Page 4 of 107

IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, VOL. , NO. , 1

Enabling Privacy-preserving and Drop-out Resilient
Federated LLM Fine-tuning for the low-altitude
UAV Swarm Networks

Yangyang Bao, Xiaochun Cheng Senior Member, IEEE, Liming Nie*, and Junyi Tao

Abstract—Advancement of unmanned aerial vehicle (UAV)
swarm networks presents transformative opportunities for low-
altitude surveillance, disaster response, and distributed sensing,
where federated large language models (LL.Ms) enable collabo-
rative learning while preserving data privacy, enhance swarm-
level situational awareness through decentralized knowledge
fusion, and support adaptive decision-making across dynamic
low-altitude operational environments. However, federated LLM
fine-tuning for UAV swarm networks operating in low-altitude
settings faces three unresolved security and practical issues: (1)
Lack of efficient methods to protect parameter security during
uplink/downlink transmission under low-altitude communication
constraints; (2) Absence of effective mechanisms to handle
frequent UAV dropouts caused by low-altitude dynamics that
may compromise the robustness of federated LLM systems; and
(3) Constraints in UAVs’ computing, storage and communication
resources under typical low-altitude mission profiles. To address
these challenges, this paper proposes a Secure and privacy-
preserving federated fine-tuning (SPFF) scheme for low-altitude
UAV swarms that enables: efficient and privacy-preserving one-
to-many distribution of global parameters for downlink federated
fine-tuning; secure and efficient uplink local parameter uploading
adapted to low-altitude network conditions; and encrypted-
parameter-based global model fine-tuning. The scheme also
incorporates an efficient supervised key update mechanism to
address UAV dropout issues common in low-altitude operations.
Moreover, we design a delegable extensional SPFF (DE-SPFF)
scheme that employs proxy re-encryption to allow UAVs to dele-
gate tasks to other drones before exiting the federated fine-tuning
process in volatile low-altitude environments, while providing
public verifiability for re-encryption operations performed by
semi-trusted edge nodes. Formal security proofs demonstrate
the security of the proposed schemes under low-altitude threat
models. Theoretical analysis and experimental results confirm
their superiority and practicality for low-altitude UAV swarm
applications.
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I. INTRODUCTION

HE rapid advancement of unmanned aerial vehicle (UAV)

swarm networks [1] has introduced unprecedented oppor-
tunities for applications in surveillance, disaster response, and
distributed sensing, while simultaneously posing significant
challenges in communication, coordination, and autonomous
decision-making [2]. These challenges are particularly acute in
low-altitude environments, where UAV swarms must operate
amidst complex urban canyons, varying terrain, and dynamic
atmospheric conditions that create unique constraints and vul-
nerabilities [3]. Traditional control paradigms often struggle
to cope with the dynamic, large-scale, and highly uncertain
nature of these environments, necessitating more intelligent
and adaptive solutions. In this context, the integration of
Large Language Models (LLMs) [4] with federated learning
(FL) presents a transformative paradigm for next-generation
UAV swarm intelligence. This federated LLM framework
is uniquely suited to address the core challenges of low-
altitude swarm operations. Unlike centralized Al, it enables
collaborative knowledge fusion across the swarm without
centralizing raw data, thus preserving privacy and reduc-
ing bandwidth overheadla critical advantage for bandwidth-
constrained UAV networks. LLMs contribute their remarkable
capabilities in contextual reasoning, situational awareness, and
complex mission planning, allowing the swarm to interpret
complex environmental cues, generate adaptive flight plans,
and understand high-level human intent. Federated learning
orchestrates this process, allowing each UAV to fine-tune
shared LLMs locally on its sensory data and lived experience,
after which only the learned model updates (not the sensitive
raw data), are securely aggregated to evolve a collective swarm
intelligence.

However, while LLMs have demonstrated exceptional per-
formance in general-purpose domains, their direct application
to UAV swarm networks operating in low-altitude settings
remains constrained by several critical factors, including real-
time processing requirements, domain-specific knowledge gap-
s, and the need for robust operation in mission-critical sce-
narios. Consequently, federated LLM fine-tuning [5] for UAV
swarm networks has become an essential research direction,
aiming to bridge the gap between generic language models
and the specialized demands of swarm intelligence in low-
altitude airspace. This approach involves optimizing LLMs
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for multi-agent collaboration, dynamic resource allocation, and
emergent behavior modeling under the specific constraints of
low-altitude operations, while addressing key challenges such
as data efficiency in training, robustness against adversari-
al conditions, and interpretability in decentralized decision-
making systems. Recent studies further suggest that tailored
LLM architectures could enhance swarm adaptability in low-
altitude environments, enabling more sophisticated human-
swarm interaction and autonomous mission planning, thereby
opening new frontiers in intelligent swarm control for low-
altitude applications.

A. Security and practicality issues

Although federated LLM bring boundless benefits to the
performance optimization and application expansion of UAV
swarm networks operating in low-altitude environments, due
to their openness, dynamism, and unique architectural char-
acteristics, several security and practicality issues need to be
addressed for federated LLM systems tailored for low-altitude
UAV swarm networks to transition from theoretical blackprints
to practical deployment.

(1) Lack of systematic data security protection mech-
anisms for the upstream/downstream parameters trans-
mission in federated LLM. Federated fine-tuning of LLM
in low-altitude UAV swarm networks operates as a data-
driven service framework where the core challenge lies in
securing the bidirectional parameter exchange between the
server and UAV nodes, exposing critical vulnerabilities in
data interaction [6]. While cryptographic methods are com-
monly employed, the unique characteristics of federated LLM
parameter transmission-divided into distinct upstream (UAV-
to-server, involving the upload of local model updates) and
downstream (server-to-UAYV, involving the broadcast of global
model parameters) flows, introduce unaddressed risks absent
in conventional data-sharing scenarios, particularly in low-
altitude operations where signal obstructions and interference
are prevalent. Downstream data, involving the server broad-
casting global parameters to UAVs at each round’s outset,
requires robust one-to-many access control to prevent unau-
thorized interception or tampering, yet existing mechanisms
fail to ensure parameter integrity and confidentiality across dy-
namic swarm topologies typical of low-altitude environments.
Upstream data, comprising locally fine-tuned parameters u-
ploaded by UAVs, faces dual threats: insecure transmission
channels risk exposing sensitive model updates to eaves-
dropping, while the server’s direct access to raw parameters
compromises privacy by potentially reconstructing proprietary
local data. Crucially, the absence of tailored safeguards for
upstream/downstream flows leaves low-altitude UAV swarms
susceptible to model inversion attacks, parameter hijacking, or
adversarial manipulation, undermining the federated learning
paradigm’s foundational promise of decentralized privacy.

(2) Lack of effective countermeasures to drop-out issues
in dynamic UAV swarm networks. Federated fine-tuning of
LLM in low-altitude UAV swarm networks faces a critical
challenge due to the lack of effective countermeasures against
frequent UAV drop-outs [7], a problem inherently tied to the

network’s dynamic nature and exacerbated by low-altitude
operational constraints. The volatile low-altitude operational
environmenticharacterized by unstable connectivity due to
urban obstructions, limited battery endurance, susceptibility
to cyber-physical attacks, and mission-induced mobilitytleads
to unpredictable node departures that disrupt the federated
learning process. Unlike conventional federated systems with
relatively stable participants, low-altitude UAV swarms ex-
perience constant flux in their active node population, caus-
ing severe data skew and model bias as disappearing nodes
leave their local updates incomplete or unsynchronized. This
instability not only degrades the global model’s convergence
rate but also risks catastrophic forgetting of knowledge from
dropped UAVs, particularly when their data distribution differs
significantly from surviving nodes. The absence of dropout-
resilient aggregation mechanisms further exacerbates the issue,
as standard federated averaging fails to account for the lost
contributions, leading to suboptimal or even divergent mod-
el performance. Moreover, repeated rejoining of previously
dropped UAVs-common in low-altitude swarm scenariostin-
troduces additional complications, as their stale parameters
may contaminate the global model if improperly reintegrated.
Without dedicated strategies to mitigate these effects, the
reliability and quality of LLM services in such highly dynamic
low-altitude networks remain fundamentally compromised.

(3) Conflict between resources-constraints [8] of the
UAV onboard processing unit and heavy computational,
storage and communication costs of the secure federated
LLM. Federated fine-tuning of LLMs for low-altitude UAV
swarm networks faces a critical conflict between resource
constraints and security requirements, where the computa-
tional, storage, and communication costs of secure federated
learning directly challenge the limited capabilities of onboard
processing units. Unlike conventional federated learning sce-
narios with stable infrastructure, low-altitude UAVs operate
under strict weight and power limitations, forcing them to
rely on resource-constrained edge devices that struggle with
the inherent overhead of federated LLM tuningtparticularly the
iterative upstream (gradient upload) and downstream (model
broadcast) transmissions in each training round. The need for
cryptographic protection further exacerbates this tension, as
traditional encryption methods impose prohibitive latency and
energy consumption on already strained UAV hardware, which
is particularly critical in low-altitude operations where rapid
response is essential. While lightweight cryptography seems
essential, tailoring specialized algorithms for federated LLMs
introduces additional technical complexity, potentially creating
new bottlenecks in computation or memory usage. These
compounded resource demands create an inherent tension
where the security mechanisms themselves risk becoming
the system’s bottleneck, potentially undermining the feder-
ated learning process through excessive computation delays,
communication congestion, or premature energy depletiontall
particularly problematic in low-altitude environments where
operational endurance is already limited. The situation is
further aggravated by the need to maintain training continuity
across intermittent wireless links typical in mobile low-altitude
UAV operations.
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B. Existing solutions and challenges

Limitations of existing solutions. To the best of our knowl-
edge, there currently exists no systematic cryptographic solu-
tion for UAV-aided networks that comprehensively addresses
the aforementioned challenges in federated LLM fine-tuning,
particularly in low-altitude scenarios.

To elaborate plainly on Problem (1), secure downlink
data transmission in federated LLMs could theoretically be
achieved through identity-based broadcast encryption (IBBE)
[9] or attribute-based encryption (ABE) [10] to enforce one-
to-many access control. However, IBBE requires explicit re-
cipient specification and generates multiple ciphertexts, in-
evitably introducing redundant computational and storage
overheadtthereby directly exacerbating Problem (3), especially
in resource-constrained low-altitude UAVs. Meanwhile, con-
ventional ABE inherently suffers from high computational
and storage costs, which may further escalate with attribute
complexity, similarly conflicting with the efficiency demands
of Problem (3) for low-altitude operations. In the uplink phase
of federated LLM, homomorphic encryption (HE) [11] could
theoretically enable aggregation over encrypted local parame-
ters from clients. Yet even the most efficient existing additive
HE schemes (e.g., Paillier) impose prohibitive computational
burdens, again violating the constraints of Problem (3) for
low-altitude UAVs with limited processing capabilities.

