\begin {equation}\label {V1-IEintegral3Operator} \left (\frac {\mathrm {d}}{\mathrm {d}u}-\rho _{\gamma }\right ) \int _0^{b-u}\widetilde {V}_1(u+x)g_{\delta ,-}(x)\mathrm {d}x = -A\widetilde {V}_1(u).\end {equation}


\begin {align}\label {V1-IEintegral4Operator} &\left [\prod _{\ell =1}^m \left (\frac {\mathrm {d}}{\mathrm {d}u}+R_{\gamma ,\ell }\right )\right ] \int _0^u\widetilde {V}_1(u-x)g_{\delta ,+}(x)\mathrm {d}x \notag \\ & = \sum _{j=1}^m B_j\left [\prod _{\ell =1, \ell \ne j}^m \left (\frac {\mathrm {d}}{\mathrm {d}u}+R_{\gamma ,\ell }\right )\right ]\widetilde {V}_1(u).\end {align}


$(\mathrm {d}/\mathrm {d}u-\rho _\gamma ) (\mathrm {d}/\mathrm {d}u-\rho _\gamma /(1-\theta )) \prod _{\ell =1}^m(\mathrm {d}/\mathrm {d}u+R_{\gamma ,\ell })$


$(m+2)$


\begin {align}\label {V1-ODE} &\left (\frac {\mathrm {d}}{\mathrm {d}u}-\rho _\gamma \right ) \left (\frac {\mathrm {d}}{\mathrm {d}u}-\frac {\rho _\gamma }{1-\theta }\right ) \left [\prod _{\ell =1}^m \left (\frac {\mathrm {d}}{\mathrm {d}u}+R_{\gamma ,\ell }\right )\right ] \widetilde {V}_1(u)\nonumber \\ =& -A \left (\frac {\mathrm {d}}{\mathrm {d}u}-\frac {\rho _\gamma }{1-\theta }\right ) \left [\prod _{\ell =1}^m \left (\frac {\mathrm {d}}{\mathrm {d}u}+R_{\gamma ,\ell }\right )\right ]\widetilde {V}_1(u)\nonumber \\ &+\sum _{j=1}^m B_j \left (\frac {\mathrm {d}}{\mathrm {d}u}-\rho _\gamma \right ) \left (\frac {\mathrm {d}}{\mathrm {d}u}-\frac {\rho _\gamma }{1-\theta }\right ) \left [\prod _{\ell =1, \ell \ne j}^m \left (\frac {\mathrm {d}}{\mathrm {d}u}+R_{\gamma ,\ell }\right )\right ]\widetilde {V}_1(u).\end {align}


$s$


\begin {align*}&(s-\rho _\gamma ) \left (s-\frac {\rho _\gamma }{1-\theta }\right ) \prod _{\ell =1}^m (s+R_{\gamma ,\ell }) \notag \\ =& -A \left (s-\frac {\rho _\gamma }{1-\theta }\right ) \prod _{\ell =1}^m (s+R_{\gamma ,\ell })\nonumber \\ &+\sum _{j=1}^m B_j (s-\rho _\gamma ) \left (s-\frac {\rho _\gamma }{1-\theta }\right ) \prod _{\ell =1, \ell \ne j}^m (s+R_{\gamma ,\ell }),\end {align*}


$\rho _\gamma /(1-\theta )$


$m+1$


$\{r_i\}_{i=1}^{m+1}$


$s$


\begin {equation}\label {LundEq2} 1=\frac {A}{\rho _\gamma -s} +\sum _{j=1}^m\frac {B_j}{s+R_{\gamma ,j}}.\end {equation}


\begin {align*}\frac {A}{\rho _\gamma -s} +\sum _{j=1}^m\frac {B_j}{s+R_{\gamma ,j}} &= \mathbb {E}\left [ e^{-\delta T_1-s\big (\sum _{i=1}^{N_{T_1}}X_i-cT_1\big )}\right ] \notag \\ & = \frac {\gamma }{\gamma +\delta -\{cs-\lambda [1-\widehat {p}(s)]\}}.\end {align*}


$\gamma =0$
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\begin {align}\label {V1-IEintegral1plus2v2} &\int _{\frac {b-u}{1-\theta }}^ \infty \left [\theta x + \widetilde {V}_2(u+(1-\theta )x)\right ]g_{\delta ,-}(x)\mathrm {d}x \notag \\ & \quad + \int _{b-u}^{\frac {b-u}{1-\theta }} \left [(u+x-b)+ \widetilde {V}_2(b)\right ]g_{\delta ,-}(x)\mathrm {d}x \nonumber \\ =&~A\left (\frac {w}{\rho _\gamma }e^{-\frac {\rho _\gamma }{1-\theta }b} + \sum _{i=1}^m \frac {E_i}{\rho _\gamma -(1-\theta )s_i}e^{-\left (\frac {\rho _\gamma }{1-\theta }-s_i\right )b}\right )e^{\frac {\rho _\gamma }{1-\theta }u} + \frac {A}{\rho _\gamma ^2} e^{-\rho _\gamma b} e^{\rho _\gamma u} \notag \\ & \quad - \frac {(1-\theta )A}{\rho _\gamma ^2} e^{-\frac {\rho _\gamma }{1-\theta }b} e^{\frac {\rho _\gamma }{1-\theta }u} +\left ( \sum _{i=1}^{m+1}C_i e^{r_ib} + De^{\frac {\rho _\gamma }{1-\theta }b} \right ) \frac {A}{\rho _\gamma } e^{-\rho _\gamma b} e^{\rho _\gamma u} \nonumber \\ & \quad - \left ( w + \sum _{i=1}^m E_i e^{s_ib} \right ) \frac {A}{\rho _\gamma } e^{-\frac {\rho _\gamma }{1-\theta }b} e^{\frac {\rho _\gamma }{1-\theta }u}.\end {align}
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$\widetilde {V}_1(b)$
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$\widetilde {V}(u;b)$
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\begin {align}\label {V1-IEintegral3} \int _0^{b-u}\widetilde {V}_1(u+x)g_{\delta ,-}(x)\mathrm {d}x =&~ A \sum _{i=1}^{m+1} \frac {C_i}{\rho _\gamma -r_i} e^{r_iu} - A \sum _{i=1}^{m+1} \frac {C_i}{\rho _\gamma -r_i} e^{-(\rho _\gamma -r_i)b}e^{\rho _\gamma u}\nonumber \\ &-AD\frac {1-\theta }{\rho _\gamma \theta } e^{\frac {\rho _\gamma }{1-\theta }u} + AD\frac {1-\theta }{\rho _\gamma \theta } e^{\frac {\rho _\gamma \theta }{1-\theta }b} e^{\rho _\gamma u}.\end {align}


\begin {align}\label {V1-IEintegral4} \int _0^u\widetilde {V}_1(u-x)g_{\delta ,+}(x)\mathrm {d}x =&\sum _{i=1}^{m+1} C_i \left (\sum _{j=1}^m \frac {B_j}{R_{\gamma ,j}+r_i}\right ) e^{r_iu} \notag \\ & +D\sum _{j=1}^m \frac {B_j}{\frac {\rho _\gamma }{1-\theta }+R_{\gamma ,j}} e^{\frac {\rho _\gamma }{1-\theta }u}\nonumber \\ &- \sum _{j=1}^m B_j \left ( \sum _{i=1}^{m+1} \frac {C_i}{R_{\gamma ,j}+r_i} +\frac {D}{\frac {\rho _\gamma }{1-\theta }+R_{\gamma ,j}} \right ) e^{-R_{\gamma ,j}u}.\end {align}
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$e^{s_iu}$


$i=1,\ldots ,m$


$s_i$


$e^{-R_{\gamma ,j}u}$
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always a trade-off between (i) paying more dividends at earlier time
points to take advantage of the time value of money (but risking earlier
cessation of dividends due to possible early ruin) and (ii) paying divi-
dends in a more sustainable manner over a longer time horizon. Much of
the research concerning continuous-time risk processes with dividends
was conducted under the assumption that the risk process is observed
continuously and dividend is paid immediately once certain criteria are
met (e.g. surplus reaching a certain level). Specifically, if dividend can
be paid from the available surplus then the optimal dividend strategy
is often a band strategy (e.g. Gerber (1969)). In particular, for a spec-
trally negative Lévy risk process, Loeffen (2008) showed that if the Lévy
measure has a completely monotone density then this collapses to a
barrier strategy. However, the ruin probability is one under the afore-
mentioned band or barrier type strategy. To avoid such an undesirable
consequence, a number of alternatives and related models have been
proposed in the literature. For example, Avram et al. (2007) suggested
a model with bail-out such that the beneficiaries of the dividend pay-
ments need to inject the necessary capital to keep the insurance com-
pany alive, and they showed that a double-barrier strategy (also known
as a doubly reflected process) can be optimal in maximizing the dif-
ference between the expected present values of dividend payments and
capital injections. See also e.g. Yao et al. (2011) for similar analysis in
the dual risk model. Another way to allow for positive survival proba-
bility is to limit the amount of dividend paid by considering absolutely
continuous dividend strategies and restricting the dividend rate (such
that the surplus process still has a positive trend in the long run). In
general, the optimal strategy under such assumptions has a band struc-
ture as well (see Azcue and Muler (2012)). When the Lévy measure has
a completely monotone density, Kyprianou et al. (2012) proved that the
optimal strategy is the one that pays dividend at the ceiling rate when-
ever the surplus process is above a certain level, and this is commonly
known as a threshold strategy or a refracted process (e.g. Gerber and
Shiu (2006), and Lin and Pavlova (2006)). As shown by Junca et al.
(2019), the optimality of a threshold strategy remains valid when one
further incorporates a terminal value at the ruin time (see also Thon-
hauser and Albrecher (2007)) or imposes a constraint on the Laplace
transform of the ruin time.

However, in practice dividend decisions are made periodically (e.g.
quarterly or semi-annually) rather than continuously, and this moti-
vated Albrecher et al. (2011b) to propose a risk model with periodic ob-
servations. A periodic observation scheme also has the advantage of only
having lump sum dividends paid at the dividend decision time points as
opposed to the presence of unrealistic continuous payment streams in
the theoretically optimal barrier or threshold strategy under continuous
observations. Since then, periodic observations have become a popu-
lar feature in various risk models, and ruin-related quantities such as
the Gerber-Shiu expected discounted penalty function (Gerber and Shiu
(1998)) and the expected discounted dividends until ruin are analyzed
under more general aggregate claims process and/or modifications of
the periodic observation scheme. See e.g. Avanzi et al. (2013, 2021),
Choi and Cheung (2014), Zhang and Cheung (2016), and Noba et al.
(2018). The case of Poisson observations often leads to particularly sim-
ple and insightful identities (e.g. Albrecher and Ivanovs (2013, 2017),
Zhang et al. (2017), and Boxma and Mandjes (2023)).

In this paper, it is assumed that the insurer observes the surplus pro-
cess periodically at a sequence of random time points {Z,}* / (with the
definition Z, = 0) to decide whether or not to pay a dividend. The time
lengths 7, = Z, — Z,_; (for n € N) between observations are assumed
to form an i.i.d. sequence that is independent of {N,}5, and {X;}?,
(and hence {S,},5(). All quantities are defined on a probability space
(Q,F,P). For n € N, the increment Y, of the surplus process {S,},5q is
defined as the difference between the surplus levels at time Z, and at
time Z,_, (and one can write ¥, = S, -5, ). Note that {(T,Y,)}®,
form a sequence of i.i.d. random vectors (with a generic pair denoted
by (T',Y)). We propose that the insurer can choose to pay a dividend at
the time point Z, (n € N) if (i) the observed pre-dividend surplus level
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at time Z,, is positive; and (ii) the pre-dividend surplus level at time Z,
is larger than the post-dividend surplus level at time Z,_, (i.e. there is a
gain in the n-th observation period so that Y, is positive). Like Albrecher
et al. (2011b, 2013), the event of ruin is only checked at the time points
{Z,}:,- An objective is to find a strategy (among a suitably defined ad-
missible set of dividend payment strategies) to maximize the expected
present value of dividends paid until ruin.

