
IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, VOL. , NO. , 1

Enabling Privacy-preserving and Drop-out Resilient
Federated LLM Fine-tuning for the low-altitude

UAV Swarm Networks
Yangyang Bao, Xiaochun Cheng Senior Member, IEEE, Liming Nie*, and Junyi Tao

Abstract—Advancement of unmanned aerial vehicle (UAV)
swarm networks presents transformative opportunities for low-
altitude surveillance, disaster response, and distributed sensing,
where federated large language models (LLMs) enable collabo-
rative learning while preserving data privacy, enhance swarm-
level situational awareness through decentralized knowledge
fusion, and support adaptive decision-making across dynamic
low-altitude operational environments. However, federated LLM
fine-tuning for UAV swarm networks operating in low-altitude
settings faces three unresolved security and practical issues: (1)
Lack of efficient methods to protect parameter security during
uplink/downlink transmission under low-altitude communication
constraints; (2) Absence of effective mechanisms to handle
frequent UAV dropouts caused by low-altitude dynamics that
may compromise the robustness of federated LLM systems; and
(3) Constraints in UAVs’ computing, storage and communication
resources under typical low-altitude mission profiles. To address
these challenges, this paper proposes a Secure and privacy-
preserving federated fine-tuning (SPFF) scheme for low-altitude
UAV swarms that enables: efficient and privacy-preserving one-
to-many distribution of global parameters for downlink federated
fine-tuning; secure and efficient uplink local parameter uploading
adapted to low-altitude network conditions; and encrypted-
parameter-based global model fine-tuning. The scheme also
incorporates an efficient supervised key update mechanism to
address UAV dropout issues common in low-altitude operations.
Moreover, we design a delegable extensional SPFF (DE-SPFF)
scheme that employs proxy re-encryption to allow UAVs to dele-
gate tasks to other drones before exiting the federated fine-tuning
process in volatile low-altitude environments, while providing
public verifiability for re-encryption operations performed by
semi-trusted edge nodes. Formal security proofs demonstrate
the security of the proposed schemes under low-altitude threat
models. Theoretical analysis and experimental results confirm
their superiority and practicality for low-altitude UAV swarm
applications.

Index Terms—Attribute-based encryption, federated fine-

Manuscript received May 31, 2025, revised September 5, 2025. This
work is sponsored by UKRI (Grant Number: EP/W020408/1), Doctoral
Training Centre at Swansea University (Grant Number: RS718), National
Natural Science Foundation of China (NSFC) (Grant Number: W2412110),
and China Postdoctoral Science Foundation (Grant Number: 2024M753597).
(Corresponding author: Liming Nie.)

Yangyang Bao is with Antai College of Economics and Management,
Shanghai Jiao Tong University, Shanghai, and also with the Postdoctoral
Station of Credit Reference Center, People’s Bank of China, Shanghai,
201201, China (email: byy sjtu@sjtu.edu.cn).

Xiaochun Cheng is with the Department of Computer Science, Swansea
University, Bay Campus, Fabian Way, Swansea, SA1 8EN, Wales, U.K (e-
mail: xiaochun.cheng@swansea.ac.uk).

Liming Nie is with the College of Big Data and Internet, Shenzhen
Technology University, Shenzhen, Guangdong Province, 518118, China, (e-
mail: nieliming@sztu.edu.cn).

Junyi Tao is with the Department of Computer Science, Stony Brook
University, Stony Brook, NY 11794 USA (e-mail: jutao@cs.stonybrook.edu).

tuning, functional encryption, large language model, unmanned
aerial vehicle network.

I. INTRODUCTION

THE rapid advancement of unmanned aerial vehicle (UAV)