For Problem (2), prior work has explored Shamir’s secret
sharing [12] to split global model parameters into shares
distributed across clients, ensuring secret recovery from sur-
viving participants despite device dropout, thus mitigating
aggregation failures. However, this approach incurs substantial
communication overhead, directly contravening Problem (3),
particularly problematic in low-altitude environments with
unstable connectivity. Moreover, as an independent component
targeting Problem (2), Shamir’s secret sharing fails to provide
any mechanism to address Problem (1). Additionally, existing
research fails to address how to properly handle unfinished
tasks after UAVs drop out of the system, a common occurrence
in low-altitude operations.

Regarding Problem (3), latest cryptographical techniques
like asynchronous encryption [13] and edge-assisted decryp-
tion [14] have been proposed to alleviate computational cost-
s in IBE/ABE schemes. However, asynchronous encryption
merely adopts a “space-for-time” tradeoff without reducing
encryption-phase overhead, while edge-assisted decryption,
although offloading client computation, requires generating
outsourcing keys, transmitting them to edge devices, and pro-
cessing converted ciphertexts, thereby introducing prohibitive
storage and communication costs unsuitable for low-altitude
UAV network scenarios. An alternative approach involves
protocol-level cryptographic optimizations, but this would
inevitably introduce significant algorithmic design complexity.

Potential solutions and challenges. Intuitively, for secure
protection in global parameter distribution, identifying an
efficient ABE scheme or optimizing existing ABE schemes
in terms of computational efficiency could directly address
Problem (1) for low-altitude UAV networks. Regarding local
parameter uploads, transitioning to more efficient functional

encryption (FE) [15] algorithms appears promising, though
FE inherently lacks support for computations across multiple
ciphertexts. For Problem (2), implementing a covert monitor-
ing mechanism to periodically assess UAV states before each
federated LLM fine-tuning round (e.g., through supervised
key updates) would enable timely control over UAV partici-
pation eligibility, reminiscent of cryptographic key revocation
schemestparticularly valuable in dynamic low-altitude environ-
ments. The natural solution for handling tasks from imminent
drop-out UAVs lies in integrating proxy re-encryption (PRE)
[16] with enhanced ABE schemes. Concerning Problem (3),
optimizing the fundamental ABE construction becomes imper-
ative to avoid additional communication and storage overhead,
which is critical for low-altitude UAV operations.

However, seamlessly integrating these technologies to con-
struct a secure parameter transmission framework for low-
altitude UAV swarm-based federated LLM systems presents
significant challenges beyond mere cryptographic primitive
combination. First, the algorithmic foundations of PRE and
ABE differ substantially, complicating the reconciliation of
their distinct public parameters, key structures, and ciphertext
formats. Second, key update-based revocation mechanism-
s impose additional computational and storage burdens on
UAVs, necessitating optimized update protocols to minimize
overhead, while re-encryption operations further exacerbate
UAVs’ resource constraintstparticularly challenging in low-
altitude operations where resources are already limited. Third,
the open nature of low-altitude UAV networks demands verifi-
able re-encryption components to prevent spoofed ciphertexts.
Finally, FE cannot be out-of-the-box used; instead, it requires
integration with the specific fine-tuning algorithms of LLMs to
design a dedicated privacy-preserving fine-tuning mechanism
based on encrypted parameters that accounts for the unique
constraints of low-altitude environments.

C. Our contributions

In this paper we proposed secure and privacy-preserving
federated fine-tuning (SPFF) scheme for low-altitude UAV
swarm networks, and designed an extended scheme (DE-
SPFF) supporting decryption delegation. The contributions is
enumerated as follows.

Efficient and privacy-preserving one-to-many global param-
eter sharing: To achieve multi-party distribution of global
parameters in federated LLM fine-tuning for low-altitude
UAV swarm networks, we propose an efficient and privacy-
preserving sharing mechanism in the SPFF scheme based on
the inner-product ABE scheme. In addition to lightweight
storage and computational overhead suitable for low-altitude
operations, this mechanism supports full policy privacy pro-
tection and flexible wildcard matching.

Secure and efficient local updated parameters upload: To
enable efficient and privacy-preserving uploading of local
parameters in federated LLM fine-tuning for low-altitude
UAV swarm networks, the proposed SPFF scheme leverages
functional encryption and customizes an efficient ciphertext-
based parameter fine-tuning method tailored for the LoRA
fine-tuning strategy. In this approach, UAVs only need to
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upload ciphertext parameters, while the LLM server only holds
the functional key related to model aggregation operations,
enabling efficient and privacy-preserving updates of global
parameters suitable for low-altitude constraints.

Efficient maintenance of federated LLM system robustness
against UAV drop-out: To mitigate the damage caused by
uncontrolled UAV drop-out in low-altitude swarm networks
to the federated LLM system, SPFF provides an efficient
revocation mechanism: UAVs are periodically granted update
keys and can renew their own keys at minimal cost. If a
UAV fails to update its key and upload local parameters, it
is removed from the system, a crucial feature for maintaining
system integrity in dynamic low-altitude environments.

Delegable and verifiable federated fine-Tuning tasks: For
benign UAVs that are about to drop out, DE-SPFF dele-
gates federated fine-tuning tasks to another UAV through re-
encryption. To avoid additional computational and storage
overhead-particularly important for resource-constrained low-
altitude UAVs, since the re-encryption process is performed by
edge nodes, which cannot access any global parameter infor-
mation. Considering that edge nodes are not fully trusted, DE-
SPFF incorporates a verification algorithm that allows third-
party verifiers to check the validity of re-encrypted ciphertexts,
ensuring security in open low-altitude environments.

We provide formal security proofs under standard crypto-
graphic assumptions, demonstrating that our schemes achieve
IND-CPA security and verifiability while covering various
threat models including free-riding attacks, collusion attacks,
and malicious edge node behaviors; furthermore, through com-
prehensive theoretical analysis and experimental validation, we
demonstrate the superiority of our schemes in computational
efficiency, communication overhead, and storage requirements
compared to state-of-the-art alternatives, confirming their prac-
ticality for real-world low-altitude UAV swarm applications.

D. Related works

Federated LLM is an emerging field in recent two years.
The primitives of federated LLM were initially proposed
by Chen et al. [5], who planned to integrate Federated
Learning (FL) into LLM to meet the demand of LLM for
large amounts of high-quality data. For this purpose, they
gradually integrated FL with the sub-technologies of LLM
respectively until the fusion of FL and LLM was attained.
Wu et al. [17] proposed an optimized federated LLM fine-
tuning method and demonstrated that this method exhibits
better performance and lower resource consumption, but it
does not take security issues into account. Bian er al. [37]
specifically analyzed the current LoORA method for LLM fine-
tuning and provided a specific technical solution for integrating
FL with LLM fine-tuning based on its algorithm structure.
Das et al. [18] proposed that differential privacy and homo-
morphic encryption mechanisms can prevent gradient privacy
leakage in LLMs. Yao et al. [19] highlighted that security
concerns in federated LLMs primarily revolve around data and
models. Their work examines federated LLMs from various
perspectives, including Security, Robustness, Privacy, as well

as Attack and Defense strategies. Addressing issues such as
the lack of training data and training data extraction attacks
in privacy-preserving Federated Instruction Tuning (FedIT)
[20], Zhang et al. [21] introduced a novel federated algorithm
named FewFedPIT. This approach is designed to strengthen
privacy protection in federated few-shot learning scenarios. To
address the differential privacy amplification effect in privacy-
preserving federated fine-tuning LLLM, Sun et al. [22] proposed
an improved LoRA method called FFA-LoRA and alleviated
the communication overhead in federated fine-tuning LLM.
To date, there has been no specific work demonstrating
how to use cryptographic tools to protect data security and
privacy in federated LLMs. Due to the similarity in network
structure, we first discuss the related work on data security
protection in federated learning and LLM here. Consider-
ing the computational overhead of homomorphic encryption,
differential privacy is a more practical approach. However,
differential privacy techniques inevitably introduce a trade-off
between data usability and privacy protection. Nguyen et al.
[23] for the first time provided a systematic overview of data
security and privacy issues in FL, explicitly categorizing them
into two aspects: “secure gradient aggregation” and “efficient
encryption of local gradients”. In other words, they explained
the secure transmission for uplink and downlink data (local
gradient) in FL. However, most current research focuses on
the security and privacy in data uplink phase. Zhang et al.
[24] implemented a secure gradient aggregation scheme based
on the Paillier homomorphic encryption protocol, where the
server cannot obtain the gradient of each client but can only
get the result of summing all clients’ gradients. Jin et al. [25]
proposed a practical federated learning system, FedML-HE,
for efficient and secure model aggregation based on homo-
morphic encryption. It selectively encrypts sensitive parame-
ters, significantly reducing computational and communication
overhead during training while providing customizable privacy
protection. Xu et al. [26] provided a complete solution for
parameter transmission during the interactive training pro-
cess of FL. models. This solution uses the double-masking
protocol to achieve privacy-preserving local gradient upload
and enables verification of the aggregation results (global
gradients). Additionally, this scheme ensures that no client
drops out in each round of model training through the Shamir
secret sharing protocol. Yu et al. [27] pointed out that clients
are usually resource-constrained, and previously proposed FL
schemes with verifiable aggregation would impose additional
and heavy computational overhead on clients. Then, they
proposed an efficient verifiable gradient aggregation method
that can support weighted aggregation. Regarding the security
of downlink data (global parameters) in FL, Yin et al. [28]
proposed a client selection scheme based on ABE, where only
clients meeting specific requirements can participate in FL.
Specifically for UAV networks, Wang et al. [29] proposed a
secure federated learning framework for UAV-assisted mobile
crowdsourcing. This framework introduces a blockchain-based
collaborative learning architecture that enables UAVs to se-
curely exchange local model updates and verify contributions
without a central administrator. Building on this, they designed
a privacy-preserving algorithm for federated UAV networks
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based on a local differential privacy mechanism. Hou et al.
[30] show that federated learning for UAV networks can
infer original data from shared parameters, whereas previous
work has focused on encrypting uploaded parameters. They
propose a UAV-supported covert federated learning architec-
ture, in which the UAV not only coordinates the federated
learning operations but also generates artificial noise to disrupt
eavesdropping by non-target users. Xu et al. [31] integrates
various cryptographic tools, proposed a verifiable and privacy-
preserving collaborative federated learning (VPPFL) scheme
for UAV-assisted intelligent connected vehicle networks. Tech-
nically, the scheme first generates anonymous identifiers for
vehicles. To further protect data privacy, vehicle updates are
encrypted using the Paillier homomorphic encryption algorith-
m, allowing UAVs to directly aggregate the encrypted updates
globally. Furthermore, a pseudonymous signature mechanism
is proposed, enabling vehicles to generate verifiable signatures,
thereby ensuring the authenticity and validity of uploaded local
model updates.