At a first glance, one may think that a similar research problem has
already been considered by Albrecher et al. (2011a). However, their
work assumed that at a dividend decision time the insurer is allowed
to pay out dividend from its entire surplus, i.e. the only constraint is
that the dividend payment cannot exceed what the insurer has. They
showed that the optimal strategy is in general a band strategy (and this
collapses to a barrier strategy in both the Brownian motion risk model
and the compound Poisson model with exponential claims), which leads
to a ruin probability of one. See also Remark 1 in Section 2. Their find-
ings can be regarded as a ‘periodic analogue’ of the previous results by
Gerber (1969) and Loeffen (2008) who considered the case of continu-
ous observations. Clearly, the situation of almost sure ruin is undesirable
for the policyholders who expect the insurer to be able to pay claims.
Motivated by this, we would like to maximize the expected discounted
dividends until ruin (for the shareholders’ interest) while taking into
account the survival of the process (for the policyholders’ interest). To
this end, we shall impose a restriction such that the insurer can only
pay a lump sum dividend out of (a fraction 6 of) its realized gain from
the previous observation period. Such a novel idea is somewhat a ‘peri-
odic analogue’ of restricting the dividend rate to be bounded (and paid
out from part of the premium income) among absolutely continuous
strategies when the surplus is monitored continuously. It is worthwhile
to point out that, apart from the interpretations in the insurance busi-
ness, the techniques and stochastic models used for optimal dividend
problems are often applicable to operations research as well. For ex-
ample, concerning cost minimization in a continuously observed Lévy
process, Baurdoux and Yamazaki (2015) showed that double reflection
is optimal under singular control whereas Hernandez-Hernandez et al.
(2016) proved that refraction is optimal among absolutely continuous
strategies. Continuous-time models with periodic actions have also been
recently introduced to inventory problems. In particular, Section 3.1 in
Albrecher et al. (2017) considered periodic depletion of inventory while
Pérez et al. (2020) analyzed periodic replenishment of inventory.

This paper is organized as follows. Section 2 first starts by formu-
lating the research problem as a Markov decision model without im-
posing any distributional assumptions on the inter-observation times or
the claim amounts. Subsequently, the Bellman equation is derived with
the uniqueness of its solution proved, and various properties of the value
function (such as bounds and monotonicity) and the optimal strategy are
discussed. In particular, a derived property of the maximizer of the Bell-
man equation suggests that a bang-bang control may be optimal. Such a
strategy resembles a periodic threshold type of dividend strategy consid-
ered by Cheung and Zhang (2019) apart from some modifications, and
is described in Section 3.1. In Section 3.2, we focus on the case where
the inter-observation times are exponentially distributed and the claim
amounts have a rational Laplace transform, where an explicit expression
for the expected present value of the dividends paid until ruin under
the candidate strategy is derived. Section 4 is concerned with numerical
illustrations using the derived explicit formulas, and some concrete ex-
amples are provided under (mixed) exponential claims to demonstrate
that the proposed strategy can be optimal. Section 5 ends the paper
with some concluding remarks. Proofs of various lemmas, theorems and
proposition are collected in the Appendix.

2. Dividend payout model as a Markov decision process
2.1. Problem formulation

To optimize periodic dividend payouts under the proposed con-
straints, we now formulate a Markov decision process and follow closely
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the notation in Albrecher et al. (2011a) and the textbook by Béuerle and
Rieder (2011). Specifically, our Markov decision model is defined on the
state space

E={uy :ueRtandye R }U{(u,y) :u>yand y e R},

where u € R* denotes the current surplus level and y € R denotes the
latest increment. Here we adopt the convention that the increment y has
already been included in the current surplus u: (i) if a loss is made most
recently then the current surplus has to be non-negative in order for the
insurer to survive and possibly pay dividends in the future (correspond-
ing to {(u,y) : u€ R* and y € R™}); and (ii) if the insurer has a gain
most recently then the current surplus must be no less than the amount
of the gain (corresponding to {(u,y) : u > y and y € R*}). At each obser-
vation time point, the insurer has to decide a dividend payout a € R*
with the action space being R*. Precisely, given the state (u, y) € E, the
dividend payment « (i.e. the one-stage reward) is restricted to the ad-
missible set [0, y*] where y* = max(0, y) and @ € (0, 1), so that it is only
possible to pay a dividend if the process has a positive increment and no
dividend can be paid otherwise. The controlled surplus process {U,}*
at the observation time points {Z,}* | (prior to dividend payment) is
then described by

Un = Un—l - n—lf(Un—l’Yn—l) + Yn’ ne€N, (21)

where (U, Yp) is the initial information that is known, and ; f : E — R*
(for j € Ny) is a decision rule which is measurable and ; f (u, y) € [0, 0 y*l.
For the controlled process, the number of observations before ruin is r =
inf {n € Ny|U, < 0} and therefore the ruin time is Z_. Note that our above
formulation ensures that ruin cannot be directly caused by a dividend
payment because the payment of a positive dividend at time Z, is only
possible when Y, = y > 0 (and ruin did not occur before) and in such
a case the pre-dividend surplus level must satisfy U, = u > y, and with
the dividend payment capped at 6y we observe that the post-dividend
surplus level must be no less than u — 0y which is positive. Under the
dividend policy = = (yf,f,...) that consists of the decision rules, the
expected present value of dividends until ruin is given by

-1

Vi y;m) =E,, [Z e, f(U,.Y, ] . WyE€E, (2.2)
n=0

where 6 > 0 is the force of interest and the expectation E,, is taken

under the initial condition (U, Y;)) = (, y). The insurer aims to maximize
the function V(u, y;z) by choosing an admissible strategy =, and the
optimization problem is given by

V(u,y) =supV(u,y;n), (u,y) € E.
T

As in Albrecher et al. (2011a), in order to have a well-defined
and non-trivial research problem, it is assumed that P(0 < T < o0) =1,
P(Y <0)> 0, and E[Y "] < co. While our general analysis regarding op-
timality and expected discounted dividends does not require the spec-
ification of 6 as long as 6 € (0, 1), the range of 6 that will guarantee a
positive survival probability is discussed follows. Clearly, in the absence
of dividend payments, the discretely observed surplus process {.S, }*
constitutes a random walk with generic increment Y. For the controlled
surplus process {U,}* representing the pre-dividend surplus levels at
the observation time points { Z,, }:10 defined via (2.1), the corresponding

post-dividend surplus process {lNJ,, }%2 s given by

[7;1 = Un - nf(Un’Yn) = ﬁn—l + Yn - nf(Un’Yn)s n€N,

where the n-th increment is Y, — ,f(U,,Y,). Because the payment of a
dividend itself cannot directly lead to ruin, the ruin times of {(7,,}2';0
and U}, coincide. While {[7,, 192, 1s generally not a random walk as
this depends on the dividend policy = = (,f,f, ...), the particular pro-
cess (denoted by {17;“"“ 122 ) that implements a policy to always pay the
maximum possible dividend 0Y, when Y, is positive can be regarded as
a random walk with increment Y, - 0Y, 1(y ¢, where 1, is the indica-
tor function of the event A. Since Y, —,f(U,,Y,) 2 Y, — 0Y, 1y ¢, (i.e.
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the increment of {lNJ"}f,":0 is no less than that of {0,‘,“2‘"};“;0), the ruin
probability of {U,}2 ) (and hence {U,}* ) must be upper bounded by
that of {umaxye . The random walk {uraxye has a positive trend if
its increment Y, — 0Y, 1,y ., has a positive mean, i.e.

E[Y]-60E[YT] > 0. (2.3)

Using the results from e.g. Theorems 2 and 7 in Part I of Prabhu (1998),
the above condition ensures that {ﬁ,‘,’“ax 122, has a positive survival prob-
ability (under non-negative initial surplus) and will drift to infinity in
the long run. Therefore, the equivalent condition 6 < E[Y]/E[Y "] is suf-
ficient for ensuring that {U,}2 has a ruin probability that is strictly
less than one. Intuitively, the condition (2.3) means that, on average,
the increment Y between successive observations (before consideration
of dividend) needs to be sufficient to pay out the maximal possible divi-
dend 6Y™ at an observation time point so that the insurer’s surplus will
grow over time.

Remark 1. It is important to point out our novel gain-based constraint
must lead to a different optimal periodic strategy compared to the case
under a traditional constraint. As mentioned before, when Albrecher
et al. (2011a) assumed the traditional constraint of allowing the insurer
to pay from the available surplus, they showed that a band strategy
is optimal. In simple terms, in a band strategy, the set R* of surplus
levels is partitioned into a number of bands. There are two types of
bands that alternate, representing ‘habitable zone’ and ‘non-habitable
zone’ respectively. If the (pre-dividend) surplus level is observed to be
in a habitable zone, then no dividend is paid. On the other hand, if the
(pre-dividend) surplus level falls into a non-habitable zone, then a div-
idend is paid to reduce the surplus level to the upper boundary of the
habitable zone below. See Definition 4.1 and Remark 4.2 in Albrecher
et al. (2011a) for the formal mathematical definition. From Lemma 3.4
in Albrecher et al. (2011a), it is also known that the uppermost band
in their optimal periodic strategy is non-habitable, and this implies ruin
occurs with probability one. (A barrier strategy is a band strategy with
a single non-habitable zone on top of a habitable zone.) Although such
a band strategy is optimal under the traditional constraint, it can lead
to the undesirable situation where a net loss occurring within an obser-
vation period brings the surplus level down to a non-habitable zone and
a dividend needs to be paid despite the loss. With our proposed gain-
based constraint, a dividend can only be paid from a fraction 6 of the
latest gain (i.e. if the latest increment is positive), but prior gains that
have accumulated before (and have already become part of the surplus)
cannot be used to pay a dividend. Therefore, the afore-mentioned un-
desirable situation cannot happen, and the resulting optimal periodic
strategy must be of a different form. Note also that our decision rule is
defined on two-dimensional state space consisting of the surplus level u
and the latest increment y, and this presents a more challenging prob-
lem than the decision rule that only depends on « under the traditional
constraint. Our proposed class of threshold-type strategies (see (3.1) in
Section 3) as a candidate of the optimal strategy does not contain or
belong to the class of band strategies. O

2.2. Bellman equation, and properties of value function and optimal policy

For a measurable function v: E — R™*, state (u,y) and action a €
[0,8y™], the transition law is given by

/ / e % v(u — a + x, x)0(dx, dr),
0 a—u

where Q is the joint distribution of the increment Y and the time T
between successive observations, the dummy x represents the next in-
crement of the surplus process, and the lower limit of the inner integral
ensures that dividend payments cease once ruin has occurred. We de-
fine the operator 7, which acts on the set M = {v : E — R* measurable}
by
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T,o(u,y)= sup / / e v(u — a + x, x)0(dx, dr), (u,y) € E.
170 a—u

a€(0,0y*
(2.4)

We have the following lemma regarding some first properties of the
value function and the operator 7,, where the proof is provided in
Appendix A.1.

Lemma 1.

(a) (Bounds for value function.) The value function V (u, y) of the optimal
dividend problem satisfies the two-sided bounds
E[ e—ET Y+]

1= E[e=7 1{y50]

[E[e—5TY+]

<V(@u,y) <0yt + ————,
(u,y) < 0y I E[eoT]

oyt +0 (u,y) € E.