swarm networks [1] has introduced unprecedented oppor-

tunities for applications in surveillance, disaster response, and

distributed sensing, while simultaneously posing significant

challenges in communication, coordination, and autonomous

decision-making [2]. These challenges are particularly acute in

low-altitude environments, where UAV swarms must operate

amidst complex urban canyons, varying terrain, and dynamic

atmospheric conditions that create unique constraints and vul-

nerabilities [3]. Traditional control paradigms often struggle

to cope with the dynamic, large-scale, and highly uncertain

nature of these environments, necessitating more intelligent

and adaptive solutions. In this context, the integration of

Large Language Models (LLMs) [4] with federated learning

(FL) presents a transformative paradigm for next-generation

UAV swarm intelligence. This federated LLM framework

is uniquely suited to address the core challenges of low-

altitude swarm operations. Unlike centralized AI, it enables

collaborative knowledge fusion across the swarm without

centralizing raw data, thus preserving privacy and reduc-

ing bandwidth overheadła critical advantage for bandwidth-

constrained UAV networks. LLMs contribute their remarkable

capabilities in contextual reasoning, situational awareness, and

complex mission planning, allowing the swarm to interpret

complex environmental cues, generate adaptive flight plans,

and understand high-level human intent. Federated learning

orchestrates this process, allowing each UAV to fine-tune

shared LLMs locally on its sensory data and lived experience,

after which only the learned model updates (not the sensitive

raw data), are securely aggregated to evolve a collective swarm

intelligence.
However, while LLMs have demonstrated exceptional per-

formance in general-purpose domains, their direct application

to UAV swarm networks operating in low-altitude settings

remains constrained by several critical factors, including real-

time processing requirements, domain-specific knowledge gap-

s, and the need for robust operation in mission-critical sce-

narios. Consequently, federated LLM fine-tuning [5] for UAV

swarm networks has become an essential research direction,

aiming to bridge the gap between generic language models

and the specialized demands of swarm intelligence in low-

altitude airspace. This approach involves optimizing LLMs

Page 4 of 107

IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, VOL. , NO. , 2

for multi-agent collaboration, dynamic resource allocation, and

emergent behavior modeling under the specific constraints of

low-altitude operations, while addressing key challenges such

as data efficiency in training, robustness against adversari-

al conditions, and interpretability in decentralized decision-

making systems. Recent studies further suggest that tailored

LLM architectures could enhance swarm adaptability in low-

altitude environments, enabling more sophisticated human-

swarm interaction and autonomous mission planning, thereby

opening new frontiers in intelligent swarm control for low-

altitude applications.

A. Security and practicality issues

Although federated LLM bring boundless benefits to the

performance optimization and application expansion of UAV

swarm networks operating in low-altitude environments, due

to their openness, dynamism, and unique architectural char-

acteristics, several security and practicality issues need to be

addressed for federated LLM systems tailored for low-altitude

UAV swarm networks to transition from theoretical blackprints

to practical deployment.

(1) Lack of systematic data security protection mech-
anisms for the upstream/downstream parameters trans-
mission in federated LLM. Federated fine-tuning of LLM

in low-altitude UAV swarm networks operates as a data-

driven service framework where the core challenge lies in

securing the bidirectional parameter exchange between the

server and UAV nodes, exposing critical vulnerabilities in

data interaction [6]. While cryptographic methods are com-

monly employed, the unique characteristics of federated LLM

parameter transmission-divided into distinct upstream (UAV-

to-server, involving the upload of local model updates) and

downstream (server-to-UAV, involving the broadcast of global

model parameters) flows, introduce unaddressed risks absent

in conventional data-sharing scenarios, particularly in low-

altitude operations where signal obstructions and interference

are prevalent. Downstream data, involving the server broad-

casting global parameters to UAVs at each round’s outset,

requires robust one-to-many access control to prevent unau-

thorized interception or tampering, yet existing mechanisms

fail to ensure parameter integrity and confidentiality across dy-

namic swarm topologies typical of low-altitude environments.

Upstream data, comprising locally fine-tuned parameters u-

ploaded by UAVs, faces dual threats: insecure transmission

channels risk exposing sensitive model updates to eaves-

dropping, while the server’s direct access to raw parameters

compromises privacy by potentially reconstructing proprietary

local data. Crucially, the absence of tailored safeguards for

upstream/downstream flows leaves low-altitude UAV swarms

susceptible to model inversion attacks, parameter hijacking, or

adversarial manipulation, undermining the federated learning

paradigm’s foundational promise of decentralized privacy.