II. PRELIMINARIES AND BUILDING BLOCKS

A. Hardness assumption

Consider two prime-order multiplicative cyclic groups, de-
noted as Gy and Gq, with g serving as a generator for G;.
Random elements a, b, and ¢ are selected uniformly from the
finite field Z,. We define a bilinear pairing operation e : Gg x
Go — Gy. For the input tuple (g, g%, g% g¢, Z) € G} x Gy,
determining whether Z equals e(g, g)?*® or represents a ran-
dom group element in G; constitutes the computationally hard
Decisional Bilinear Diffie-Hellman (DBDH) challenge.

Definition 1: The DBDH assumption holds if there exists
no probabilistic polynomial-time algorithm capable of solving
the DBDH problem with a non-negligible probability.

Consider an elliptic curve [E defined over a finite field F,
where G denotes a base point generating a cyclic subgroup of
prime order p. Given two points P and () = kP on the curve,
where k is randomly selected from Z,, the Elliptic Curve
Discrete Logarithm Problem (ECDLP) requires determining
the integer k.

Definition 2: The ECDLP assumption holds if no proba-
bilistic polynomial-time (PPT) adversary can compute k € 7,
from (E,Fq,G,p, P,Q = kP) with non-negligible advantage.

B. Functional encryption supporting basic operations

Functional encryption supporting basic operations (FEBO)
was proposed by Xu er al. [32] to facilitate encrypted matrix
operations on convolutional neural networks in conjunction
with Inner-product Functional Encryption. FEBO supports
four fundamental arithmetic operations: addition, subtraction,
multiplication, and division. The specific definitions of each
algorithm are as follows.

e Setup(1%): Given security parameter , outputs master key
pair (PK, SK). First generates group parameters (G, q,7y) <
GroupGen(1%) and randomly selects o € Z,. Sets SK = «
and PK = (n,7), where n = v*.

e KeyDerive(PK,SK,0,V, z): Takes master secret SK,
commitment o, and function input z, outputs functional key
sk¢g. The derivation follows:

«

c%-y~% if V = + (addition)
ke — o - v* if V = — (subtraction)
¥ 7 ) (6%)F  if V = x (multiplication)
(¢%)*  if V =/ (division)

e Encrypt(PK, w): Using public key PK and input w,
outputs commitment ¢ and ciphertext ¢). Randomly select p €
Zg4, computes o = ¥°, and ¢ = nf - 4.

o Decrypt(PK, k¢, %, V, z): Given public key PK, func-
tional key sk for operation fy with input z, and ciphertext
1, recovers:

v/K for Ve {+,-}
/R for V.= x
vk forV=/

’va (w,z) _

C. Attributes and access policy vectorization

Our scheme implements privacy-preserving attribute-based
access control via inner-product operations between policy and
attribute vectors. Algorithm 1 technically realizes the trans-
formation of a symbolic access policy (comprising wildcards
“*7 positive “+”, and negative “-” attributes) into computable
numerical vectors. It maps the policy and user attributes to a
policy vector v and an attribute vector u, respectively, such that
policy satisfaction is equivalent to their inner product being
zero: (u,v) = 0. This is achieved by expanding a polynomial
constructed from wildcard positions to generate the coeffi-
cients of v, while aggregating exponentiated valid attribute
positions to form u. The algorithm thus converts semantic
access conditions into an algebraic form suitable for inner-
product-based cryptographic operations, enabling efficient and
privacy-preserving access control.

D. Key update nodes algorithm

The presented cryptographic constructions achieve efficient
user revocation through the key update nodes (KUNodes)
algorithm [35]. Algorithm 2 details this procedure, beginning
with a binary tree 7 containing n leaves and system state
o. For any internal node z, its children are denoted x; (left)
and xp (right). Each legitimate user is uniquely associated
with a leaf node A, with P()\) representing all nodes from
root to A. The algorithm processes a revocation list RL and
current time interval 7, initially storing all 7(\) nodes in set X
for each revoked user \. Subsequently, it constructs set )} by
including sibling nodes of X members not already in &X'. The
final output ) = KUNodes(RL, o, 7) identifies the minimal
nodes requiring key updates.

For active users, key updates occur for nodes in P(\) N
KUNodes(RL, o, 7), while revoked users satisfy P(A) N
KUNodes(RL,0,7) = &.
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Algorithm 1 Policy-Attribute Vector Conversion

Input: Access structure containing ¢ wildcards (“*7), (4
positive (“+”) and /_ negative (“-”) attributes; Attribute set
A = {A,...,Ax} where A; € {“+7,“ ="} fori €
{1,...,N}.

Output: Policy vector v and attribute vector u.

1) Partition positive attributes and wildcards into position
sets P and WV respectively
2) For each wildcard position w € W:

o Expand [[,cp(i —w) = X7 ;¢ji/ to obtain
coefficients c;
3) For each w € W and i € P:
o Compute [, ¢ (7 —w) and aggregate results
4) Extract positive attribute positions P’ C P
5) Forie P and j =0 to ¢:
o Calculate u; =, p i/
6) Construct vectors:

,Ug)
,Cn,0,...,0) (zero-padded to length

o u= (ug,u,...
o V = (Co,Cl,...
L+1)

Algorithm 2 Key Update Nodes Selection
Input: Binary tree 7, revocation list RL, time 7
Output: Node set )
1: Initialize X < &, Y + @
2: for each (\j,7;) € RL do
3: if 7; < 7 then
X — XUP(N;)
: for each z € X do
if z;, ¢ X then
Y« Yufar}
if zr ¢ X then
Y« YU{zr}
10: if RL = & then
11 Y « Y U {root}

12: return )

R A

E. Message-lock encryption

Message Lock Encryption (MLE) [38] is a cryptographic
technique designed to securely encrypt messages based on
their unique content. Unlike traditional encryption methods
that rely on external keys, MLE derives the encryption key
directly from the message itself or a hash of the message.
This ensures that identical messages produce the same ci-
phertext, enabling efficient deduplication in storage systems
while maintaining confidentiality. MLE is particularly useful in
cloud storage and secure messaging systems, where reducing
redundant data is critical without compromising security.

A key feature of MLE is its ability to provide convergent
encryption, where the same plaintext always encrypts to the
same ciphertext under the same conditions. This approach
eliminates the need for key management in certain scenarios
but requires careful handling to prevent vulnerabilities, such as

brute-force attacks on predictable messages. MLE is often used
in applications like secure file sharing or encrypted backup
solutions, where both data privacy and storage efficiency are
prioritized. However, additional safeguards, like salting or key
wrapping, may be needed to enhance security.

F. Federated LLM tuning with LoRA

LoRA-based Fine-tuning: The Low-Rank Adaptation (Lo-
RA) method [36] approximates parameter updates via low-
rank decomposition:

Wiew = W + AW = W + PQ

where W € R™*™ represents original pre-trained weights
(e.g., in attention layers) and W, denotes the adapted ver-
sion. The update is factorized into P € R™*" and Q € R™*™,
with rank r < min(m,n). For the Bert-base model with
weight matrix W € R768%768 \e adopt a low-rank adaptation
(LoRA) method [39] by setting the rank = 8, which enables
memory-efficient fine-tuning.

FedIT: Federated Homogeneous LoRA: FedIT integrates
FedAvg and LoRA to provide parameters aggregation in
federated LLMs. FedAvg computes global updates through
weighted aggregation:

K
W) — w® 4 ZPkAWE;t) —W® 4 AW,
k=1

where py, represents client weighting factors.
FedIT [37] applies FedAvg specifically to Homogeneous
LoRA modules. Clients locally fine-tune Pj and Q) before

the server aggregates, where pj, = APl |Dy;| denotes the

. Yoy IDxl”
size of a local data set:

K K
P:ZkaIm Q:ZPka-
E=1 k=1

This approach introduces approximation errors because:

K K K
> ok(PrQy) # (ZPkPk> (ZPka) :
k=1 k=1 k=1

For two clients with updates AW, = PqQp and AW, =
P1Q;, the aggregated update deviates from the true average
by cross-client interaction terms.

III. SYSTEM ARCHITECTURE AND DEFINITIONS
A. System model and threat model

The proposed technical solution in this paper can be ab-
stracted as the system model shown in Fig. 1, which involves
four types of entities: the Trusted Authority, Unmanned Aerial
Vehicles (UAVs), the Large Language Model Server (LLM
Server) and the Verifier. The extended solution DE-SPFF
additionally involves edge nodes. These entities are described
as follows:

o Trusted Authority: It is a fully trusted entity responsible

for creating the security system, issuing parameters, and
UAV secret keys. Additionally, it assists and supervises
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iphertext of global paramets = H
ciphertext of global paramet er= = i p
ﬁ ciphertext of local parameter A A: updated UAV g A
< i secret key 4
- h ! 6]
LLM server UAV Verifier

Authority Edge Node

UAVs in completing key updates and maintains a revo-
cation list.

o LLM Server: It is a semi-trusted (honest-but-curious)

entity responsible for establishing the initial LLM and
providing UAVs with the initial global parameters. It
also periodically collects local parameters from UAVs to
fine-tune the global model and returns the final global
parameters to the UAVs.

o UAV: It is an untrusted entity that receives initial and fine-

tuned global parameters from the LLM Server, performs
local model training, and sends local parameters to the
LLM Server in each round. When the global LLM
completes fine-tuning, the UAV obtains the final global
parameters and enjoys the LLM service. In the extended
scheme DE-SPFF, it also needs to issue re-encryption
keys to edge nodes. A UAV may also act as a Delegatee,
receiving a re-encrypted ciphertext from an edge node and
decrypting it to obtain the global parameters on behalf
of a delegator UAV that has dropped out. We assume
the Delegatee UAV is also untrusted and is considered a
potential adversary that might deviate from the protocol
or collude with a compromised edge node to illegally
access the global model parameters.