(2.5)

(b) (Convergence result for upper bounding function.) For any H,, H, >
0, define the upper bounding function

P, y)= H, + Hyy*,  (w,y)€EE. (2.6)
The function f satisfies
lim 78 = 0. @7

Note that the terminology ‘upper bounding function’ follows from
Bauerle and Rieder (2011), as it is evident from (A.2) that the func-
tion (2.6) satisfies Definition 7.1.2 therein. Based on the upper bound-
ing function (2.6), we define the set My = {v € M : v < nf for some 5 €
R*}. Specification on how to select H; and H, will be made in Theo-
rem 2. For later use, define the operator

Tro(u,y) = fu,y) + / / e o(u = f(u, )+ x, x)O(dx, dn),
0 Jrwy-u

(u,y) € E, (2.8)

where f : E — R* is a decision rule and v € M. The maximal operator
of this Markov decision model is given by

Tov(u, y) = sup T,v(u, ), (u,y) € E. (2.9)
f
If a decision rule f is such that 7,0 = Tv, then f is a maximizer of .
Then, we have the following theorem concerning the Bellman equa-

tion with the proof given in Appendix A.2.

Theorem 1. (Bellman equation and optimal stationary policy.) The
value function V' € My of the optimal dividend problem satisfies the Bellman

equation

o0 [se]

V(@u,y)= sup {a + / / e "V (u—a+ x,x)0(dx, dr) },
a€l0,0y*] 0 a—u

(u,y) EE, (2.10)

which is equivalent to V = TV. There exists maximizer(s) of V, and every
maximizer f* defines an optimal stationary policy =* = (f*, f*,...) that is
also optimal among history-dependent dividend policies.

The Bellman equation (2.10) can also be conveniently rewritten as

Vw,y)= sup {a+Gu-a}, (u,y) €EE, (2.11)
a€l0,0y*]
where
Gu) = / / e_‘;'V(u + x, x)Q(dx, dr), ueR*. (2.12)
0 —u
Moreover, if /* is a maximizer of V, then
V(u,y) = f*u, )+ Gu— f*u,y)), (w,y) € E. (2.13)

A natural question that arises is whether the Bellman equation (2.10)
has a unique solution (i.e. whether the operator 7 has a unique fixed
point). The answer is affirmative according to the next theorem where
the proof is delayed to Appendix A.3.
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Theorem 2. (Uniqueness of fixed point of the Bellman equation.) With
the positive constants H, and H, selected to satisfy

H .

Ele 7]+ =2E[eTY*] < 1, (2.14)
H,

we define the set M; = {v : E - R measurable and |v| < 5 for some n €

R*} using the upper bounding function (2.6). Then, the operator T has a

unique fixed point v* in M; such that v* = T v*.

Remark 2. Denote Vil y) =V(u,y, f*) as the value of (2.2) with the
policy 7 chosen to be the stationary one f* = (f, f,...). Because each
dividend payment is non-negative, our model belongs to the class of
positive Markov decision models (see Chapter 7.4 of Bauerle and Rieder
(2011)). Therefore, it is known from Theorem 7.4.5 in Biuerle and
Rieder (2011) that vy is a fixed point of 7 (i.e. V= TVf) if and only if
the stationary policy f* is optimal. In other words, if we are able to com-
pute V, under a stationary policy f* and if V is such that V, =TV,
then f* is an optimal policy. O

The following lemma provides some further properties of the value
function (see Appendix A.4 for its proof).

Lemma 2.

(a) (Monotonocity of value function.) The value function V (u,y) is in-
creasing (i.e. non-decreasing) in both u and y for (u, y) € E.
(b) (Difference of value functions.) The value function satisfies the prop-

erty

V(uy, y5) = V(ug,y)) = 0y, — y1), Y2 2y = 0iuy > up 4+ 6(y, — y).

Some crucial properties of f* are given in the following theorem
where the proof can be found in Appendix A.5.

Theorem 3. (Properties of maximizer of Bellman equation.) Each max-
imizer f* of V satisfies

V) =@y =V(u=rwmy- gf*w, »)  wyeEE (215

Specifically, if f* is the largest maximizer then it satisfies
* _f* _ l * —
£ (u=fr @y =5 @) =0,

The result (2.16) concerning the largest maximizer can be intuitively
interpreted as follows. Given the initial state (u, y) such that 0 <y <u,
suppose that the insurer looks at the possibility of paying a dividend
of size f*(u,y) € [0,0y]. Doing so will cause the surplus level to fall to
u— f*(u, y). Moreover, after paying out f*(u,y) the insurer is still eli-
gible to pay a further dividend of 6y — f*(u,y), and therefore the re-
maining ‘unused increment’ is equivalent to y — (1/6)f*(u, y) since the
constraint f*(u, y) € [0,0y] means that the insurer is allowed to pay 6
unit of dividend for every unit of (positive) increment. Consequently,
a dividend payment of f*(u, y) effectively moves the state from (u, y) to
W= f*u,y),y—1/0)f*u,y)). If f*(u,y) is the largest maximizer, then
no further should be paid from the state (u — f*(u, y),y — (1/0) f*(u, y)),
which explains (2.16).

It is important to note that the results in this section are valid in gen-
eral as no specific distributional assumptions on the inter-observation
times or the claim amounts need to be made. Although determining
an optimal dividend strategy that is applicable in general can be chal-
lenging in the present context (see Section 5 for future research), the
theoretical results will be crucial for us in the numerical analysis in Sec-
tion 4. In particular, in Section 3.1 we shall propose a candidate strategy
which satisfies the necessary property of the largest maximizer f* de-
veloped in Theorem 3. Explicit formula for the value of the candidate
strategy is subsequently derived in Proposition 1 in Section 3.2 under
specific distributional assumptions. This will be utilized in the specific
examples in Section 4 to (numerically) verify that it is indeed a fixed
point of the operator 7, and hence the proposed strategy is optimal in
those cases according to Remark 2 concerning positive Markov decision
models.

(u,y) € E. (2.16)



E.C.K. Cheung, G. Liu, J.-K. Woo et al.
3. Threshold type strategy as a candidate optimal strategy
3.1. Proposed form of optimal strategy

We consider a stationary policy with decision rule of the form

0, 0<uc<hb,
S, y) =9 min(u — b, 0y), b<u<b+y, (3.1)
0y, u>b+y,

where b > 0 is a fixed threshold level. Here it is understood that we fo-
cus on the case 0 < y < u because one must have f,(u, y) = 0 outside this
domain. The form of our proposed strategy (3.1) is motivated by a bang-
bang type of control which can be optimal in dividend problems (e.g.
Gerber and Shiu (2006)). In a bang-bang strategy, the insurer would
pay out the maximum possible dividend amount as long as the surplus
level is high enough; otherwise no dividend is paid. Therefore, there is
a critical level b such that no dividend is paid if the current observed
surplus level u is below b (first case in (3.1)). If the surplus level u — y
prior to adding the increment y was already greater than b, then the
surplus process is deemed safe and the maximum possible amount 0y
is paid as a dividend since the dividend payment cannot cause the sur-
plus to fall below b (third case in (3.1)). The trickiest situation is when
the increment y has brought the surplus from below to above b. In this
case, one still wants to pay as much dividend as possible provided that
this does not make the surplus fall below b (second case in (3.1)). The
strategy (3.1) can also be equivalently written as

0, 0<u<hb,
fr(u,y) = u—b, b<u<b+0y, (3.2)
0y, u>b+0y.

From the strategy (3.1) (or (3.2)), it is clear that if a positive dividend
f(u, ) is paid from a state (u, y), then it must be of size u — b or 6y. In
the first case with f,(u, y) = u — b, one has

So(w= w3y = 5 15w 0) = £y (3= g0=) =0,

where the last equality follows from the first piece of (3.1). In the second
case with f,(u, y) = 6y, we have

Fo(= 30y = 5 £y 9)) = fu= 0,0 =0,

where the final equality is due to the fact that no dividend can be paid
if the latest increment is non-positive. From the above two equalities,
we observe that the proposed strategy (3.1) satisfies (2.16) provided in
Theorem 3, which is a necessary condition that the largest maximizer
f* must satisfy. (Note also that (2.16) is obviously satisfied when no
dividend is paid in the first piece of (3.1), i.e. f,(u,y) =0.) A candi-
date for the optimal strategy would be (3.1) implemented at an optimal
threshold level b*, denoted by f;..

Fig. 1 shows a sample path of the surplus process under the proposed
strategy (3.1) (or (3.2)), where the initial increment Y, = y is negative
(so that no dividend is paid at time 0) and the dividend payout fraction
is 6 =0.5.

Remark 3. At a first thought, the periodic threshold type dividend strat-
egy analyzed by Cheung and Zhang (2019) may be used as a candidate
strategy. Specifically, the decision rule f therein is given by

0, 0<u<hb,
fu,y) = O(u—b), b<u<b+y, (3.3)
0y, u>b+y,

for some fixed threshold level . However, it can be easily checked that
(2.16) is not satisfied by (3.3) due to the way the middle piece is defined.
O

We would like to determine the expected discounted dividends until

ruin under the proposed stationary strategy with decision rule (3.1) de-
pending on an arbitrary threshold level b > 0 that we will later optimize
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Surplus process
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Fig. 1. Sample path under proposed threshold strategy at » (assuming 6 = 0.5
and y < 0).

with respect to. Such an expectation will be denoted by V (u, y; b), since
the strategy = in (2.2) can now be specified via the threshold level 5.
Like in Albrecher et al. (2011a), we further denote the corresponding
expected discounted dividends until ruin by V(u; b) supposing that no
dividend can be paid at time 0. It is easy to see that ¥ (u; b) admits the
representation

Vub) = / / e~V (u + x, x; b)Q(dx, df)
0 —u
because one would follow the strategy (3.1) at the first observation time.
Moreover, we have
V(u,yib) = fo(uw,y) + V= fu,y):b). (3.4)

If the proposed strategy with threshold »* is an optimal strategy, then
the Bellman equation (2.10) is satisfied so that

sup {a+ I7(u —a;b")}, (3.5)
a€l0,0y*]

V(u,y;b*) =
where f:(u, y) is a maximizer of the right-hand side. Note that if one
utilizes the operator (2.9) and applies it to V' (u, y; b), then

sup {a+V(u—ab)},
a€l0,0y*]

TV(u,y;b)=

and therefore the condition (3.5) can be conveniently expressed as
V(u,y;b*) = TV (u, y; b"), (3.6)

or simply V;,, =7V, according to the notation in Remark 2.
3.2. Expected discounted dividends for exponential inter-observation times

In order to numerically verify the optimality of the proposed thresh-
old strategy in Section 4, we shall utilize an explicit formula for V (u, y; b).
Thanks to (3.4), it is sufficient to determine the dividend function
V (u; b). Note that an explicit formula will also allow us to perform op-
timization to find the optimal threshold level »* (given the proposed
strategy), so that the candidate value function of the Markov decision
model will be V (u, y; b*). If V(u, y; b*) satisfies the fixed point property
(3.6), then Remark 2 asserts that a stationary policy with decision rule
fp+ is optimal.

The derivation of ¥ (u; b) requires specification of the joint distribu-
tion Q of (Y, T). Note that the quantity [, e~%'Q(dx, dr) can be in general
written as

/ e Qdx, dt) = E[e™T 1{ysoyedn] + ELe™T 1y coyean -
0

In particular, when the inter-observation times are Erlang distributed, it
is known from Section 3.2 in Albrecher et al. (2013) that we can write

o)
/ e~ Q(dx, 1) = {85, () x50y + 85,4 (=X (x<0) }dx,
0
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where, following the notation therein, g _ is the discounted density for
the case where the increment is positive (i.e. there is gain between suc-
cessive observations), and g;, is the discounted density for the case
where the increment is negative (i.e. there is loss between successive
observations). General expressions for these densities are given by their
(3.15) and (3.18). Then the Bellman equation (2.10) becomes

V(u,y)= sup
a€l0,0y*]

{a + / V(u—a+x,x)gs _(x)dx
0

+ / - Viu—a-x, —x)g5’+(x)dx},
0

where only single integrals appear on the right-hand side (instead of
double integral as in (2.10)).