(2) Lack of effective countermeasures to drop-out issues
in dynamic UAV swarm networks. Federated fine-tuning of

LLM in low-altitude UAV swarm networks faces a critical

challenge due to the lack of effective countermeasures against

frequent UAV drop-outs [7], a problem inherently tied to the

network’s dynamic nature and exacerbated by low-altitude

operational constraints. The volatile low-altitude operational

environmentłcharacterized by unstable connectivity due to

urban obstructions, limited battery endurance, susceptibility

to cyber-physical attacks, and mission-induced mobilityłleads

to unpredictable node departures that disrupt the federated

learning process. Unlike conventional federated systems with

relatively stable participants, low-altitude UAV swarms ex-

perience constant flux in their active node population, caus-

ing severe data skew and model bias as disappearing nodes

leave their local updates incomplete or unsynchronized. This

instability not only degrades the global model’s convergence

rate but also risks catastrophic forgetting of knowledge from

dropped UAVs, particularly when their data distribution differs

significantly from surviving nodes. The absence of dropout-

resilient aggregation mechanisms further exacerbates the issue,

as standard federated averaging fails to account for the lost

contributions, leading to suboptimal or even divergent mod-

el performance. Moreover, repeated rejoining of previously

dropped UAVs-common in low-altitude swarm scenariosłin-

troduces additional complications, as their stale parameters

may contaminate the global model if improperly reintegrated.

Without dedicated strategies to mitigate these effects, the

reliability and quality of LLM services in such highly dynamic

low-altitude networks remain fundamentally compromised.

(3) Conflict between resources-constraints [8] of the
UAV onboard processing unit and heavy computational,
storage and communication costs of the secure federated
LLM. Federated fine-tuning of LLMs for low-altitude UAV

swarm networks faces a critical conflict between resource

constraints and security requirements, where the computa-

tional, storage, and communication costs of secure federated

learning directly challenge the limited capabilities of onboard

processing units. Unlike conventional federated learning sce-

narios with stable infrastructure, low-altitude UAVs operate

under strict weight and power limitations, forcing them to

rely on resource-constrained edge devices that struggle with

the inherent overhead of federated LLM tuningłparticularly the

iterative upstream (gradient upload) and downstream (model

broadcast) transmissions in each training round. The need for

cryptographic protection further exacerbates this tension, as

traditional encryption methods impose prohibitive latency and

energy consumption on already strained UAV hardware, which

is particularly critical in low-altitude operations where rapid

response is essential. While lightweight cryptography seems

essential, tailoring specialized algorithms for federated LLMs

introduces additional technical complexity, potentially creating

new bottlenecks in computation or memory usage. These

compounded resource demands create an inherent tension

where the security mechanisms themselves risk becoming

the system’s bottleneck, potentially undermining the feder-

ated learning process through excessive computation delays,

communication congestion, or premature energy depletionłall

particularly problematic in low-altitude environments where

operational endurance is already limited. The situation is

further aggravated by the need to maintain training continuity

across intermittent wireless links typical in mobile low-altitude

UAV operations.

Page 5 of 107

IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, VOL. , NO. , 3

B. Existing solutions and challenges

Limitations of existing solutions. To the best of our knowl-

edge, there currently exists no systematic cryptographic solu-

tion for UAV-aided networks that comprehensively addresses

the aforementioned challenges in federated LLM fine-tuning,

particularly in low-altitude scenarios.

To elaborate plainly on Problem (1), secure downlink

data transmission in federated LLMs could theoretically be

achieved through identity-based broadcast encryption (IBBE)

[9] or attribute-based encryption (ABE) [10] to enforce one-

to-many access control. However, IBBE requires explicit re-

cipient specification and generates multiple ciphertexts, in-

evitably introducing redundant computational and storage

overheadłthereby directly exacerbating Problem (3), especially

in resource-constrained low-altitude UAVs. Meanwhile, con-

ventional ABE inherently suffers from high computational

and storage costs, which may further escalate with attribute

complexity, similarly conflicting with the efficiency demands

of Problem (3) for low-altitude operations. In the uplink phase

of federated LLM, homomorphic encryption (HE) [11] could

theoretically enable aggregation over encrypted local parame-

ters from clients. Yet even the most efficient existing additive

HE schemes (e.g., Paillier) impose prohibitive computational

burdens, again violating the constraints of Problem (3) for

low-altitude UAVs with limited processing capabilities.

For Problem (2), prior work has explored Shamir’s secret

sharing [12] to split global model parameters into shares

distributed across clients, ensuring secret recovery from sur-

viving participants despite device dropout, thus mitigating

aggregation failures. However, this approach incurs substantial

communication overhead, directly contravening Problem (3),

particularly problematic in low-altitude environments with

unstable connectivity. Moreover, as an independent component

targeting Problem (2), Shamir’s secret sharing fails to provide

any mechanism to address Problem (1). Additionally, existing

research fails to address how to properly handle unfinished

tasks after UAVs drop out of the system, a common occurrence

in low-altitude operations.