« Edge Node: It only appears in the DE-SPFF scheme and

is a semi-trusted entity. When a UAV has task delegation
requirements, it receives re-encryption keys from the
UAV and performs re-encryption operations.

o Verifier: It is a new entity introduced in the DE-SPFF

scheme to ensure accountability in the open swarm net-
work. The Verifier is a third-party entity that is not trusted
with any secret keys or sensitive data. Its sole function
is to publicly verify the correctness of re-encryption
operations performed by edge nodes, ensuring they have
been executed faithfully without tampering.

verification
result

functional key

| - —
master secret key | | ciphertext ¢ ﬁm v
e __l—»

Trusted

Fig. 1: System model

The data interactions among entities in this paper are shown

in Fig. 2. First, the Trusted Authority (TA) runs the Setup
algorithm to generate the system public parameters params
and master secret key msk, then broadcasts params to the
system. Subsequently, the TA executes the SKGen algorithm
to generate a UAV secret key usk for each UAV and function
key sk for the LLM Server. The LLM Server then executes
the Enc algorithm to generate ciphertext CT for the initial
global LLM parameters Wy . Each UAV runs the Dec-initial
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Fig. 2: The interactive workflow

algorithm to decrypt CTg using its usk and obtains Wy, upon
which it performs local model fine-tuning. The UAV then
encrypts and returns its local model parameters Enc(P},) and
Enc(Qy) to the LLM Server via the Localpara algorithm.
The LLM Server executes the Fine-tuning algorithm to ag-
gregate and decrypt the local parameters from all UAVs in
the previous round, using them to fine-tune the global model
and obtain updated global parameters W. Subsequently, the
LLM Server runs the Enc* algorithm to generate ciphertext
CT for the updated global parameters W and sends it to
the UAVs. Independently, based on UAVs’ participation in
the previous round of fine-tuning, the LLM Server requests
the TA to update the revocation list RL (via the UAVupdate
algorithm). According to RL, the TA periodically executes the
UKGen algorithm to issue update keys for UAVs not in RL.
If a UAV receives an update key, it runs the USKUpdate
algorithm to update its usk. Finally, the UAV executes the Dec-
tuning algorithm to decrypt the global parameters W. These
algorithms execute iteratively until the LLM completes fine-
tuning, at which point UAVs obtain the final global parameters.
Note that in the DE-SPFF scheme, we additionally allow UAVs
that cannot continue participating in fine-tuning to delegate
their tasks to other UAVs: First, the delegator UAV executes
the RekeyGen algorithm to generate a re-encryption key rk
and sends it to an edge node. The edge node then runs the
ReEnc algorithm to produce a re-encrypted ciphertext RCT,
which is sent to the delegatee UAV. The delegatee UAV can
execute the Dec-re algorithm to decrypt and obtain the global
parameters W. Finally, a third-party verifier can determine
the relationship between RCT and CT by executing the Pub-

verify algorithm.

This system also faces the following potential security
threats stemming from its open and decentralized nature: First-
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ly, unauthorized UAVs or external adversaries might engage in
“free-riding” attacks. These malicious entities aim to illicitly
access and exfiltrate the final fine-tuned global parameters
without actively participating in the federated learning process
or possessing the proper authorization attributes. This under-
mines the intellectual property and collaborative incentive of
the system. Secondly, we consider a sophisticated collusion
attack: an edge node, once compromised, could conspire with
a malicious delegatee UAV. Their objective is to pool their
knowledgetthe edge node’s view of the re-encryption process
and the delegatee’s partial secretsito decrypt and obtain the
global parameters in violation of the access policy dictated
by the LLM server. Finally, a malicious or infiltrated edge
node could attempt to sabotage the federated learning process
by sending deliberately falsified or incorrectly computed re-
encrypted ciphertexts to a benign delegatee UAV. This Denial-
of-Service (DoS)-style attack aims to prevent the delega-
tee from correctly obtaining the global parameters, thereby
disrupting its local training and compromising the overall
robustness of the federated tuning process.

B. Security model

The selective indistinguishability of DE-SPFF under
chosen-plaintext attacks is formalized through an interactive
game between adversary A and challenger C:

1. Initialization: A selects target access policy A* and

challenge timestamp t*, sending them to C.
2. Setup: C generates public parameters pp using Setup and
provides them to \A.
3. Query Phases: A can adaptively request:
— UAV secret keys via SKGen
— Key updates via UKGen
— Revocation status via UAVupdate
4. Challenge: A submits messages co,e1. C randomly
chooses b + {0,1}, computes CT, + Enc(e), and
returns CTy,.

5. Guess: A outputs guess b’. The advantage is defined as

| Pr[t) = 0] — %

Definition 2 (IND-CPA Security): DE-SPFF achieves
IND-CPA security if all PPT A have negligible advantage
| Pr[b) = b]—3|, and any such adversary would imply a DBDH
problem solver with non-negligible advantage.

For verifiability, consider the following game:

1. Imitialization: A specifies target policy A* to C.

2. Setup: C runs Setup and gives pp to A.

3. Queries: A can query:

— Secret keys via SKGen
— Re-encryption keys via RKGen
— Verification results via Pub-verify
4. Challenge: A requests encryption of ¢* under A*. C
returns original ciphertext CT* and re-encrypted T,
5. Guess: A wins if both ciphertexts verify correctly under
Pub-verify.

Definition 3 (Verifiability): DE-SPFF provides verifiability
if no PPT A can win Gameverifiability With non-negligible
probability, unless the ECDLP assumption can be broken with
comparable advantage.

IV. SECURE AND PRIVACY-PRESERVING FEDERATED
FINE-TUNING SCHEME

This section will describe the construction of the secure
and privacy-preserving federated fine-tuning (SPFF) scheme
for UAV swarm networks. The secure sharing of global
parameters is based on Bao er al’s PH-ABE-DS scheme
[40], while the process of UAVs returning locally trained
parameters in ciphertext that participates in global LLM tuning
design follows Xu et al.’s FEBO scheme [32]. The proposed
scheme consists of three phases: The System initialization
phase generates system parameters and distributes keys to
entities. The Initial global parameter distribution phase details
how the LLM server securely delivers initial global parameters
to UAVs. The federated fine-tuning of LLM stage, the core of
this scheme, orchestrates UAVs’ local model training, secure
parameter uploading, and iterative global model refinement
until completion. Notably, to address frequent UAV dropout
issues in open swarm networks, the scheme incorporates
key update and UAV revocation mechanisms to minimize
disruption to federated fine-tuning.

A. System initialization

e Setup (\): The trusted authority defines and generates
system public parameters and a master key by executing the
following steps, which are essential for subsequent procedures.

1). Take the security parameter A\ as input, it generates
the tuple (G, Gr, g,€), where G, Gy two multiplicative
cyclic groups with the prime order p, g is a generator of
the group G, and e : G x G — Gr.

2). Assume the size of the attribute universe to be n, it
randomly selects «, 71, ..., T, € Z,, then computes g; =
g™ and Z = e(g, )", where i € [1,n].

3). Define an empty revocation list RL = @& for storing all
revoked data users. Besides, initialize a binary tree BT
with ¢ leaf nodes and the state st.

4). Initialize a [-bit timestamp ¢, then randomly choose gy €
Zy, and 91, ..., 01 € Zy, for each bit of .

5). Execute the FEBO.Setup algorithm to obtain the pub-
lic parameters mpk and secret key msk for functional
encryption.

6). The trusted authority outputs the public parameter
params = {Gv Gr.p,e.9, {gi}iE[l,n]v Z, 0o, {Qj}jE[l,l]7
t,mpk} as well as the binary tree BT with state st,
and the revocation list RL, then secretly holds the master
secret key msk = {a, {7i}ic[1,n), msk}.

e SKGen (params, msk, S, BT,st): The trusted authority
takes the public parameter params, the master secret key msk,
the attribute set S of a UAV, the binary tree BT with state
st as input, then generates the initial UAV secret key usk as
following steps:

1). Convert the attribute set .S to an attribute vector u =

(uq, ..., uy) by executing Algorithm 1.

2). It first stores the identifier id of a UAV into an undefined
leaf node #;4 of the binary BT. Then according to the
Algorithm 2, for each node = € Path(6,,), it fetches g,
from the node x if available. Otherwise, if x is undefined,
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it randomly selects g, € G, then stores g, into the node
x and update the state st « st U {z, g, }.

3). Randomly choose s € Z,, then computes g, = ¢%/g.
,sky = glg® X1 7% and sky = g°.

4). It runs FEBO.KeyDerive algorithm to obtain the func-
tional key sky for the multiplication operation f.

5). The trusted authority outputs the UAV secret key usk =
(id,u, {sk1, ska}zepatn(6,,)) and delivers it to the UAV
via secure channel. Also, it secretly sends the functional
key skj to the LLM server.

B. Initial global parameter distribution

In this phase, the LLM server establishes a globally ini-
tialized LLM Modelgiopq1, While each UAV loads an initial
local model Modely 4. The LLM server implements the
secure distribution of initial global parameters according to
the following algorithm.

e Enc (params, A, Wy, t): The LLM server takes the public
parameters params, the access policy A and the timestamp ¢
as input, then generates the ciphertext for the initial parameter
‘W, by following the steps below.

1). It first creates the access vector v = (vy, ..., v, ) accord-

ing to the access policy A by invoking the Algorithm
1, parses Wy as a bit string ¢, then randomly chooses
0,0 € Z,, and computes ¢ = ¢¢ - Z%, ~v; = n; 4+ v;6, where

i€ [l,n].

2). For each attribute ¢ € [1,n], it randomly selects
{niticpn € ZiF2 and calculate ¢g = g¢°,¢; =
gSg™™M, ..., cn = g2g~ ™. And for each bit j € [1,1] of

the timestamp ¢, it computes ¢y = 05, ¢ = gg.
3). The LLM server finally outputs the ciphertext CTg
(¢, o, Cos {cis Vi tien s 165} jepn)-

e Dec-initial (params, CT,usk): On input the tuple the
ciphertext CT and the UAV secret key usk, this algorithm
calculates ¢, gi=1 7w T, ¢, then obtain o and
reconstructs the initial parameter matrix Wy of the global
model by computing ¢ = ¢ - e(cj, sk2)/e(co, sk1).

C. Federated fine-tuning of LLM

e Localpara (W, Modely 4y ): After obtaining the initial
global parameters W, the k-th UAV continues to train its
local model Modely; 4y, resulting in local parameters Py, Q.
The UAV runs FEBO.Encrypt algorithm over Py, Qj to
obtain Enc(Qg) and Enc(Py), then forwards them to the
LLM server.

o Fine-tuning ({ Enc(Py)}, {Enc(Qu)}, sky, Model giopai):
The LLM server can obtain the update parameter AW by
inputting the encrypted local parameters P, Qp, then
invokes FEBO.Decrypt algorithm and executes the following
functional decryption, where p, denotes the corresponding
scaling factor [36].

K
AW =Q-P=) pQs-

k=0

K
> P
k=0

K

K
= sk(pr) Enc(Qi) - Y sky(pr) Enc(Py)
k=0

k=0
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K

ZSkf(pk;)EnC(Pk)

k=0

K
= " sky(pr) Enc(Qu) -
k=0

The LLM server then updates the global parameter by W <—
W+ AW.

e Enc* (params, CT', A, W, t): LLM server takes the up-
dated global parameter W, current timestamp ¢ and the access
policy A as input, then generates the ciphertext of W with the
following steps:

1). It first creates the access vector v = (v, ..., v, ) accord-

ing to the access policy A by invoking the Algorithm
1, parses Wy as a bit string £¢, then randomly chooses
0,0 € Z,, and computes ¢ = ¢¢ - Z%, ~v; = n; +v;6, where

i€ [1,n].