As one expects ¥ (u; b) to be of different functional forms depending
on whether 0 < u < b or u > b, we shall write

S Izl(u), 0<u<b,
V(s b) = { 2 us b, 3.7)

and the dependence of ¥, and ¥, on b is suppressed for convenience.
Then one has the integral equation

ﬁ(u):/) ) [9x+Vz(u+(l—0)x)]g5 (x)dx
=
b=

+ / e [(u +x—b)+ V(b b)]géy_(x)dx
b—u

L

b—u u
+ / Vi(u + x)gs _(x)dx + / I7l(u — x)gs. 4 (x)dx, (3.8)
0 0
for 0 <u < b and

Va(u) = / [6‘x + e+ - 0)x)] g5 (x)dx + / V(= x; b)gs., (x)dx,
0 0
(3.9)

for u > b. It is clear from the above two integral equations that ?(u; b)is
continuous at u = b (and therefore I7(b; b) may be taken as 171 (b) or 172(b)
in (3.7)).

In order to derive an explicit expression for V (u; b), one will need to
solve the integral equations (3.8) and (3.9) for 171 and 172. This in turn
requires explicit formulas for the densities g5 _ and g; . To this end, we
assume that inter-observation times are exponential with mean 1/y and
the Laplace transform p(s) of the claim amounts is rational of order m.
The latter means that p(s) = L, ,,_(s)/L, ,(s), where L, , is polyno-
mial of degree (at most) m — 1 and L, ,, is another polynomial of degree
m. Without loss of generality, it is assumed that L, ,, has leading coef-
ficient 1 and the polynomials L,,,_; and L, , have no common zeros.
From Chapter 4 in Bladt and Nielsen (2017), it is known that the class of
distributions with a rational Laplace transform is equivalent to the class
of matrix exponential distributions, which is dense in the set of positive
continuous distributions. Consider the Lundberg equation (in s)

cs—(A+y+6)+ Ap(s) = (3.10)

and define p, > 0 to be the unique positive root with the remaining roots
{-R,; };_"z , having negative real parts. From the special case of (3.15)
and (4.2) in Albrecher et al. (2013) (with n = 1 in their notation), it is
known that

85— (x) = Ae™’r%, x>0, (3.11)
where
_r Ly ,(p,)

e HT:l(pV + Rr,j).

Moreover, from Albrecher et al. (2013)’s (4.3) and the preceding equa-
tion therein (again with n = 1), we have
x >0,

m
g54(x) =) BjeRrix, (3.12)

Jj=1
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where

B =L L'*,’:( Ry . J=lm

¢y + R, ) Hf’:l,f;éj(R}/f - R,
With such information, an explicit expression for computing the ex-
pected present value of dividends payable until ruin is provided in the
next proposition, with the proof available in Appendix A.6.

Proposition 1. (Expected discounted dividends for threshold strat-
egy.) Suppose that the inter-observation times are exponentially distributed
with mean 1/y and the claim amounts have a rational Laplace transform of
order m. The expected present value of dividends payable until ruin V (u; b)
(defined in a piecewise manner in (3.7)) is given by

m+1

Vi) = ZCe"“+Del - 0<u<b, (3.13)
i=1

and

V) =w+ Y Ee',  u>b. (3.14)

i=1
In (3.13), the quantities {r; };":“ are the m + 1 roots of a special case of the
Lundberg equation (3.10) with y = 0. In (3.14), the quantity w is explicitly
given by

2
_ 04/p, _0Ay+$ (3.15)
1—A/py—2;"=1 Bj/Ry,j P% 6
and {s; i satisfy the equation (in s)
m
A B;
1= + R (3.16)
py—(1=0)s /;1 s+R,;

and are those m roots with negative real parts. In addition, the constants
{C; }:"J’ll, D and { E; Y, can be solved from a system of 2m + 2 linear equa-
tions consisting of
m
Z _(1—9)1‘1_1 el%b
p,0

Py
=it

1
“ 1 1 (1-04
+ E; <— —)Aeslb —_— (3.17)
= py—(1=0)s; p, b}
m+1
Giri_ v _ D 50 _ L (3.18)
=1 Pr i o Py
m+1 C D
P 5 =0, j=1l...m, (3.19)
= Ryt — +R,;
and
m+1 m
Ci b w
e+ -,
; Ryjtri lr’__ye + R”. g j RJ/J
j=1,....m (3.20)

Remark 4. Note that {C; }'"_’“11 ,Dand {E; }If"z . all depend on the threshold
level b via the coefficient matrix of the linear system, but the roots p,,
(=R, ;) {r;}7*! and {s;}7*! of various Lundberg equations do not
depend on b. This is particularly important when inputting the formulas
in software like Mathematica, as one would like to determine the optimal
threshold level b* that maximizes 17(u; b) with respect to b (see numerical

examples). O

Remark 5. Under exponential inter-observation times and claim
amounts with a rational Laplace transform, the expected net gain is
given by

® A
E[Y*t] = /0 xgp,_(x)dx = ; (3.21)

Y 6=0
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and the expected increment is

E[Y] = c— A[E[X]‘

(3.22)
The condition (2.3) that guarantees a positive survival probability is
thus reduced to

C—ME[X]_HA 50

(3.23)
Y P2 15=0

which is the same as Equation (12) in Cheung and Zhang (2019) with
n=1. O

Remark 6. In principle, the same methodology as in the proof of Propo-
sition 1 is also applicable to obtain an explicit expression for ¥ (u; b)
when the inter-observation times follow an Erlang distribution (while
retaining claim amounts with a rational Laplace transform). In such a
case, g5 _ and g; . will further involve ‘Erlang’ terms rather than just ex-
ponential terms (see (3.15) and (4.3) in Albrecher et al. (2013)), and
therefore the derivation will be far more tedious. Moreover, the ap-
proach typically involves solving of Lundberg-type equations that are
equivalent to polynomial equations of higher order, where the presence
of complex roots could possibly cause computational issues, a common
problem in ruin theory. (The same problem also arises if the polyno-
mial L, ,, of the claim’s rational Laplace transform is of high order m.)
However, for claim amount distributions that do not possess a rational
Laplace transform, the densities g; _ and g;, do not generally admit
nice analytic form, and this could make it difficult (if not impossible) to
solve the integral equations (3.8) and (3.9) for 171 and 172 O

4. Numerical illustrations

In this section, it is assumed that the inter-observation times are ex-
ponentially distributed, and we demonstrate that the proposed threshold
strategy is optimal via some specific examples. We shall consider a total
of five claim amount distributions that have a rational Laplace trans-
form and the same mean of one. Our calculations have been carried out
using Mathematica. We assume in all numerical examples that the Pois-
son claim arrival rate is A = 1, the incoming premium rate is ¢ = 1.5, and
the force of interest for discounting dividend payments is § = 0.01. To
ensure the insurer has a positive survival probability, it is important to
set the dividend payout fraction 6 appropriately such that the condition
(3.23) holds. From such a condition, we observe that the upper bound
for 0 is dependent on the choice of the Poissonian observation frequency
y. We have checked that for each of the claim amount distributions, the
upper bound decreases from 1 to 1/3 as y increases from 0 to co. With
this in mind, we shall consider values 6 up to 0.3.

4.1. Exponential claims

We start by studying the case where each claim amount follows an
exponential distribution with mean one. First, we fix the mean of the
exponential inter-observation times to be one (i.e. y = 1) and 0 = 0.2.
Since explicit formula for 17(u; b) under the strategy (3.1) has been ob-
tained in Section 3.2, numerical maximization can be performed with
respect to b. While such an optimization should in principle be car-
ried out for each initial surplus level u, it is found that the optimal
threshold level »* = 3.17 does not depend on u. To demonstrate that
V (u,y; b*) under the proposed strategy f,- (i.e. strategy (3.1) imple-
mented at b*) satisfies the fixed point property (3.6) (or equivalently
(3.5)) with f;(u, y) a maximizer on the right-hand side of (3.5), we fix
y =2 and analyze the quantity a + V(u — a;b%) — V(u,2; b*) as a function
of (u,a) for u>y=2 and a € [0,0y*] = [0,0.4]. The 3D plot in Fig. 2a
shows that a + I7(u —a; b*) — V(u,2; b*) is non-positive with a maximum
value of zero achieved at the reddest part of the plot. When viewed from
above, we obtain the contour plot in Fig. 2b. The reddest part of Fig. 2b
can be regarded as a plot of the maximizer a € [0,0.4] of a + V-a b*)
as a function of u, which is provided separately in Fig. 3. This exactly
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coincides with f;.(u,2). Further numerical checks reveal that the fixed
point property is also satisfied for other values of y. According to Re-
mark 2, this is sufficient for us to conclude that our proposed station-
ary strategy f° with decision rule f,. is optimal and hence we write
f*(u,y) = f-(u, y). We have also checked that the fixed point property
does not hold true if (i) the current strategy is implemented at another
(non-optimal) threshold level; or (ii) Cheung and Zhang (2019)’s peri-
odic threshold strategy (3.3) is implemented. Because the optimality of
our proposed strategy has been verified, by utilizing (3.4) at b = b* we
can compute the value function V (u, y) of the optimal dividend problem
by

VW y) = fye )+ Vu— fio(u, y); b). (4.1

Fig. 4 plots of V(u, y) as a function of (u, y) for 0 < y < u. As expected,
V (u, y) is increasing in both u and y (see Lemma 2(a)). It is important to
point out that, all the above (and the subsequent) checks and plots are
possible thanks to the explicit formulas from Section 3.2.

Next, we shall study the impact of a change in the observation fre-
quency y and the dividend payout fraction 6 on the optimal threshold 5*.
Like the previous case where (7, 0) = (1,0.2), for every other pair of (y, 0)
it is also found that b* does not depend on u, and the proposed threshold
strategy (3.1) at b* is optimal. We observe from Fig. 5a that »* increases
with y for each fixed 6. There are two intuitive reasons which could ex-
plain this phenomenon. First, suppose that we consider a process with
a higher value of y. If one maintains the same threshold level as before,
then the insurer could be paying dividend too soon (due to frequent
dividend decisions), possibly leading to inadequate surplus and hence
early ruin (as ruin is also monitored more frequently). This could be a
disadvantage in the long run because dividend payments could cease
early. Therefore, as y increases, a higher threshold level »* is needed,
meaning that the insurer is required to have achieved a higher surplus
level before paying out dividends. This helps keep the process safe from
potential early ruin so that more dividends can be paid in the long run
in order to maximize dividend payout. On the other hand, we can also
look into a process with a smaller value of y to arrive at the same con-
clusion. Since dividend decisions are rarely made, dividends will hardly
be paid if one does not alter the threshold level. To maximize dividend
payout, the insurer will need to make sure a dividend can be paid as
soon as possible when an opportunity (i.e. dividend decision) arises by
implementing a lower threshold level »*. Otherwise, the insurer will
need to wait for a long period before a dividend can be paid which is a
disadvantage due to the time value of money. Turning to Fig. 5b, we see
that »* increases with 6 for each fixed y. Recall that a higher 6 means
a larger fraction of the insurer’s gains can be paid as dividends. If the
same threshold level is retained, then too much dividend might be paid
which can possibly increase the risk of ruin. Setting a higher threshold
can help mitigate such risk by allowing the insurer to accumulate more
surplus before dividend payout, ensuring more dividends can be paid in
the long run for maximization purposes. This explains why the optimal
threshold b* should be higher as 6 increases. It is also noted that b* =0
when y or 6 is low.