Regarding Problem (3), latest cryptographical techniques

like asynchronous encryption [13] and edge-assisted decryp-

tion [14] have been proposed to alleviate computational cost-

s in IBE/ABE schemes. However, asynchronous encryption

merely adopts a “space-for-time” tradeoff without reducing

encryption-phase overhead, while edge-assisted decryption,

although offloading client computation, requires generating

outsourcing keys, transmitting them to edge devices, and pro-

cessing converted ciphertexts, thereby introducing prohibitive

storage and communication costs unsuitable for low-altitude

UAV network scenarios. An alternative approach involves

protocol-level cryptographic optimizations, but this would

inevitably introduce significant algorithmic design complexity.

Potential solutions and challenges. Intuitively, for secure

protection in global parameter distribution, identifying an

efficient ABE scheme or optimizing existing ABE schemes

in terms of computational efficiency could directly address

Problem (1) for low-altitude UAV networks. Regarding local

parameter uploads, transitioning to more efficient functional

encryption (FE) [15] algorithms appears promising, though

FE inherently lacks support for computations across multiple

ciphertexts. For Problem (2), implementing a covert monitor-

ing mechanism to periodically assess UAV states before each

federated LLM fine-tuning round (e.g., through supervised

key updates) would enable timely control over UAV partici-

pation eligibility, reminiscent of cryptographic key revocation

schemesłparticularly valuable in dynamic low-altitude environ-

ments. The natural solution for handling tasks from imminent

drop-out UAVs lies in integrating proxy re-encryption (PRE)

[16] with enhanced ABE schemes. Concerning Problem (3),

optimizing the fundamental ABE construction becomes imper-

ative to avoid additional communication and storage overhead,

which is critical for low-altitude UAV operations.

However, seamlessly integrating these technologies to con-

struct a secure parameter transmission framework for low-

altitude UAV swarm-based federated LLM systems presents

significant challenges beyond mere cryptographic primitive

combination. First, the algorithmic foundations of PRE and

ABE differ substantially, complicating the reconciliation of

their distinct public parameters, key structures, and ciphertext

formats. Second, key update-based revocation mechanism-

s impose additional computational and storage burdens on

UAVs, necessitating optimized update protocols to minimize

overhead, while re-encryption operations further exacerbate

UAVs’ resource constraintsłparticularly challenging in low-

altitude operations where resources are already limited. Third,

the open nature of low-altitude UAV networks demands verifi-

able re-encryption components to prevent spoofed ciphertexts.

Finally, FE cannot be out-of-the-box used; instead, it requires

integration with the specific fine-tuning algorithms of LLMs to

design a dedicated privacy-preserving fine-tuning mechanism

based on encrypted parameters that accounts for the unique

constraints of low-altitude environments.

C. Our contributions

In this paper we proposed secure and privacy-preserving

federated fine-tuning (SPFF) scheme for low-altitude UAV

swarm networks, and designed an extended scheme (DE-

SPFF) supporting decryption delegation. The contributions is

enumerated as follows.

Efficient and privacy-preserving one-to-many global param-
eter sharing: To achieve multi-party distribution of global

parameters in federated LLM fine-tuning for low-altitude

UAV swarm networks, we propose an efficient and privacy-

preserving sharing mechanism in the SPFF scheme based on

the inner-product ABE scheme. In addition to lightweight

storage and computational overhead suitable for low-altitude

operations, this mechanism supports full policy privacy pro-

tection and flexible wildcard matching.

Secure and efficient local updated parameters upload: To

enable efficient and privacy-preserving uploading of local

parameters in federated LLM fine-tuning for low-altitude

UAV swarm networks, the proposed SPFF scheme leverages

functional encryption and customizes an efficient ciphertext-

based parameter fine-tuning method tailored for the LoRA

fine-tuning strategy. In this approach, UAVs only need to

Page 6 of 107

IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, VOL. , NO. , 4

upload ciphertext parameters, while the LLM server only holds

the functional key related to model aggregation operations,

enabling efficient and privacy-preserving updates of global

parameters suitable for low-altitude constraints.