2). For each attribute ¢ € [1,n], it randomly selects
{niticnn € Zyt?, and calculate ¢y = ¢ =
glg™™, ....c, = g3g7 ™. And for each bit j € [1,1] of

the timestamp ¢, it computes ¢y = gg, ¢ = g?.
3). The LLM server finally outputs the ciphertext CT
(C7 co, Co, {Ci7 7i}i€[1,n]7 {éj} jE[l,l])'

e UAVupdate (id*,t,RL,st): The LLM server determines
the UAV identifiers ¢d* that need to be revoked based on
the drop-out status and behaviors (such as sending deceptive
parameters, being compromised, etc.) of UAVs during the
previous round of fine-tuning in the federated LLM. The
trusted authority obtains id* from the LLM server, then takes
the timestamp t, the revocation list RL with state st of the
full binary tree BT as input, updates the revocation list by
operating RL <— RL U (z,¢) for all nodes = € Path(8;4).

e UKGen (RL,params,st,t): The trusted authority takes
the public parameter params, the revocation list RL with
state st and the current timestamp t as input, then for each
2 € KUNodes(RL,st, ), it randomly chooses m € Z,, and
calculates

uk:1 =Gz * (QO Hje] Qj)ﬂ',uk:g — gTr

The trusted authority outputs the update key uk = (¢, {uk
s Uk} »eKUNodes(RL,st,t)) and broadcast it to the UAV network.

e USKUpdate (params,usk,uk,t): After receiving the
updated key, an UAV that has not drop-out executes the
following steps to update its own secret key. If the UAV
fails to decrypt with the updated UAV secret key, it implies
that the UAV was unable to obtain the updated key due to
drop-out and thus cannot update its own secret key, or it has
voluntarily relinquished its permission to participate in the
federated LLM system. Specifically, the UAV takes the public
parameter params, the UAV secret key usk, the update key
uk as well as the timestamp ¢ as input, then for each node
x € Path(6;4) "KUNodes(RL, st, t), it updates the UAV secret
key as follows

sky < sky -uk; = gag(erﬂ) i T (QO Hje[ Qj)w
Sk’Q — Sk’g . qu = gs+”
Skg = ng = grr

For each x € Path(#;4) N KUNodes(RL,st,t), this algo-
rithm outputs the (updated) UAV secret key usk
((id, t),u, {sky, ska, sks}).
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e Dec-tuning (CT,usk): UAV takes the ciphertext CT and
the (updated) UAV secret key usk as input, then calculates
¢y = gXi= % [ % and obtains the global parameter
W by computing € = c¢-e(c), ska)e(c, sks)/e(co, sk1). Now,
the UAV can reconstruct and load the current LLM global
parameters W and iterate through the Localpara and Fine-
tuning algorithms until the fine-tuning of the LLM global
model Modelg;opq; is completed.

V. A DELEGABLE EXTENSIONAL SCHEME

Building upon the proposed SPFF scheme, this section
presents a more flexible and scalable scheme named DE-SPFF
(delegated extensional SPFF) to address the UAV dropout
issue in federated fine-tuning of large models. The scheme
incorporates the concept of proxy re-encryption, enabling a
UAV to securely delegate its tasks to another qualified UAV
when it can no longer participate in the federated fine-tuning
process. This solution designates edge nodes to perform the
re-encryption computations. Considering the open nature of
UAV swarm networks and the partial trustworthiness of edge
nodes, the scheme provides a publicly verifiable mechanism
that allows third parties to validate the correctness of re-
encryption operations. The specific algorithmic construction
of the DE-SPFF scheme is as follows.

A. System initialization

e Setup (A\): The trusted authority defines and generates
system public parameters and a master key by executing the
following steps, which are essential for subsequent procedures.

1). Take the security parameter A as input, it generates
the tuple (G, Gr,g,e), where G, Gr two multiplicative
cyclic groups with the prime order p, g is a generator of
the group G, and e : G x G — Gr.

2). Assume the size of the attribute/access universe to be n,
it randomly selects o, 71, ..., 7, € Zp, w,z,y € G, then
calculates g; = g™ and Z = e(g, g)®, where i € [1,n].

3). Define an empty revocation list RL = & for storing all
revoked data users. Besides, initialize a binary tree BT
with ¢ leaf nodes and the state st.

4). Initialize a [-bit timestamp ¢, then randomly choose g €
Zy, and 01, ..., 01 € Zy, for each bit of ¢.

5). Define two collision-resistant hash functions Hy : Gy —
G and Hy : {0,1}" — Z.

6). Execute the FEBO.Setup algorithm to obtain the pub-
lic parameters mpk and secret key msk for functional
encryption. Also, predefine a message lock encryption
algorithm MLE [42].

7). The trusted authority outputs the public parameter
params = {G,Gr,p,e,9, 2,9y, w,{gi}ticp1,n], Z, Hi, Ha
, 00,105} je,» t, mpk,MLE} as well as the binary tree
BT with state st, and the revocation list RL, then secretly
holds the master secret key msk = {a, {7 }icp1,n), msk}.

e SKGen (params, msk, S, BT, st, upk): The trusted author-
ity takes the public parameter params, the master secret key
msk, the attribute set S of a UAV, the binary tree BT with
state st as input, then generates the initial UAV secret key usk
as following steps:

1). Convert the attribute set S to an attribute vector u =
(u1, ..., u,) by executing Algorithm 1.

2). It first stores the identifier id of a UAV into an undefined
leaf node #;; of the binary BT. Then according to the
Algorithm 2, for each node x € Path(6;4), it fetches g,
from the node x if available. Otherwise, if x is undefined,
it randomly selects g, € G, then stores g, into the node
2 and update the state st < st U {z, g, }.

3). Randomly choose s € Z,, then computes sk; =
g’xgs 221 Tivi gnd sky = qg°.

4). It runs FEBO.KeyDerive algorithm to obtain the func-
tional key sk; for the multiplication operation f.

5). The trusted authority outputs the UAV secret key usk =
(id, u, {sk1, sk} zcpath(0;,)) and delivers it to the UAV
via secure channel. Also, it secretly sends the functional
key sky to the LLM server.

B. Initial global parameter distribution

This phase is the same as that of the SPFF scheme.

C. Federated fine-tuning of LLM

e Localpara (W, Modelys 41 ): This algorithm is the same
as that of the SPFF scheme.

o Fine-tuning ({ Enc(Py)}, {Enc(Qx)}, sky, Model giopai):
This algorithm is the same as that of the SPFF scheme.

e Enc* (params, CT’, A, W, t): LLM server takes the up-
dated global parameter W, current timestamp ¢ and the access
policy A as input, then generates the ciphertext of W with the
following steps:

). It first obtains the access vector v. = (vy,...,vp)
from the access policy A’, disassembles the parameter
matrix W into a bit string ¢, then randomly chooses
R € {0,1}¥1,0 € Z,, computes ¢ = Ha(MLE(R|J¢)),
¢ = (R|le) ® Hi(Z¥), v = n; + v;b, where i € [1,n],
¢ = IHz(E)yHﬂR)’ e = g%, c3 = w.

2). For each attribute ¢ € [1,n], it randomly selects
{nitienn € Zp*2, and caleulate ¢ = g%,¢1 =
gLg™™M, ycn, = gfg~ ™. And for each bit j € [1,]]
of the timestamp ¢, it computes éy = g, ¢; = Q;f’ and
¢ =¢o-[jer ¢ = (00]1;e; 05)¢ for current timestamp
t.

3). The LLM server finally outputs the ciphertext CT =
(e,¢sco,Cos{cisVitienn)> 165 }jeqs €15 Cas €3)-

e UAVupdate (id*, t, RL, st): This algorithm is the same as

that of the SPFF scheme.

e UKGen (RL, params, st, ¢): This algorithm is the same as
that of the SPFF scheme.

e SKUpdate (params,usk,uk,t): This algorithm is the
same as that of the SPFF scheme.

e Dec-tuning (CT, usk): The UAV takes the ciphertext CT
and its (updated) UAV secret key usk as input, then calculates

¢y = gxi=1 % [ el calculates

e(co, eky)
e(c), eka)e(c, eks)
e||R = ¢ @ Hy(P)

o=
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The UAV accepts ¢ and retrieves W if ¢; = gM2()yHi1(7),
Now, the UAV can load the current LLM global parameters W
and iterate through the Localpara and Fine-tuning algorithms
until the fine-tuning of the LLM global model Modelg;opq; is
completed.

D. Task delegation

If a UAV is unable to continue participating in the fine-
tuning of a federated LLM, for instance, due to impending
battery depletion or being compromised, it can request its
neighboring edge node to re-encrypt the ciphertext. Subse-
quently, the edge node will send the re-encrypted ciphertext
to another UAV. It should be noted that the re-encryption key
and the ciphertext need to be meticulously designed to ensure
that the delegated UAV can comply with the access policies
of both the LLM server and the original UAV. Additionally,
the algorithm structure should be designed to be sufficiently
streamlined to accommodate the processing capabilities of the
lightweight computational units on the UAV.

e RekeyGen (params,ek): The UAV takes the public pa-
rameters params and the edge key ek as input, converts the
attributes of A’ into v/ = (%1, ..., T,,) by invoking Algorithm 1,
and randomly chooses x € Gr, ¢, 7’ € Z,, then calculates the
re-encryption key components rky = 2700 ¢k = skHQ(X)
w*, rky = sk Ha00 | gy skHZ(X crhy = g5 Ths = x - 27,

rkg = g , rk7; = ¥ = n; + v;0. The UAV assembles the
re-encryption key rk = (rky, rkq, vks, rka, vks, rke, {rk7:}),
and forwards it to the edge node.

e ReEnc (params, CT, rk, ¢): The edge node takes the pub-
lic parameters params, ciphertext CT, and the re-encryption
key rk as input, then it operates as follows, where ¢ =

iy v T o
g=i IIimy &

i
Co :T‘k’6,5:C7'71‘ :7]1'+1_]i0751 =C1,C =Cj
62 = CQ,Eg = C3,E4 = Tks
65 _ (Co,?”kl)
e(cy, rka)e(c rks)e(cs, rka
éj =

— =
¢=d-]] o]]
jer 7 (¢ gEI

For each bit j € [1,1] of the timestamp ¢, it computes
¢y = Qo . ¢; = 0} . The edge node outputs the re-encrypted
ciphertext RCT = (¢, ¢, ¢, €1, €2, €3, €4, Cs, Cs, {Vi }ic[1,n]» Co
ACitierm)s {é; }jen,y)- and forwards it to the delegated UAV.

e Dec-re (CT,RCT,usk): The delegatee UAV takes the
ciphertext CT, the re-encryption ciphertext RCT and the
(updated) UAV secret key usk as input, then calculates ¢, =
g2=i=17% " ¢ and obtains the global parameter W by

7/

,C6 = Tko
)

computing
_e(co, ska)e(c, sks)
X =¢Ca- -
e(CO7Sk1)
where E{) = gzgl:l v [T . The UAV computes
e|l|lR = @ Hy ;2(”), then accepts ¢ and retrieves W

if ¢ = 7[:” (E)yH2<R> Now, the UAV can load the current
LLM global parameters W and iterate through the Localpara
and Fine-tuning algorithms until the fine-tuning of the LLM
global model Model g, is completed.

e Pub-verify (CT,RCT,rk, (¢, R)): The verifier takes the
ciphertext CT, the re-encrypted ciphertext RCT, the re-
encryption key rk and the proof (¢, R) of a shared UAV, then
the validity of RCT can be verified as following steps:

1). It verifies whether the following equations hold: ¢y =
€9, C = ¢, ¢y = C1,C0 = Cp,C3 = c3,¢ = . If any of
the aforementioned equations fails to hold true, the re-
encrypted ciphertext RCT is deemed incorrect.