Fig. 6 plots the dividend function ¥ (u; b*) against u for different com-
binations of (y, ). Recall that I7(u; b*) is the expected discounted divi-
dends until ruin when no dividend is paid at the start. From (4.1), one
has V(u,y) = V (u; b*) when fy+(u, y) = 0, which happens when the initial
increment Y, is non-positive (i.e. y < 0) or when the initial surplus U,
does not exceed the optimal threshold (i.e. u < b*). The function V(u; b*)
is increasing in u, which is expected. For fixed y = 1, Fig. 6a indicates
that V' (u; b*) increases in 0. As 6 is the maximum portion of the gain that
can be paid out as dividend, a larger 6 indeed represents less of a con-
straint in the optimization problem, leading to an increase in V(u; b%).
From Fig. 6b, it can be seen that for fixed 8 = 0.2 the quantity ¥ (u; b*) in-
creases in y. This suggests that more frequent dividend decisions would
increase dividend payments. In this case, even the process is also fre-
quently monitored for ruin, the resulting increase in the optimal thresh-
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(a) 3D plot
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Fig. 2. Plotof a + V(u —a;b*) — V(u,2; b*) under exponential claims.
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Fig. 3. Plot of f*(u,2) against u under exponential claims.
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Fig. 4. Plot of V (u, y) against u and y under exponential claims.

L I I I L L u

old b* (see Fig. 5) does benefit the shareholders in the form of sustainable
dividend payments in the long run.

Finally, in Fig. 7 we evaluate d% V (u; b*) as a function of u for selected
pairs of (y,0). In all cases, such a derivative is positive since V(u; b*)
increases in u. Moreover, the derivative decreases in u, suggesting that
the marginal benefit of the shareholders decreases as the surplus level
increases. In particular, when (y, 0) = (1,0.2), we observe that
Q5w =1 (4.2)
du u=b*

at the optimal threshold level »* = 3.17, and also
diﬁ(u;b*) >1 for 0<u<b* and diﬁ(u; b y<1 for u>b*. (4.3)
u u

Numerical tests for other pairs of (y,0) (such as (y,0) = (1,0.1) where
b* = 0.86) show that (4.2) and (4.3) hold true as long as b* > 0. Financial
interpretation of (4.3) in terms of connection between dividend pay-
out and company efficiency can be found in Section 3 of Gerber and
Shiu (2006). Specifically, with the optimal strategy being the proposed
threshold strategy implemented at b*, the insurance business is efficient
when the observed surplus level x is such that i I7(x; b*) > 1, and there-
fore it is better for the insurer to retain the funds and not to pay divi-
dends. In contrast, an observed surplus level x such that %V(x; by <1
indicates that the business is inefficient, and thus it is more advanta-
geous for the insurer to pay as much dividend as possible rather than
keeping the money.

4.2. Mixed exponential and sum of exponentials claims

For now, we consider two more different claim size distributions,
namely

e a sum of two independent exponential random variables (with re-
3
spective means 1/3 and 2/3) so that p(x) = 2(%e‘5") + (=1)(3e3%);
and
¢ a mixture of two exponential distributions specified by the density
1/1 _lx) 2. o
=-(=ze2 =2 . 4.4
pe0 = 3(5¢77) + 3@ (4.4)
Both distributions possess the same mean of 1 but they have variances
of 0.5556 and 2 respectively (where the exponential claim distribution
in Section 4.1 has mean 1 and variance 1). The same analyses as in the
case of exponential claims have been performed. We can confirm that
very similar results have been obtained, and the same interpretations
are applicable. Instead of reproducing Figs. 2-7 for these two claim dis-
tributions, we summarize some major findings as follows.
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Fig. 5. Impact of y and 6 on b* under exponential claims.
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Fig. 6. Plot of V(u; b*) against u under exponential claims.
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Fig. 7. Plot of iﬁ(u; b*) against u under exponential claims.

(i) Maximizing I7(u; b) with respect to the threshold level b leads to an
optimal threshold »* that does not depend on u.

(ii) Under the proposed strategy (3.1) implemented at b* (written as f:),
the resulting dividend function V (u, y; b*) satisfies the fixed point
property (3.6). Such a strategy is optimal so that the value function
is V(u,y) = V(u, y; b*).

(iii) The value function V (u, y), given by V (u, y) = V (u, y; b*) or (4.1), in-
creases in u and y.

(iv) The optimal threshold »* increases in y and 6.

(v) The dividend function V(u; b*) increases in y and 0.

(vi) The conditions (4.2) and (4.3) hold true when b* > 0.

To get further insights about the impact of claim variance on ¥ (u; b*),
we would like to compare the values of V(u;b*) across the three

Table 1
Expected net gain E[Y*] and expected net loss E[Y ~] for different claim
variances when 6 = 0.2.

y=0.5 y=5
Mean  Variance  E[Y*] E[Y"] E[Y*] E[Y~]
Sum exp 1 0.5556 1.2986 0.2986 0.2228 0.1228
Exp 1 1 1.3660 0.3660 0.2299 0.1299
Mix exp 1 2 1.4794 0.4794 0.2358 0.1358

claim amount distributions. Throughout the analysis we fix § = 0.2, and
I7(u; b*) is plotted as a function of u when y = 0.5 (Fig. 8a) and when
y =5 (Fig. 8b). The labels ‘Sum exp’, ‘Exp’ and ‘Mix exp’ in the figures
correspond to a sum of exponentials, exponential and a mixture of ex-
ponentials, respectively, which have increasing variance. Although our
intuition may suggest that ¥V (u; b*) shall decrease as the claim variance
increases (which makes the surplus process riskier), we observe from
Fig. 8 that this is generally not true. Indeed, for larger values of u the
function I7(u; b*) increases with the claim variance. The same observa-
tion was also made by Cheung and Zhang (2019)’s Section 5.2 regarding
their strategy (3.3), and we can apply similar reasoning to explain such a
phenomenon. It is important to first recall that dividend is paid from the
insurer’s gain between successive observation time points. Therefore,
we shall look at the values of the expected net gain E[Y*] which can
be computed via (3.21). These are provided in Table 1 for y = 0.5 and
y = 5. The corresponding values of the expected net loss E[Y ~] (where
Y~ =max(-Y,0) =Y+ —Y) are also given, which can be evaluated as
E[y-] = AZ _c- AE[X]
Py l6=0 4

due to (3.22). We see from Table 1 that as the variance of the claim dis-
tribution increases, both E[Y*] and E[Y ~] increase. While the increase
in E[Y~] agrees with our intuition of having a riskier business (which
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Fig. 8. Plot of ¥ (u; b*) against u for three claim distributions with different variances when 6 = 0.2.
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Fig. 9. Plot of ¥ (u; b*) against u for three claim distributions with different skewness when 6 = 0.2.

Table 2
Expected net gain E[Y*] and expected net loss E[Y "] for different skewness
when 6 =0.2.

y=0.5 y=5

Mean Variance Skewness E[Y*] E[Y~] E[Y*] E[Y~]

Mix exp (low skewness) 1 2 2.5222  1.4928 0.4928 0.2421 0.1421
Mix exp (medium skewness) 1 2 3.3588  1.4794 0.4794 0.2358 0.1358
Mix exp (high skewness) 1 2 4.8284  1.4560 0.4560 0.2329 0.1329

may tend to decrease dividend payments due to earlier ruin), a higher
value of E[Y ] means that more dividends can possibly be paid from the
gains. For large initial surplus u, the ruin probability is small anyway,
and therefore the increase in dividends due to an increase in E[Y *] out-
weighs the increased risk arising from an increase in E[Y ~]. As a result,
V(u; b*) increases with the variance of the claim amounts for large u. In
contrast, when the initial surplus u is small, the surplus process is more
susceptible to increased risk and early ruin, thereby causing ¥ (u; b*) to
decrease in the claim variance. Interestingly, when y increases, the sur-
plus level u after which I7(u; b*) increases with the claim variance be-
comes higher. In particular, when y = 0.5 the switch happens at around
u = 7 while for y = 5 this occurs around u = 20. This can be attributed to
the fact that an increase in y leads to more frequent monitoring of the
process for ruin, and consequently a larger value of u is needed for the
process to stay away from ruin.

The above discussion focuses on the impact of the variance of the
claim distribution on the expected discounted dividends while keeping
the mean of the claim amount fixed. In what follows, we would like
to briefly investigate how the skewness of the claim amount may im-
pact I7(u; b*). (The skewness of the claim amount X is given by E[(X —
E[X])’]/(Var(X))*/2.) Three different mixtures of exponentials will be
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considered, and they have the same mean 1 and the same variance 2
but different degree of skewness. In addition to the mixture of exponen-
tials with density (4.4) possessing a skewness of 3.3588, we additionally
utilize the mixture p(x) = %(0.6340(0-6340") + %(7.4641e‘7~4641") with a

lower skewness of 2.5222 and the mixture p(x) = %(0.3204{03204*) +

%(1.308463‘1'3084") with a higher skewness of 4.8284. The results (i)-(vi)
stated at the beginning of Section 4.2 are also valid for these two new
claim distributions. Fixing 6 = 0.2, we plot V(u; b%) against the surplus
level u when y = 0.5 (Fig. 9a) and when y = 5 (Fig. 9b). For small values
of u, it is observed that I7(u; b*) increases as the claim distribution be-
comes more positively skewed. On the other hand, for larger values of
u the dividend function I7(u; b*) decreases in the skewness of the claim
amount. Such a phenomenon can be interpreted in the same manner as
we did for Fig. 8 by calculating the expected net gain E[Y™*] and the ex-
pected net loss E[Y "] in Table 2 and noting that an increase in skewness
in our case results in lower values of both E[Y*] and E[Y"].

5. Concluding remarks

One of the aims of the paper is to formulate a dividend problem
with periodic observations such that the insurer has a positive survival
probability when the optimal dividend strategy is implemented. To this
end, we propose a novel gain-based constraint where dividend can only
be paid from a fraction 6 of the gain between successive observations
(rather than implementing the traditional constraint of allowing to pay
from the entire available surplus). As mentioned in Section 2.1, it is
sufficient to set < E[Y]/E[Y*]. Through specific numerical examples,
it is demonstrated that a threshold type periodic strategy (i.e. one that
pays the highest possible dividend when the surplus is above a certain
threshold) is optimal.
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Naturally, one would wonder whether general sufficient conditions
under which our proposed threshold strategy is optimal can be estab-
lished. This will indeed be very difficult for a number of reasons. First,
we recall that our novel gain-based constraint restricts dividend pay-
ment to be paid from the latest increment (if it is positive), and the
decision rule is based on a two-dimensional state space (i.e. the sur-
plus level u and the latest increment y). This is more complex than the
optimal periodic dividend problem considered by the main reference
Albrecher et al. (2011a), which is concerned with the traditional con-
straint where the state space consists of u only. Even Albrecher et al.
(2011a) were able to show that the optimal strategy is generally in the
form of a band strategy in their setting (see also Remark 1), it does
not appear possible to determine the number of bands in the optimal
strategy at the outset. As in their Section 7, they need to first deter-
mine the dividend function under specific distributional assumptions
(e.g. exponential inter-observation times and Erlang(2) claim amounts)
by fixing the number of bands before verifying the fixed point property
numerically with all the model parameters specified. Indeed, our nu-
merical approach in Section 4 was motivated by the one in Albrecher
et al. (2011a). Second, we note that, assuming the simplest situation of
exponential inter-observation times and exponential claims, Albrecher
et al. (2011a) showed in their Section 5 that the optimal periodic strat-
egy is a barrier strategy under the traditional constraint (i.e. the band
strategy collapses to a barrier strategy). However, their method to an-
alytically prove that the value of a barrier strategy is a fixed point of
their Bellman equation relies on the availability of an explicit expres-
sion for the optimal dividend barrier. The determination of the optimal
barrier in their case is possible because the expected present value of
dividend payments under a barrier strategy is a simple function of the
barrier level, thanks to the fact that one only needs to determine the
dividend function in a single layer (i.e. below the barrier). However, in
our proposed threshold strategy, there are two interconnecting layers
(see the integral equations (3.8) and (3.9)) from which the respective
dividend functions need to be solved for. Even for exponential claims
(m =1 in Proposition 1), the coefficients C;, C,, D and E, appearing
in the dividend functions (3.13) and (3.14) need to be solved from a
system of four linear equations, and they all depend on the threshold
level b (see Remark 4 in Section 3.2). This makes it impossible to get
an explicit formula for the optimal threshold »* by taking derivative for
maximization, making any analytic attempt to prove that the fixed point
property is satisfied extremely hard.