2). It calculates ¢ = Ha(MLE(R||e)), and checks whether
there exists ¢, = ¢; = xHQ(s)yH2(R). Please note that the
purpose of checking this equation is to verify whether the
original ciphertext CT is related to the parameter W. It
then tests whether &g = & holds, if this formula holds,
it indicates that the re-encrypted ciphertext is related
to the parameters W, in other words, the re-encrypted
ciphertext RCT is correct.

VI. SECURITY ANALYSIS

Theorem 1 (Correctness): The correctness of the proposed
SPFF and DE-SPFF schemes guarantees that if the cipher-
text, re-encrypted ciphertext, and UAV secret key are valid,
then both the original and re-encrypted ciphertexts can be
decrypted properly.

Proof: In SPFF, there are two forms of ciphertext: the
ciphertext of the initial global parameters g and the ciphertext
of global parameter during federated fine-tuning €. Due to the
similarity in the structure of decryption algorithms, here we
only demonstrate the decryption process for obtaining e.

. e(cp, ska)e(d, sks)
e(co, sk1)
Zé'e(gZL1 it H?:l C;'Li7 g5+")6((go Hje] Qj)67 gw)
e(g®, gog =t 2T (0o [T,es 04))
Z%-e(g== i [Ty o g* T )e((00 e p ), 97)
e(g?, gogttm i )e (g0, (00 [1e 05)™)
_5Zo.e(gZ;L:1 Yilq Hr’ 1 :1’95“1’7?)
(g, g%)e(g’, gletm X )
EZ‘se(gZ;Lzl “ﬂhggzyd u26T17g('§+77))
B e(gé,ga)e(géag(s+ﬂ) >y 'riui)
S‘Z(s e(gzll:1 u167i7 g(5+7r))

= _ .
6(g5’ gu)e(g(§7 g(8+7r) > -,—”M)

For the DE-SPFF scheme, owing to the structural similarity
with SPFF, we only provide the proof of correctness for the
decryption process during the Task delegation phase.

e(co, ska)e(c, sks)

e 6(507 Sk’l)
ar’ i 'y T Uz S+7‘r
X - e(g,9)*" e(g= Il ¢ Je((0o TT 25)™ . 9™)
- i=1 JEI
, s+7) i Tl
e(g”, 9% = (oo [Liere)™)
_x-elg.9)*"

e(g,9)*
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e(co, k1)
e(cpy, rka)e(c, rks)e(cs, rka)

Ha(x)(s+) vil Til;

QI
ot

as follows: When o = 0 and (u,v) = 0, C aborts to tell
that id is revoked even if S contents A. When o = 0 and
(u,v) # 0, C samples g, € G,e € Z, then creates the
UAV secret key for each 2 € Path(6;q):

e(g#, g"" g (00 IT 0)™200 - we)
— jEI
i g T
e(g= " TL et g0+ e((oo T 2%, 9™ 00)e(w?, g°)

i=1 Jerl
e(g?, g™H2(0 gHa (0 (s4m) S, mous)

e(g27:1 Yili H?:l C;}”’ Ha (x)( s+7r))
e(g?, goH200 gHa 00 (s+m) 20y mius )
e(g2iz (mtvif)u, [T, (grieg=m)ui, gH200(s+m))
_ e(g,g)a“’HQ(X)

On this basis, we have

C@H ( H2(x))
=(Rl[e) ® Hi(e(g,9)*?) @ Hi(e(g, g

Theorem 2: The proposed SPFF and DE-SPFF schemes are
indistinguishable under the selectively chosen plaintext attack
(IND-CPA) if that the DBDH problem is intractable.

Proof: Suppose there is a probabilistic polynomial time
(PPT) adversary A can break the IND-CPA security of SPFF
with a non-negligible advantage, then a challenger C can
be constructed that solves the DBDH problem with a non-
negligible probability by invoking the challenger Cigg in
[43]. Given the parameters (g, g%, g°, g¢, R), A is required to
determine whether R = e(g, 9)**¢ or R is a random element
in Gr. The interactive game between the adversary A and the
challenger C is described as follows.

Initialize: A specifies a challenge access policy A*, then C
samples o € {0,1}. When o = 0, A is a non-revoked user,
C then aborts if the attribute set S of an identity id contents
the challenge access policy A*. When o = 1, A is a revoked
user, then C aborts if the attribute set S contents the target
access policy A* and the identity id is not revoked before the
challenge timestamp t* of the challenge ciphertext CT*.

Setup: Given the security parameter A, C sets the bilinear
parameters tuple (g,G,Gr,e,) as the Setup algorithm in
the DE-SPFF scheme. In addition, C defines the revoca-
tion list RL, the full binary tree BT with state st. When
o = 0, we sample g9 € Z, and ¢1,...,00 € Z, for
each bit of ¢{. For each element in the attribute universe U,
C randomly chooses v, 31,..., 0], € Zp, it then simulates
g1 = (g9)~Vnghl = gmavntBL g = (g9)"Vvnghl =
g the 7 = e(g*, gb) to implicitly set & = ab, 7 =
—avy + B, ...,7n = —atpv, + B,. C publishes params =
{G> GT,]L €9, {gi}ie[l,n]7 Z7 00, {Qj}je[l,l]vt} 5 BT with s-
tate st and RL. And when o = 1, C calls Cipg, for paramsipg,
then it runs as the simulation for ¢ = 0. C outputs the public
parameter params = {paramsigg, g, {gi}ic[1,n],t}, the full
binary tree BT with state st and the revocation list RL.

Phase 1: A issues a sequence of queries to the challenger
C, then C interacts with A in the following way.

UAV secret key query. A queries on the UAV secret key of

an identity ¢d and an attribute set .S, C first invokes the
Algorithm 3 to obtain the attribute vector u then answers

)acsz(X)'Hztd) = RHE

’
Biui

Sy (g T

n
sky =g, —1 H w“l

i=1
( ) b <u vy

Notice that the UAV secret key can be parsed as below
if we sets:eﬁ—m:

n ’
’ . Biuq
sk =g, ' [[((g") ¥ g%) e - (¢") 76
i=1
n

_ -1 —au; viPe —abuiv;
=g9:" [19 g v
=1

u;

[5
gabwulvl 1/<u, vy > gﬁ Uzegu) (u v)

b
=g7 -1 H —awvl i (€4 gro— w(u = (gﬁg)uz(€+ Ty
i=1
abypu;v; 71#&#)

g9
=g -1 (lb H ad)m uz(€+ 1““ 7y )
n
=9"/gx | [(9:)"*
i=1
sko :ge(gb)m = ge+w W = g°

C returns the UAV secret key usk = (id, @, {sk;
, 5k} pepath(0:4)) With state st < st U {z, g, }.

When o = 1 and (u,v) = 0, C specifies an unoccupied leaf
node 6,4 for an identity id. For each x € Path(6,4), it
defines g, if available, otherwise randomly selects g,., s €
Z,, and calculates

sk = gog® 21T sky = g°

C returns usk = (id, i, {sk1, sk2}zcpath(0:4))-

Update key query. A queries for the update key of a
timestamp ¢, then C defines a collection I = {j|t[j] =
0,7 € [1,1]}. When o = 0, C randomly chooses 7 € Z,,,
then calculates

uky = gu - QOH

C returns the update key uk =
zEKUNodes(RL,st,t))'
When ¢ = 1, C calls the secret key skipp = (ski1BE
,skopr) from Cipg about ¢, then selects 7 € Z,
randomly and computes

T ouky = g"

(t, {uk1 5 ukg}

uky = sk1,188/92 + (00 H jer )"

QUHE[

T+T

(s

(9°/92) - ﬂ+r

uky = skoBe - 9" =g

C returns the update key uk =
2€KUNodes(RLst,t)) t0 A.

(t, {Uk’l, ukg}
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UAV secret key update query. A requests for the update on
its UAV secret key usk. When o = 0 and (u,v) = 0,
C aborts. And when o = 0, (u,v) = 1, C retrieves the
UAV secret key usk and the update key uk if available,
otherwise C performs the UAV secret key query and the
update key query to obtain usk and uk. Then C calculates

n
Bl

ski =sk1 - uk; = H(((ga)fwulgﬂg)w) : (gb)w'“'v>

i=1
“ (00 H].d 0;)
8’
sky =sky - uky = g<t™ (g%) T W
sks =uke = g™

C returns the updated UAV secret key usk =

((ed, t),u, {sky, ska, sks}).
When o = 1, C also retrieves usk and uk if available,
otherwise C performs the UAV secret key query and the
update key query to obtain usk and uk. C then calculates

= . — gL S e Tilli | \TAT
Skl —Skl uk1 =g g 1 (QO H]EI Q])
8]{?2 :Skg . ukg = gﬂdr”_‘

sky =uko = g"

C returns the updated UAV secret key usk =
((ed,t),u, {sky, ska, sks}).

Revocation query. A issues the revocation query on an
identity id and a timestamp ¢, then C updates the re-
vocation list by operating RL < RLU (z, ) for all nodes
x € Path(0;q).

Challenge: A specifies two equal-length messages €q, €1.
Then, for 0 = 0, C picks b € {0,1} and calculates ¢* =
ey - R and (g¢, (g°)P1, ..., (g°)Pn). They can also be parsed as
((367 {C:}ie[l,n]) = (g679v16(91)67 R (gvné(gn)é) if it defines
0 = ¢, 0 = actp, where

C:-F _ (gc)/}; _ (gc)awvz—awvi+ﬁ,{,
= (g)* (g°) Wt = g (i)

C also picks 71, ...,n,, € Z, then calculates:

;g =9"g:) 97" = g"" " (9:)" = glg" =<}

where 1; = —v;0+ 1}, so we further obtain 7, = v;0+n; =
Yi-
C then calculates ¢ = of, ¢ = ¢, and ¢/* = & 1ler e =
(00 [Ljer 0;)%, where I is the index collection of all zero bits
t[j]=01int.

When 0 = 1 and ¢t < t*, the user with identity id*
and (u,v*) = 0 has been revoked, that is, (id*,t) € RL.
Then C aborts because id* was revoked before the time
period t*. When ¢ = 1 and ¢t > t*, the user with id*
and (u,v*) = 0 has been revoked, that is (id*,t) € RL.
C sends (eg,e1,t*) to Cipg, then Cipp returns c¢jpp =
(¢" = ep-e(g:9)*¢5 = ¢°,¢" = (00[1,e; 0)°)- Then,
C picks 0,{ni}icpin € ZZH and calculates v = n; + v;0,
¢ = glg™" and & = gf and & = of. C returns CT" =
(¢, ¢, {¢E, 77 Yierals 125} jern) about the message
M, and A*.

Phase 2: This phase is identical to Phase 1.

Guess: A outputs its guess b’ € {0,1} on b. When o = 0,
if ' = b, we say A wins the game Gamefnp, ‘ora =, then
C outputs 1 to guess R = e(g, g)**°. Otherwise, A fails and
outputs 0 to indicate that R is a random element in the group
G. When o = 1, C solves the DBDH problem by resorting to
CiBE.

A comprehensive analysis, considering the number of
queries gs made by A, shows that the probability that C suc-
cessfully completes the simulation without aborting is at least
1/(2-&(gsk)), where £(+) is a polynomial function representing
the worst-case number of possible abort conditions per query.

If C does not abort, the simulation for A is perfect. There-
fore, if A wins the IND-CPA game (i.e., guesses b’ = b cor-
rectly), so does C in solving the DBDH instance. Conversely,
if A fails, C guesses randomly.

Thus, the advantage of C in solving the DBDH problem is
directly related to the advantage of A:

1
AdveP () 2 5

Since AdvA'NP~CPA (k) is assumed to be non-negligible,
and 1/(2 - £(gsk)) is a non-negligible fraction (as gsp is
polynomial in ), it follows that AdvgPPH (k) is also non-
negligible. This contradicts the DBDH hardness assumption,
proving the theorem.

O

Theorem 3: The re-encryption process of the proposed DE-
SPFF scheme is verifiable under the discrete logarithm (DL)
assumption.

Proof: Assume an adversary A can break the verifiabili-
ty of the proposed DE-SPFF scheme with a non-negligible
probability , then we can construct a probabilistic polynomial
time challenger algorithm C that solves the DL problem with
a non-negligible probability. More specifically, given the tuple
(e,G,Gr,p,g,9"), the goal of C is to solve the value r. The
verifiability game is described as follows.

Initialize: The adversary A claims the challenge access
policy A*.

Setup: C randomly selects o,rK,vV,w,T1,....Tn € Zp,
then calculates g; = ¢, Z = e(g,9)% = = ¢, y =
g%, w = ¢*, where i € [l,n]. It also defines two
collision-resistant hash functions H; : Gy — G and Hs :
{0,1}* — Z%, and a message lock encryption algorithm MLE.
The challenger C outputs and forwards the public param-
eter params = {G,Gr,p,e,9,2,y,w,{gi }ticn,n), Z, Hi1, Ha
, 00,105} jen . MLE}, then secretly holds the master secret
key msk = {a, {Ti}ic1,n) }-

Phase 1: The adversary A issues a series of queries on
the UAV secret key usk, and the re-encryption key rk and
re-encrypted ciphertext verification. Then, the challenger C
answers these queries by running the SKGen, RKGen and
Pub-verify algorithms.

Challenge: The adversary A queries a ciphertext by
sending a message €* and A*. The challenger C invokes
the Enc* algorithm and returns the ciphertext CT" =

(C*a C/*7 CS? 637 {C;'K?f}/;}iG[l,nh {é;f}jG[lA,l]? CT, 037 Cik%)

- AdVIPOPA (k) — negl(k)



Page 17 of 107

IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, VOL. , NO. , 14

Phase 2: In this phase, the adversary A issues the same
queries to C as Phase 1.

Guess: The adversary A sends a ciphertext CT’
(C*/> C/*Iv Cglv 66,7 {C:/>7;,}i€[l,n]v {é;"}je[l,l]a CT,7 C;/v Cgl) to
C. The challenger C obtains a UAV secret key usk, then
decrypts the ciphertext CT*. If the ciphertext CT’* can
be correctly decrypted, which implies ¢} = cf, that is,
gh2(e)yH(BY) - — wH2(E*/)yH2(R*,). It can be parsed as
gF(H2(€) g (Ha(R) — gr(Ha(e™)) gu(Ha(R™) | then we have
K(Ha(e*') — Ha(e*)) = 9(H2(R*') — Ha(R*)), and & can be
w(Hz(R™)—Hy (R"))

Hz(e*")—Ha(e*)

If the forgery is valid but RCT™ is incorrect, it implies that A
has somehow manipulated the components related to the secret
k. By examining the difference between a correctly formed
RCT and the forged RCT*, and by leveraging the answers A
made to the random oracles Hy, C can extract a solution to
the DL problem.

Using the Forking Lemma [44], C can rewind A and run
it again with a different response for the Hs query on the
message €* (or R*). From the two forged signatures obtained
from these two runs with different hash outputs, C can solve
for the unknown exponent .

The probability that C successfully extracts the discrete
logarithm & is polynomially related to the probability that
A produces a forgery. Specifically, there exists a polynomial
function ((x) such that:

calculated by k =

AdvP¥ (k) > L (Advxerif(li) - negl(ﬁ))2
(%)

The square term and the polynomial fraction 1/((k) are
typical results obtained through the application of the Forking
Lemma. Since Adv (k) is non-negligible by assumption,
it follows that Advg"(x) is also non-negligible. This con-
tradicts the DL hardness assumption, proving the theorem.

O

Theorem 4: The proposed DE-SPFF scheme is secure
against free-riding attack, collusion attack, and falsified re-
encryption.

Proof: Resilience against free-riding attack: The threat of
unauthorized entities “free-riding” to steal global parameters
is mitigated by the core design of our attribute-based encryp-
tion scheme. Access to the global parameters W is strictly
controlled by the ciphertext policy A embedded in CT by
the LLM server. An unauthorized UAV or external adversary
possesses a secret key usk linked to an attribute set S that
does not satisfy A. As formally proven in Theorem 2 under
the DBDH assumption, such an adversary cannot decrypt the
ciphertext CT to recover W. The scheme does not rely on
network-level security to prevent access; rather, cryptographic
access control ensures that only authorized participants (those
with valid, non-revoked credentials whose attributes satisfy
the policy) can decrypt and benefit from the fine-tuned model,
effectively eliminating the free-riding threat.

Resilience against collusion between a compromised edge
node and a delegatee UAV: This is a sophisticated attack
where a malicious delegatee UAV (the recipient of a re-
encrypted ciphertext RCT) colludes with a compromised edge

node to try and extract the global parameters. The security of
the proxy re-encryption process in DE-SPFF is specifically
designed to prevent this. The edge node performs its re-
encryption operation using a re-encryption key rk provided
by the delegator UAV. Crucially, this rk is generated from the
delegator’s secret key usk and is bound to the access policy A’
of the delegatee. While the colluding parties have access to rk
and RCT, they do not possess the private key of the delegatee.
Decryption of RCT (Dec-re algorithm) requires the delegatee’s
own secret key to compute the final symmetric key. The design
ensures that the re-encryption key rk alone is insufficient for
decryption. The confidentiality of the underlying plaintext is
maintained under the hardness of the DBDH problem, as the
re-encryption process does not create a new vulnerability. The
edge node and the delegatee cannot combine their knowledge
to learn anything beyond what the delegatee is already autho-
rized to learn, which is the plaintext W if its attributes satisfy
the policy, an event that is not considered a breach. If the
delegatee’s attributes do not satisfy the policy, the collusion
still cannot decrypt the ciphertext.

Resilience against falsified re-encryption by a malicious
edge node: The threat of an edge node returning a falsified or
incorrectly computed RCT to disrupt the delegation process is
neutralized by the public verifiability feature of the DE-SPFF
scheme. As proven in Theorem 3 under the DL assumption,
any deviation from the correct ReEnc algorithm will be detect-
ed with overwhelming probability by the Pub-verity algorithm.
A third-party verifier (which could be the delegatee UAV
itself, the delegator, or a ground control station) can check
the correctness of RCT relative to the original CT and the
public re-encryption key rk without needing any secret infor-
mation. The verification process checks the structural integrity
and cryptographic consistency of the re-encrypted ciphertext.
Therefore, a malicious edge node cannot successfully sabotage
the learning process of a benign delegatee UAV by sending
garbage data, as such action would be detected and the faulty
RCT would be rejected. [J

VII. PERFORMANCE ANALYSIS

This section presents the analysis of the proposed DE-
SPFF scheme in terms of theoretical comparison, experimental
comparison, and simulation evaluation. Please note that we are
the first to apply ABE to the scenario of federated LLM fine-
tuning for UAV swarm networks. Therefore, we only compared
DE-SPFF with Ge et al.’s VF-ABPRE scheme [41], Zhang et
al.’s EFPR scheme [45], and Li et al.’s DAPRE scheme [46]
at the algorithmic level.

A. Theoretical comparisons

A functional comparison of the aforementioned schemes is
presented in Table I. Among them, the proposed DE-SPFF
only implements the AND-Gate access structure, whereas the
other schemes provide the more expressive LSSS access struc-
ture. Only DE-SPFF supports user revocation, which means
it can effectively address scenarios involving UAV drop-out
during the execution of federated LLM fine-tuning tasks.
Only DE-SPFF provides access policy hiding, indicating its
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capability to protect users’ attribute privacy information while
providing data access control. Similarly, only DE-SPFF sup-
ports wildcard matching, allowing for flexibility in attribute-
based access control. All four schemes are delegatable, which
enhances their scalability and flexibility. Compared to EFPR
[45] and DAPRE [46], both VF-ABPRE [41] and DE-SPFF
enable verifiable delegation, thereby preventing third parties
from generating fraudulent re-encrypted ciphertexts.