For future research, it will be an interesting topic to develop dif-
ferent methodologies to derive sufficient conditions for the optimality
of our proposed threshold strategy under a gain-based constraint. Such
conditions may be related to the complete monotonicity of the claim
distribution as shown by Kyprianou et al. (2012) in the case of con-
tinuous observations under the constraint of a bounded dividend rate.
However, this is far from trivial in the present context of periodic ob-
servations because the observation scheme (i.e. the distribution of the
inter-observation times) may also play a role in specifying the sufficient
conditions. Moreover, the verification of optimality in Kyprianou et al.
(2012) is largely based on (i) an expression of the value of their pro-
posed continuously observed threshold strategy in terms of the scale
function; and (ii) the properties of the scale function in Lévy processes
where the Lévy measure has a completely monotone density. But in our
case of a periodically observed process, it is unclear how the scale func-
tion can be applied to obtain the expected discounted dividends under
our proposed threshold strategy. Another related research question is
the form of the optimal strategy in cases where the proposed thresh-
old strategy is not optimal, and this is not easy either. Nevertheless,
our work provides a starting point as the largest maximizer of V' must
satisfy (2.16).

Concerning numerical procedure to approximate the value function
and hence an optimal periodic strategy under our gain-based constraint,
the existence of a unique fixed point of 7 due to it being a contraction
mapping (see Theorem 2) may suggest that one could iteratively ap-
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ply the operator 7 to an initial guess function to obtain the solution
to the Bellman equation. However, since the state space and the action
space are both continuous, discretization or grid-based methods will be
required and these will be subject to the curse of dimensionality. The
design of efficient numerical algorithms can be important for future re-
search as well.

We also wish to point out that it is not our primary objective here
to maximize the expected present value of dividends paid until ruin
such that the resulting ruin probability is no larger than a given tol-
erance level. Indeed, dividend optimization under a ruin probability
constraint presents a very challenging research problem. While this has
been considered in models with continuous observations, exact solutions
are not available in the literature. The existing results include numeri-
cal schemes and approximation procedures (see Grandits (2015), Hipp
(2018, 2019), and Albrecher et al. (2025)), and the optimal strategy is
no longer a threshold strategy. Added complexity is anticipated if the
observations are periodic. As an alternative, one may restrict the set of
admissible strategies to be periodic threshold strategies and optimize
dividends subject to a ruin probability constraint. Since the expected
discounted dividends and the ruin probability can both be determined
under a periodic threshold strategy, numerical optimization can be per-
formed with respect to threshold level » and the dividend fraction 6.
See Dickson and Drekic (2006) for similar ideas in the context of con-
tinuous observations. Another interesting research problem will be to
take into account the risk-sensitivity of the insurance company via max-
imizing the expected utility of the discounted dividends (see Biuerle
and Jaskiewicz (2015)). We leave these as open questions for future
research.
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Appendix A.
A.1. Proof of Lemma 1
(a) If each increment Y, (for n € N,) is replaced by Y;*, then the value

function for the modified process clearly increases and the modified
process will never experience ruin even when dividend is paid at the
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maximum possible amount §Y,* at each observation time Z,. Due to
the time value of money, it is optimal to pay such maximum amount
at the earliest opportunity, and therefore we have

[o9]
V(u,y) <0yt + 0E [Z e %% Yn“’]
n=1
o n—1
=0yt +0) E [(H eﬁTk>(e5TnYn+)] .
n=1 k=1
The upper bound in (2.5) then follows by the mutual independence
of Ty, ...,T,_, and (T,, Y,).
Concerning the lower bound, one can consider a specific admis-
sible strategy that pays the maximal dividend at each observation
time until ruin occurs. This leads to

[

V(u,y) > 0y* +0E, , [Z e-SZnY:l{UI,___,UnZO)] ,

n=1

where it is understood that the surplus levels {U,}* , are specific to
the afore-mentioned strategy, i.e. U, =U,_ —0Y" +7Y, for neN.
It is clear that if Y}, ...,Y, are all non-negative then U, ..., U, are
all non-negative as well. Therefore, one can lower bound the above
expectation by replacing 1(y, v, >0y PY liy,,...v,>0y SO that

o0
Vu,y) > 0y* +0E [Z eIV, Ynzo)]
n=1
) n—1
=0yt +0 Z E [(H e 0Tk {Yk20}> (e Y,:’)] ,
n=1 k=1
from which the lower bound in (2.5) follows.

(b) From the upper bound in (2.5), it is clear that

V <Cp, (A1)

for some positive constant C, where g is the upper bounding function
defined in (2.6). For a € [0,0y*] and (u, y) € E, it is noted that

/ / e fu—a+ x,x)0(dx, dr) = / / e (H, + H,x")0(dx, dr)
0 a—u 0 a-u

< / / e®(H, + H,x")QO(dx, dr)
0 —o0

= HE[e?T]+ H,E[e*TY*], (A.2)

where the inequality follows from the non-negativity of the inte-
grand. Therefore, taking supremum and using the definition of the
operator (2.4) yields

T, B(u,y) < H\E[e™T] + HyE[e°TY*]. (A3)

Recursively, it can be seen that

TP < Hy(E[e™ )" + Hy(E[e )" 'E[e™TYT], neN.

Letting n — oo gives rise to (2.7).

A.2. Proof of Theorem 1

The results are a direct consequence of Theorems 7.1.8 and 7.2.1
in Bauerle and Rieder (2011) (see also Theorem 3.2 in Albrecher et al.
(2011a)). In particular, the properties (2.7) and (A.1) from Lemma 1
imply that the integrability assumption (A) and the convergence as-
sumption (C) on pp.195-196 as well as the structure assumption (SA)
on p.199 of Biuerle and Rieder (2011) are satisfied. Therefore, n*
(f*, f*,...) is an optimal stationary policy, where f* is a maximizer of
V. Moreover, history-dependent policies do not improve the expected
present value of dividend payments until ruin (see Remark 7.1.3 in
Biuerle and Rieder (2011)).
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A.3. Proof of Theorem 2

The proof follows closely that of Lemma 7.3.3 in Biuerle and Rieder
(2011). First, from (A.3) we can get, for (u,y) € E,

T,Bu,y) < ([E[e‘”J + %[E[e‘”Yﬂ)(Hl + Hyy").
1

Therefore, if H, and H, satisfy (2.14), then we have
T B(u, y) < af(u, y),

where

(A.4)

H
a=E[eT]+ FZ[E[e—ﬁTW]
1

is such that a € (0, 1). It is important to note that, with E[e~*T] < 1 and
E[e~8TY*] > 0, we can always choose a large value of H, and/or a small
positive value of H, to ensure that (2.14) is satisfied.

Next, defining the weighted supremum norm

[o(u, )|

s A5
(u,y)gE ﬂ(u» Y) ( )

lloll, = veMs,
it is known that (MI’;, [I- 15) is a Banach space. For the remainder of this
proof, we shall extend the domain on which the operators 7, I (in (2.8))
and 7 (in (2.9)) can act on from M to M;. Suppose that v, w € M;. With

f a decision rule satisfying f(u, y) € [0,0y*] for (4, y) € E, we have
sup 7rv = sup T,w < sup(Tpv — Tpw).
f f S
Utilizing the definitions (2.9) and (2.8) on the left-hand side and the
right-hand side respectively leads to, for (u, y) € E,
Tou,y) = T w(u, y)

o (s
< sup / / e v — a+x,x) — wu — a+ x,x)}Q(dx, df)
a€(0,0yt]1J0 a—u
[s+] [se]
<llo=wlly sup / / e B — a + x,x)0(dx, dr),
a€l0,0y*1J0 a—u

where the last inequality follows from the definition (A.5). Noting from
the definition (2.4) that the supremum of the integral above is simply
T,B(u, ), further use of the bound (A.4) gives rise to

To(u,y) = Twu,y) < allv —wllz fu, y).
Similarly, reversing the roles of v and w in the above argument yields
Twu,y) = To,y) < allv-wll; fu, y).

Combining the above two inequalities, one can take the weighted supre-
mum norm on 7 v — 7w to see that

1Tv—Twlly < allo—wl].

Since a € (0, 1), the operator 7 is contracting on (M;, [I-1l5), and the
statement of the theorem follows from the Banach’s fixed point theorem
(e.g. Theorem A.3.5 in Béuerle and Rieder (2011)).

A.4. Proof of Lemma 2

(a) First, for fixed y € R, we consider u, > u; such that (u;,y) € E and
(up,y) € E. For a surplus process starting with the initial condition
(uy, y), one can implement a strategy that is optimal for the initial
condition (u;, y), resulting in expected discounted dividend payments
of V(uy, y). Note that the ruin event of this process (if it ever happens)
will not happen earlier than the process starting with (u;,y) as it
always has u, — u; units of surplus in excess of the latter process. The
optimal strategy under the initial condition (u,, y) cannot be inferior
to the afore-mentioned strategy, implying V (u,,y) > V (u;, y).

Second, for fixed u € R*, we suppose y, > y; with (u, y;) € E and
(u, y,) € E. Starting with (u, y,), the optimization on the right-hand
side of (2.10) is performed over the interval [0, 9y;’] which is wider
than the interval [0, § y;r] if one has instead started with (, y,). There-
fore, one must have V' (u, y,) > V (u, ;).
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(b) For later use, we start by observing that the function G defined in
(2.12) is increasing. Specifically, for u, > u; > 0 we have

G(uy) = / / eV (uy + x, x)O(dx, dt)
0 —uy

> / / eV (uy + x, x)O(dx, dt)
0 —uy

> / / eV (uy + x, x)Q(dx, dr)
0 —uy

=Gu),

where the second line follows by the non-negativity of the integrand
and the third line is due to the fact that V' is increasing (see part (a)).
Next, we note that V(u,y) = V(4,0) for u € RT and y € R~ because
no dividend can be paid at time O if the initial increment is negative.
So we focus on comparing V (u;, y,) and V (u,,y,) when y, >y, >0,
and we set the constraint u, > u; + 6(y, — y;). Then, one has from
(2.11) that

V@, y)= sup {a+Gu, —a)}

a€l0,0y,]

> sup {0y, —y))+a+Gu, -0y, —y)—a)} (A.6)
a€l0,0y1]

> sup {00, —y)+a+Gu —a)} (A7)
€[00y,

=0y, —yD+ sup {a+Gu —a)}

a€[0,0y;]

=0y, —y) +V(uy, y)).

The inequality (A.6) can be explained as follows. For any a € [0, 0y, ],
one has 0(y, — y)) +a € [0(y, — y,),0y,]1 C [0,0y,]. In other words,
0(y, — y1) +a is an admissible action at position (u,, y,), and such
an action cannot be better than an optimal action a € [0,0y,]. The
inequality (A.7) holds because u, — 6(y, — y;) > u; according to the
assumption and G is an increasing function.

A.5. Proof of Theorem 3

When u € R* and y € R™, a decision rule f must satisfy f(u,y) =0
(and the same is true for a maximizer), and therefore (2.15) and (2.16)
become trivial. It is sufficient to consider the case u > y > 0 in this proof.