TABLE I: Functional comparisons

Schemes Access User Ro]jcy Wildcgrd Crogs De]f;gation
structure | revocable | hiding | matching |domain | verifiable
VF-ABPRE [41]| LSSS X X X v v
EFPR [45] LSSS X X X v X
DAPRE [46] LSSS X X X v X
DE-SPFF AND v v v v v

A comparison of the aforementioned schemes in terms of
storage and computational complexity is presented in Table
II and Table III, respectively. As can be readily observed
from Table 11, the proposed DE-SPFF scheme features a fixed
length for user keys. In terms of ciphertext, EFPR [45] and
DAPRE [46] exhibit fixed complexity, which is superior to
that of VF-ABPRE [41] and DE-SPFF. Regarding the storage
complexity of re-encryption keys, DE-SPFF demonstrates a
significant advantage over VF-ABPRE [41], EFPR [45], and
DAPRE [46].

Table III illustrates the comparison of the aforementioned
schemes in terms of computational complexity. It is evident
that the proposed DE-SPFF scheme incurs only constant
overheads in the key generation, key update, re-encryption
key generation, and verification phases. Although the other
schemes do not involve key update and verification phases,
DE-SPFF still exhibits significant advantages over them in
the key generation and re-encryption key generation phases.
Among the other algorithms, the computational complexity of
SPFF is related to the number of attributes or the bit length
of the timestamp.

B. Experimental comparison

We conducted experimental evaluations of the target
schemes on a laptop equipped with an Intel Core Ultra 9 185H
processor (2.30 GHz), 32 GB of RAM, and a 64-bit Windows
10 OS. The primary aim was to assess and contrast the real-
world performance of these schemes. The implementation
leverages the PBC library [47]. These schemes rely on a
supersingular elliptic curve E/F), : y? = 23 + x defined over
the finite field IF,,, with an embedding degree of 2. Here, p
represents the prime order of the group G;. Consequently, the
bit-lengths of elements in G; and G, are both 128 Bytes, while
the bit-length of elements in Z,, is 20 Bytes. The dataset used
is the Semantic Drone Dataset, released by ETH Zurich, which
is an aerial image semantic segmentation dataset. It consists
of high-resolution urban scene images captured by drones
(700 images in total) with pixel-level annotations, covering
20 object categories such as buildings, roads, and vehicles.
We randomly selected a subset of these images and converted

them into bit strings using the OpenCV library to evaluate the
performance of our algorithm on bit strings.

The storage overhead comparison between our proposed
DE-SPFF scheme and the VF-ABPRE [41], EFPR [45], and
DAPRE [46] schemes across different phases is illustrated in
Fig. 3, where we varied the number of attributes from 10 to
50, and set the bit length of timestamp as 10. Fig. 3-(a) shows
that while the user secret key storage overhead of VF-ABPRE
[41], EFPR [45], and DAPRE [46] increases with attribute
count, DE-SPFF maintains a constant and significantly lower
overhead due to our optimized key structure. In Fig. 3-(b), both
VF-ABPRE [41] and DE-SPFF exhibit growing ciphertext
storage overhead with increasing attributes, with DE-SPFF
outperforming VF-ABPRE [41] while remaining below 10 KB
at 50 attributes, though slightly higher than EFPR [45] and
DAPRE [46]. The re-encryption key storage comparison in
Fig. 3-(c) reveals that all schemes scale with attribute count,
but DE-SPFF maintains the lowest overhead (under 10 KB at
50 attributes). Similarly, Fig. 3-(d) demonstrates that while
re-encrypted ciphertext storage grows with attributes in all
schemes, DE-SPFF consistently achieves superior efficiency
compared to the alternatives.

Fig. 4 presents the computational overhead comparison
across different phases, where we varied the number of at-
tributes from 5 to 50 in increments of 5. As shown in Fig.
4-(a), DE-SPFF maintains stable computational time for UAV
secret key generation with an average of 15.27ms, while other
schemes exhibit near-linear growth that significantly exceeds
DE-SPFF’s performance (VF-ABPRE requires nearly 1400ms
for user secret key generation at 50 attributes). For encryption
time (Fig. 4-(b)), EFPR remains stable while other schemes
including DE-SPFF show near-linear growth, with DE-SPFF
requiring 926.10ms at 50 attributes - though higher than EFPR
[45], it demonstrates clear advantages over VF-ABPRE [41]
and DAPRE. Regarding re-encryption key generation (Fig. 4-
(c)), VF-ABPRE [41] and EFPR display near-linear growth,
whereas DAPRE [46] and DE-SPFF maintain stability with
DE-SPFF showing particularly superior efficiency. During re-
encryption (Fig. 4-(d)), EFPR [45] and DAPRE [46] remain
lightweight (;100ms), while DE-SPFF (539.61ms at 50 at-
tributes) significantly outperforms VF-ABPRE [41] despite its
attribute-dependent growth. Decryption performance (Fig. 4-
(e)) reveals that while all schemes scale with attribute count,
DE-SPFF demonstrates marked superiority (under 500ms at 50
attributes). Fig. 4-(f) compares verification time between VF-
ABPRE [41] and DE-SPFF (the only schemes supporting pub-
lic verification), showing consistently low and stable overhead
for both. Crucially, DE-SPFF innovatively achieves wildcard
matching, user revocation, policy privacy preservation, and
publicly verifiable re-encryption without introducing complex
algorithmic structures, while significantly outperforming other
schemes in user/UAV secret key generation, re-encryption key
generation, and decryption phases, while maintaining com-
petitive advantages in encryption, re-encryption, and public
verification phases.

We also designed an experiment to simulate and evaluate the
additional communication and computational time overhead
incurred by passing upstream and downstream parameters to
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TABLE II: Storage complexity comparisons
Schemes user secret key ciphertext re-encryption key re-encrypted ciphertext
VF-ABPRE [41]| (n+2)|G| (2n+3)|G| (3n+4)|G|+2|G7| (2n+2)|G|+2|G7|
EFPR [45] (n+4)|G| 3|G|+|Gr| (2n+4)|G|+(2n+1)|Zp| |(2n+3) |G|+ |G|+ (2n+1)|Zy|
DAPRE [46] (n+2)|G| 9|G|+|Gr| (2n+6)|G|+|Gr| (2n+6)|G|+2|G7|
DE-SPFF 3|G| (n+1+7)|G|+n|Zp|| 4|G|+2|Gr|+n|Zp| (n+146)|G|+2|Gr|+n|Zp|
Notations: n: number of attributes; I: bit length of the timestamp; |Zp|: an element in Zp; |G|: an element in the group G; |Gr|: an element in Gp.
TABLE III: Computational complexity comparisons
Schemes key generation encryption rk genration re-encryption decryption key update|verification
VF-ABPRE [41] (n+3)ec (Bn+4)eg+ea, (4n+5)eg+2ea, (2n+2)P (2n+1)P+2eg+eq, N/A 2eq
EFPR [45] (n+T7)ec deg+ear (Bn+2)eg+tea, 2P (2n+2)P+(3n+2)ec N/A N/A
DAPRE [46] |(2n+15)eq+(2n+6)H| (4n+T7)eg+2nH ldeg+3H 6P (n+4)P N/A N/A
DE-SPFF 2eq (2n+l+6)eg+eGT+H beg+2eq, AP+ (n+l+2)ec 3P+(n+3)eg+eGT+H 2eq 2eq

Notations: n: number of user’s attributes; [: bit length of the timestamp; e: exponential operation over the group G; eg..: exponential operation over the
group Gp; P: bilinear pairig; H: map-to-point hash function; N/A: Not applicable.
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and computational costs of the

UAVs and the server, respectively, during federated fine-tuning
enabled by function encryption. We set the number of UAVs to
increase exponentially from 2! to 25, and recorded the results
for each round of federated fine-tuning, as shown in Fig. 5.
Fig. 5-(a) shows the communication and computational time
overhead on the UAV side. It shows that the overhead per
UAV is nearly constant, with a communication overhead of
3MB and an average (encrypted) computational time of 297.36
seconds for one round of federated fine-tuning. Given the UAV
hardware configuration and task execution cycle, these storage
and computational time overheads are reasonable. Fig. 5-(b)

Computational time costs (seconds)

shows the communication and computational time overhead on
the server side. It shows that both server-side computational
and communication overheads show a significant upward trend
with the number of UAVs. When the number of UAVs reaches
64, the communication overhead for security and privacy
protection in a round of global model fine-tuning on the server
is 584.96 MB, and the computational time is 6291.2 seconds.
These results are simulated on our personal computer. For the
server in real scenarios, the above communication overhead
is reasonable and the computing time will be significantly
reduced.

VIII. CONCLUSION

This paper provides systematic solutions to several critical
issues urgently needing resolution in federated LLM fine-
tuning for UAV swarm networks. Specifically, we propose
the SPFF scheme, which is based on an improved inner-
product ABE algorithm. This algorithm can provide efficient
and privacy-protected one-to-many sharing of downlink global
parameters for federated LLM fine-tuning in UAV swarm
networks. A secure upload mechanism for uplink local up-
date parameters and a fine-tuning mechanism over encrypted
parameters are constructed based on functional encryption.
Aiming at the potential impact of UAV drop-out on the
robustness of the federated LLM system, the scheme judges
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and processes the UAVs that have left the federated fine-
tuning by designing an efficient revocation mechanism. On
this basis, the DE-SPFF scheme designs an efficient and
verifiable proxy re-encryption mechanism. This mechanism
is used to provide task delegation for UAVs that can no
longer participate in tasks and allows public verification of
the validity of re-encrypted ciphertexts. Strict formal security
proofs and performance comparison analyses show that the
proposed schemes are secure, efficient, and practical. Despite
the promising results, our proposed schemes have certain
limitations that warrant further investigation. First, the current
access control structure in DE-SPFF is limited to AND-
gate policies, which may not fully capture complex real-
world access requirements. Future work could explore more
expressive policy structures, such as LSSS, while maintaining
efficiency. Second, the reliance on a trusted authority for key
management introduces a single point of failure and may not
be fully aligned with the decentralized ethos of UAV swarm-
s. Investigating decentralized key management mechanisms,
such as blockchain-based approaches, could enhance system
resilience and trust distribution. Third, while the schemes are
designed for resource-constrained environments, the compu-
tational overhead of cryptographic operations remains non-
negligible for extremely lightweight UAVs. Further optimiza-
tions, including hardware acceleration or more lightweight
cryptographic primitives, could be explored to better suit ultra-
low-power devices. Finally, the current security model assumes
semi-honest edge nodes; extending the scheme to withstand

fully malicious adversaries would strengthen its applicability
in more hostile environments. Future research will also focus
on large-scale real-world deployments and interoperability
with existing UAV communication standards.
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