For now we consider the case where we start with the initial condi-
tion (u — f*(u, y),y — (1/6) f*(u, y)) which must belong to the state space
E. We proceed to utilize the Bellman equation (2.11) under such ini-
tial condition and choose the action a = 0 which cannot outperform a
maximizer. This results in

V(u= @y = 51 w) 2 G- 1w, (A8)

From (2.13), the expression on the right-hand side of (A.8) equals
V(u,y) — f*(u,y) and thus

V(u= @y =55 wn) 2 Ve - 7w,

On the other hand, application of Lemma 2(b) with (u;,y;) = @u—
[*,y),y—(1/0)f*(u, y)) and (u,, y,) = (u, y) leads to

V) =V (u= S @n.y- 5 @n) 2 11w,

Combining the above two inequalities gives rise to the desired result
(2.15).
Next, because of (2.13), the result (2.15) can be written as

V(u= s @y -5 @) = G- @,

Comparison with (2.11) reveals that under the initial state (u—
f*(u,y),y—(1/0)f*(u,y)) the action a =0 is optimal. However, as the
uniqueness of f* may not be guaranteed, one cannot conclude that
(2.16) must hold true. Hence, we shall focus on the largest maximizer
of V.
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Suppose that f* is the largest maximizer of V. It remains to show
that f* satisfies (2.16). Suppose on the contrary that /*(u — f*(u, y),y —
(1/6)f*(u, y)) > 0. Using (2.13) under the initial state (u — f*(u,y),y —
(1/0)f*(u,y)) yields

V(= s @ny- 5 @)
= (u=r@ny- 377w

+G(u=f @y =1 (u= 1wy = 57 wn)). a9
Note that if one starts with an initial state of (u,y), then a divi-
dend payment of f*(u,y)+ f*(u— f*,y),y—(1/60)f*(u,y)) is admissi-
ble because f*(u— f*(u,y),y—(1/0)f*(u,y)) <0y — f*(u,y) and hence
)+ f*u— f*u,p),y—(1/0)f*(u,y) < 0y. Then we study the ex-
pression

P+ (1= ).y = 5 wy)
* - * — * —- l *
+G(u= 1wy =1 (= F @y - 51 wy))
* * 1 *
= 7w+ (u= .y =57 wy))
=V(uy),
where the two equalities follow from (A.9) and (2.15) respec-
tively. The above result implies that f[*(u,y)+ f*(u— f*(u,y),y—
(1/6)f*(u,y)) is also a maximizer of V(u,y) (see (2.11)). Conse-
quently, with f*(u— f*(u,y),y — (1/0)f*(u,y)) >0 we have f*(u,y)+
=y, y—1/0)f*w,y) > f*(u,y), meaning that f*(u,y) is not
the largest maximizer of V (4, y) and leading to a contradiction. There-
fore, f*(u— f*(u,y),y—(1/0)f*(u,y)) cannot be positive (and the divi-

dend payout cannot be negative in our model) and one concludes that
(2.16) holds true for the largest maximizer f*.

A.6. Proof of Proposition 1

We start by handling the integral equation (3.8). Substitution of
(3.11) into the first two integrals in (3.8) followed by straightforward
algebra gives rise to

/» y [Hx + P+ (1 - B)X)]géy,(x)dx

1-6
= -
+ / [(u +x—b)+ Vb b)]g(;’,(x)dx
b—u

© P, P _ P P
-4 V, (x)e_ﬁxdx e 4 Ae“’rbe”y" - we_ﬁbeﬁ"
A % B

~ ~ P; P;
+ V(b by A e rrbert — T (b; by Ao Thaber, (A.10)
Py Py

which is a sum of two exponential terms in u. Therefore, we have

(8- (& 25 (5 oo o

T—

b-u
+/ -0 [(u +x-b)+ 171 (b)] g,;y_(x)dx)
b—u

=0. (A11)

Regarding the third integral in (3.8), with the use of (3.11) it can readily
be shown that

d

b—u
(— - p,) /0 Vi + x)g5 - (x)dx = —AV, (1), (A12)

du

Following the analysis leading to Equation (49) in Cheung and Zhang
(2019), the fourth integral in (3.8) satisfies

e

+ er)] /0 I71 (1 —x)gs 4+ (x)dx
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ﬁ (A.13)

Jj=1

LI GG

Utilizing (A.11)-(A.13), we apply the operator (d/du—p,)(d/du—
p, /A=) I,_(d/du+ R, ) to (3.8) to arrive at the (m + 2)-th order
homogeneous ordinary differential equation

(&) (- 25) [T (& + 0|
=_A<£4 ?9)[{@(%“‘&,5))]%@)
+i]3j(;u py)<; Pr

=

(A.14)

m d .
- 0> L:ll_;# (E + Ry,f)] V().

The characteristic equation (in s) is given by

>H(S+R
p
e
+ZBj(s—py)<s > H (s+R,,
j=1

C=104)
which consists of the root p, /(1 — §) and the m + 1 roots (namely {r }’"“)
of the equation (in s)

A « B
1= +y —
py = j=ls+

(A.15)

R,
From Equations (3.2) and (4.1) in Albrecher et al. (2013), the right-hand
side can be written as

B

n .
J
+ZS+RN

Jj=1

-F [e—STl—:( 2,_]:'1'1 X;=cTy)
py=s
y .
{es — ALl = p(s)]}

Consequently, (A.15) is equivalent to a special case of (3.10) with y =
0 (and therefore {r; }erl is equivalent to the set consisting of p, and
{—Ry J} ) The solutlon to (A.14) is thus in the form of (3.13), where

{C; };":11 and D are constants to be determined.

Next, we consider the integral equation (3.9) which is structurally
identical to Equation (21) in Cheung and Zhang (2019). Following the
procedure leading to Equation (57) therein, one has the result (3.14),
where w is given by (3.15), {s;}1 | are those m roots with negative real
parts of the equation (3.16) in s, and {E;}” i | are constants to be deter-
mined.

To find the unknown constants, we proceed by substituting the so-
lution forms (3.13) and (3.14) (along with (3.11) and (3.12)) into the
integral equations (3.8) and (3.9) and evaluating various integrals. We
begin by considering (3.8). First, (A.10) becomes

=y+6—

/7 ) [0x + o+ (1 - H)X)]g(; (x)dx

1—

>

I
+
b—u
Al Lo 15, S

B ( ; —(l—6‘)s

_ », m+1
— we 1’9”91 ) +<Z Cer: +De1 g >Ae_ﬂybe:ﬂyu
2
Py Py

>

[(u +x—b)+ %(b)]gév_(x)dx

Pro_ ,)[] Py
(1—9 5t )el =7 +ﬁe Pyb byt

py

i=1

A _frg, Py
<w+2Ee5b>—e otea",

(A.16)
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(In the second last term, we can replace 17([;; b) by 171(b) or 172(17) thanks
to the continuity of V(u; b) at u = b.) Second, the third integral on the
right-hand side of (3.8) is evaluated as

b—u m+1 m+1
Vi(u+ x)gs _(x)dx = —A e~ (Py=rbgpyu
/0 : " i=1 z py —ri
»,
- AD1 eef’a" +AD =0 TGt (a17)
P8 Py
Third, the fourth integral in (3.8) is
u m+1 m B.
-~ _ J ri

/0 Viu— x)g5,+(x)dx = Z C,-<Z ﬁ)e u

i=1 j=1"7J !

m
B.
+D Z v / el%“
Y
j=1 129 + R%j
m m+1
‘ZB/(Z < 7 D >e_R”“
=1 =Rt C+R,;
(A.18)

Recall from (3.8) that (3.13) is equal to the sum of (A.16)-(A.18). We
start by equating the coefficients of " (for i = 1,...,m+ 1). But this
does not provide us with useful information because each r; satisfies

Py .
(A.15). Now, we equate the coefficients of e7-¢" to arrive at
P
E; (%

DAl Loty Yy 21,
<py ,zfpy—(l—é))si

m
» A
- <w+ Z E;e’i )p—e
i=1 4

where simplifications lead to (3.17). Similarly, equating the coefficients

of efr* gives
m+1
)A‘-’_’”b -A G e~ (py—ri)b
Py

i=1 Pr i

—s,)b _(1—0)Ae_%b
o
m
- B;
AD%+D -—
v
Py =i TRy

A _
0:—26”7+
14

m+1
(z Ce" +De1 %

i=1
—9 ™
1 eemb,
Py

+AD

—R, ju

which simplifies to (3.18). Finally, the coefficients of e
(3.19).

Next, we look at (3.9) and note that we shall first decompose the
second integral as

imply

/M I7(u — x; b)gs 4 (x)dx

0
u—>b u
= / Va(u — x)gs 4 (x)dx + / Vi(u = x)g;5 4 (x)dx,
0 u—b

so as to substitute the solution forms (3.13) and (3.14). Omitting the
details, (3.9) becomes

0A A w B
Ztwl =+ —
Py Py SRy
Bj oSilt
R” +5;

m m+1 C
(R, j+r)b _
+ZBj<Z—R —(eRr 1

+
s

Jj=1 i=1 v T
()
1-6 12
W R b S E; Ry j +S)b> Ry ju.
Rr,j ~ R,;+s;

Equating the constant term on both sides does not yield any informa-
tion because of the first equality in (3.15). Equating the coefficients of
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esi* (for i = 1,...,m) does not reveal additional information either be-
cause each s; satisfies (3.16). Finally, with the help of (3.19), one ob-
tains (3.20) from the coefficients of e Rr.j¥.

References

Albrecher, H., Biuerle, N., Thonhauser, S., 2011a. Optimal dividend-payout in random
discrete time. Stat. Risk Model. 28 (3), 251-276.

Albrecher, H., Boxma, O., Essifi, R., Kuijstermans, R., 2017. A queueing model with ran-
domized depletion of inventory. Probab. Eng. Inf. Sci. 31 (1), 43-59.

Albrecher, H., Cheung, E. C.K., Thonhauser, S., 2011b. Randomized observation periods
for the compound poisson risk model: dividend. ASTIN Bull. 41 (2), 645-672.

Albrecher, H., Cheung, E. C.K., Thonhauser, S., 2013. Randomized observation periods for
the compound poisson risk model: the discounted penalty function. Scand. Actuar. J.
2013 (6), 424-452.

Albrecher, H., Flores, B.G., Hipp, C., 2025. Dividend corridors and a ruin constraint. In-
surance: Math. Econ. 121, 1-25.

Albrecher, H., Ivanovs, J., 2013. A risk model with an observer in a markov environment.
Risks 1 (3), 148-161.

Albrecher, H., Ivanovs, J., 2017. Strikingly simple identities relating exit problems for 1évy
processes under continuous and poisson observations. Stoch Process. Their Appl. 127,
643-656.

Albrecher, H., Thonhauser, S., 2009. Optimality results for dividend problems in insur-
ance. Revista de la Real Academia de Ciencias Exactas 103, 295-320.

Avanzi, B., 2009. Strategies for dividend distribution: a review. N. Am. Actuar. J. 13 (2),
217-251.

Avanzi, B., Cheung, E. C.K., Wong, B., Woo, J.-K., 2013. On a periodic dividend barrier
strategy in the dual model with continuous monitoring of solvency. Insurance: Math.
Econ. 52 (1), 98-113.

Avanzi, B., Lau, H., Wong, B., 2021. On the optimality of joint periodic and extraordinary
dividend strategies. Eur. J. Oper. Res. 295 (3), 1189-1210.

Avram, F., Palmowski, Z., Pistorius, M.R., 2007. On the optimal dividend problem for a
spectrally negative 1évy process. Ann. Appl. Probab. 17 (1), 156-180.

Azcue, P., Muler, N., 2012. Optimal dividend policies for compound poisson processes:
the case of bounded dividend rates. Insurance: Math. Econ. 51 (1), 26-42.

Béuerle, N., Jaskiewicz, A., 2015. Risk-sensitive dividend problems. Eur. J. Oper. Res. 242
(1), 161-171.

Béuerle, N., Rieder, U., 2011. Markov Decision Processes with Applications to Finance.
Berlin Heidelberg.

Baurdoux, E.J., Yamazaki, K., 2015. Optimality of doubly reflected 1évy processes in sin-
gular control. Stoch. Process. Their. Appl. 125, 2727-2751.

Bladt, M., Nielsen, B.F., 2017. Vol. 81 of New York. Springer.

Boxma, O., Mandjes, M., 2023. A decomposition for 1évy processes inspected at poisson
moments. J. Appl. Probab. 60 (2), 557-569.

15

Insurance Mathematics and Economics 127 (2026) 103203

Cheung, E. C.K., Zhang, Z., 2019. Periodic threshold-type dividend strategy in the com-
pound poisson risk model. Scand. Actuar. J. 2019 (1), 1-31.

Choi, M. C.H., Cheung, E. C.K., 2014. On the expected discounted dividends in the cramér-
lundberg risk model with more frequent ruin monitoring than dividend decisions. In-
surance: Math. Econ. 59, 121-132.

de Finetti, B., 1957. Suun’ impostazione alternativa dell teoria collettiva del rischio. Trans.
XVth Int. Congr. Actuar. 2, 433-443.

Dickson, D. C.M., Drekic, S., 2006. Optimal dividends under a ruin probability constraint.
Ann. Actuar. Sci. 1 (2), 291-306.

Gerber, H.U., 1969. Entscheidungskriterien fiir den zusammengesetzten Poisson-Prozess.
Mitteilungen der Vereinigung schweizerischer Versicherungsmathematiker. Vol. 69.

Gerber, H.U., Shiu, E. SSW., 1998. On the time value of ruin. N. Am. Actuar. J. 2 (1),
48-72.

Gerber, H.U., Shiu, E. S.W., 2006. On optimal dividend strategies in the compound poisson
model. N. Am. Actuar. J. 10 (2), 76-93.

Grandits, P., 2015. An optimal consumption problem in finite time with a constraint on
the ruin probability. Finance Stochast. 19 (4), 791-847.

Hernéndez-Hernandez, D., Pérez, J.-L., Yamazaki, K., 2016. Optimality of refraction strate-
gies for spectrally negative 1évy processes. SIAM J. Control Optim. 54 (3), 1126-1156.

Hipp, C., 2018. Company value with ruin constraint in lundberg models. Risks 6 (3), 73.

Hipp, C., 2019. Dividend payment with ruin constraint. In: Barrieu, P. (Ed.), Risk and
Stochastics: Festschrift in Honor of Ragnar Norberg, pp. 1-22.

Junca, M., Moreno-Franco, H.A., Pérez, J.-L., Yamazaki, K., 2019. Optimality of refraction
strategies for a constrained dividend problem. Adv. Appl. Probab. 51 (3), 633-666.

Kyprianou, A.E., Loeffen, R.L., Pérez, J.-L., 2012. Optimal control with absolutely continu-
ous strategies for spectrally negative 1évy processes. J. Appl. Probab. 49 (1), 150-166.

Lin, X.S., Pavlova, K.P., 2006. The compound Poisson risk model with a threshold dividend
strategy 38, 57-80.

Loeffen, R.L., 2008. On optimality of the barrier strategy in de finetti’s dividend problem
for spectrally negative 1évy processes. Annal. Appl. Probab. 18 (5), 1669-1680.

Noba, K., Pérez, J.-L., Yamazaki, K., Yano, K., 2018. On optimal periodic dividend strate-
gies for 1évy risk processes. Insurance: Math. Econ. 80, 29-44.

Pérez, J.-L., Yamazaki, K., Bensoussan, A., 2020. Optimal periodic replenishment poli-
cies for spectrally positive lévy demand processes. SIAM J. Control Optim. 58 (6),
3019-3867.

Prabhu, N.U., 1998. Stochastic Storage Processes: Queues, Insurance Risk, Dams, and Data
Communication. New York, Springer.

Thonhauser, S., Albrecher, H., 2007. Dividend maximization under consideration of the
time value of ruin. Insurance: Math. Econ. 41 (1), 163-184.

Yao, D., Yang, H., Wang, R., 2011. Optimal dividend and capital injection problem in the
dual model with proportional and fixed transaction costs. Eur. J. Oper. Res. 211 (3),
568-576.

Zhang, Z., Cheung, E. C.K., 2016. The markov additive risk process under an erlangized
dividend barrier strategy. Methodol. Comput. Appl. Probab. 18 (2), 275-306.

Zhang, Z., Cheung, E. C.K., Yang, H., 2017. Lévy insurance risk process with poissonian
taxation. Scand. Actuar. J. 2017 (1), 51-87.


http://refhub.elsevier.com/S0167-6687(25)00149-0/sbref0001
http://refhub.elsevier.com/S0167-6687(25)00149-0/sbref0001
http://refhub.elsevier.com/S0167-6687(25)00149-0/sbref0002
http://refhub.elsevier.com/S0167-6687(25)00149-0/sbref0002
http://refhub.elsevier.com/S0167-6687(25)00149-0/sbref0003
http://refhub.elsevier.com/S0167-6687(25)00149-0/sbref0003
http://refhub.elsevier.com/S0167-6687(25)00149-0/sbref0004
http://refhub.elsevier.com/S0167-6687(25)00149-0/sbref0004
http://refhub.elsevier.com/S0167-6687(25)00149-0/sbref0004
http://refhub.elsevier.com/S0167-6687(25)00149-0/sbref0005
http://refhub.elsevier.com/S0167-6687(25)00149-0/sbref0005
http://refhub.elsevier.com/S0167-6687(25)00149-0/sbref0006
http://refhub.elsevier.com/S0167-6687(25)00149-0/sbref0006
http://refhub.elsevier.com/S0167-6687(25)00149-0/sbref0007
http://refhub.elsevier.com/S0167-6687(25)00149-0/sbref0007
http://refhub.elsevier.com/S0167-6687(25)00149-0/sbref0007
http://refhub.elsevier.com/S0167-6687(25)00149-0/sbref0008
http://refhub.elsevier.com/S0167-6687(25)00149-0/sbref0008
http://refhub.elsevier.com/S0167-6687(25)00149-0/sbref0009
http://refhub.elsevier.com/S0167-6687(25)00149-0/sbref0009
http://refhub.elsevier.com/S0167-6687(25)00149-0/sbref0010
http://refhub.elsevier.com/S0167-6687(25)00149-0/sbref0010
http://refhub.elsevier.com/S0167-6687(25)00149-0/sbref0010
http://refhub.elsevier.com/S0167-6687(25)00149-0/sbref0011
http://refhub.elsevier.com/S0167-6687(25)00149-0/sbref0011
http://refhub.elsevier.com/S0167-6687(25)00149-0/sbref0012
http://refhub.elsevier.com/S0167-6687(25)00149-0/sbref0012
http://refhub.elsevier.com/S0167-6687(25)00149-0/sbref0013
http://refhub.elsevier.com/S0167-6687(25)00149-0/sbref0013
http://refhub.elsevier.com/S0167-6687(25)00149-0/sbref0014
http://refhub.elsevier.com/S0167-6687(25)00149-0/sbref0014
http://refhub.elsevier.com/S0167-6687(25)00149-0/sbref0015
http://refhub.elsevier.com/S0167-6687(25)00149-0/sbref0015
http://refhub.elsevier.com/S0167-6687(25)00149-0/sbref0016
http://refhub.elsevier.com/S0167-6687(25)00149-0/sbref0016
http://refhub.elsevier.com/S0167-6687(25)00149-0/sbref0017
http://refhub.elsevier.com/S0167-6687(25)00149-0/sbref0018
http://refhub.elsevier.com/S0167-6687(25)00149-0/sbref0018
http://refhub.elsevier.com/S0167-6687(25)00149-0/sbref0019
http://refhub.elsevier.com/S0167-6687(25)00149-0/sbref0019
http://refhub.elsevier.com/S0167-6687(25)00149-0/sbref0020
http://refhub.elsevier.com/S0167-6687(25)00149-0/sbref0020
http://refhub.elsevier.com/S0167-6687(25)00149-0/sbref0020
http://refhub.elsevier.com/S0167-6687(25)00149-0/sbref0022
http://refhub.elsevier.com/S0167-6687(25)00149-0/sbref0022
http://refhub.elsevier.com/S0167-6687(25)00149-0/sbref0021
http://refhub.elsevier.com/S0167-6687(25)00149-0/sbref0021
http://refhub.elsevier.com/S0167-6687(25)00149-0/sbref0023
http://refhub.elsevier.com/S0167-6687(25)00149-0/sbref0023
http://refhub.elsevier.com/S0167-6687(25)00149-0/sbref0024
http://refhub.elsevier.com/S0167-6687(25)00149-0/sbref0024
http://refhub.elsevier.com/S0167-6687(25)00149-0/sbref0025
http://refhub.elsevier.com/S0167-6687(25)00149-0/sbref0025
http://refhub.elsevier.com/S0167-6687(25)00149-0/sbref0026
http://refhub.elsevier.com/S0167-6687(25)00149-0/sbref0026
http://refhub.elsevier.com/S0167-6687(25)00149-0/sbref0027
http://refhub.elsevier.com/S0167-6687(25)00149-0/sbref0027
http://refhub.elsevier.com/S0167-6687(25)00149-0/sbref0028
http://refhub.elsevier.com/S0167-6687(25)00149-0/sbref0029
http://refhub.elsevier.com/S0167-6687(25)00149-0/sbref0029
http://refhub.elsevier.com/S0167-6687(25)00149-0/sbref0030
http://refhub.elsevier.com/S0167-6687(25)00149-0/sbref0030
http://refhub.elsevier.com/S0167-6687(25)00149-0/sbref0031
http://refhub.elsevier.com/S0167-6687(25)00149-0/sbref0031
http://refhub.elsevier.com/S0167-6687(25)00149-0/sbref0032
http://refhub.elsevier.com/S0167-6687(25)00149-0/sbref0032
http://refhub.elsevier.com/S0167-6687(25)00149-0/sbref0033
http://refhub.elsevier.com/S0167-6687(25)00149-0/sbref0033
http://refhub.elsevier.com/S0167-6687(25)00149-0/sbref0034
http://refhub.elsevier.com/S0167-6687(25)00149-0/sbref0034
http://refhub.elsevier.com/S0167-6687(25)00149-0/sbref0035
http://refhub.elsevier.com/S0167-6687(25)00149-0/sbref0035
http://refhub.elsevier.com/S0167-6687(25)00149-0/sbref0035
http://refhub.elsevier.com/S0167-6687(25)00149-0/sbref0036
http://refhub.elsevier.com/S0167-6687(25)00149-0/sbref0036
http://refhub.elsevier.com/S0167-6687(25)00149-0/sbref0037
http://refhub.elsevier.com/S0167-6687(25)00149-0/sbref0037
http://refhub.elsevier.com/S0167-6687(25)00149-0/sbref0038
http://refhub.elsevier.com/S0167-6687(25)00149-0/sbref0038
http://refhub.elsevier.com/S0167-6687(25)00149-0/sbref0038
http://refhub.elsevier.com/S0167-6687(25)00149-0/sbref0039
http://refhub.elsevier.com/S0167-6687(25)00149-0/sbref0039
http://refhub.elsevier.com/S0167-6687(25)00149-0/sbref0040
http://refhub.elsevier.com/S0167-6687(25)00149-0/sbref0040

	Optimal periodic strategies with dividends payable from gains only
	1 Introduction
	2 Dividend payout model as a Markov decision process
	2.1 Problem formulation
	2.2 Bellman equation, and properties of value function and optimal policy

	3 Threshold type strategy as a candidate optimal strategy
	3.1 Proposed form of optimal strategy
	3.2 Expected discounted dividends for exponential inter-observation times

	4 Numerical illustrations
	4.1 Exponential claims
	4.2 Mixed exponential and sum of exponentials claims

	5 Concluding remarks
	A 
	A.1 Proof of [Lemma]1
	A.2 Proof of [Theorem]1
	A.3 Proof of [Theorem]2
	A.4 Proof of [Lemma]2
	A.5 Proof of [Theorem]3
	A.6 Proof of [Proposition]1