Efficient maintenance of federated LLM system robustness
against UAV drop-out: To mitigate the damage caused by

uncontrolled UAV drop-out in low-altitude swarm networks

to the federated LLM system, SPFF provides an efficient

revocation mechanism: UAVs are periodically granted update

keys and can renew their own keys at minimal cost. If a

UAV fails to update its key and upload local parameters, it

is removed from the system, a crucial feature for maintaining

system integrity in dynamic low-altitude environments.

Delegable and verifiable federated fine-Tuning tasks: For

benign UAVs that are about to drop out, DE-SPFF dele-

gates federated fine-tuning tasks to another UAV through re-

encryption. To avoid additional computational and storage

overhead-particularly important for resource-constrained low-

altitude UAVs, since the re-encryption process is performed by

edge nodes, which cannot access any global parameter infor-

mation. Considering that edge nodes are not fully trusted, DE-

SPFF incorporates a verification algorithm that allows third-

party verifiers to check the validity of re-encrypted ciphertexts,

ensuring security in open low-altitude environments.

We provide formal security proofs under standard crypto-

graphic assumptions, demonstrating that our schemes achieve

IND-CPA security and verifiability while covering various

threat models including free-riding attacks, collusion attacks,

and malicious edge node behaviors; furthermore, through com-

prehensive theoretical analysis and experimental validation, we

demonstrate the superiority of our schemes in computational

efficiency, communication overhead, and storage requirements

compared to state-of-the-art alternatives, confirming their prac-

ticality for real-world low-altitude UAV swarm applications.

D. Related works

Federated LLM is an emerging field in recent two years.

The primitives of federated LLM were initially proposed

by Chen et al. [5], who planned to integrate Federated

Learning (FL) into LLM to meet the demand of LLM for

large amounts of high-quality data. For this purpose, they

gradually integrated FL with the sub-technologies of LLM

respectively until the fusion of FL and LLM was attained.

Wu et al. [17] proposed an optimized federated LLM fine-

tuning method and demonstrated that this method exhibits

better performance and lower resource consumption, but it

does not take security issues into account. Bian et al. [37]

specifically analyzed the current LoRA method for LLM fine-

tuning and provided a specific technical solution for integrating

FL with LLM fine-tuning based on its algorithm structure.

Das et al. [18] proposed that differential privacy and homo-

morphic encryption mechanisms can prevent gradient privacy

leakage in LLMs. Yao et al. [19] highlighted that security

concerns in federated LLMs primarily revolve around data and

models. Their work examines federated LLMs from various

perspectives, including Security, Robustness, Privacy, as well

as Attack and Defense strategies. Addressing issues such as

the lack of training data and training data extraction attacks

in privacy-preserving Federated Instruction Tuning (FedIT)

[20], Zhang et al. [21] introduced a novel federated algorithm

named FewFedPIT. This approach is designed to strengthen

privacy protection in federated few-shot learning scenarios. To

address the differential privacy amplification effect in privacy-

preserving federated fine-tuning LLM, Sun et al. [22] proposed

an improved LoRA method called FFA-LoRA and alleviated

the communication overhead in federated fine-tuning LLM.

To date, there has been no specific work demonstrating

how to use cryptographic tools to protect data security and

privacy in federated LLMs. Due to the similarity in network

structure, we first discuss the related work on data security

protection in federated learning and LLM here. Consider-

ing the computational overhead of homomorphic encryption,

differential privacy is a more practical approach. However,

differential privacy techniques inevitably introduce a trade-off

between data usability and privacy protection. Nguyen et al.
[23] for the first time provided a systematic overview of data

security and privacy issues in FL, explicitly categorizing them

into two aspects: “secure gradient aggregation” and “efficient

encryption of local gradients”. In other words, they explained

the secure transmission for uplink and downlink data (local

gradient) in FL. However, most current research focuses on

the security and privacy in data uplink phase. Zhang et al.
[24] implemented a secure gradient aggregation scheme based

on the Paillier homomorphic encryption protocol, where the

server cannot obtain the gradient of each client but can only

get the result of summing all clients’ gradients. Jin et al. [25]

proposed a practical federated learning system, FedML-HE,

for efficient and secure model aggregation based on homo-

morphic encryption. It selectively encrypts sensitive parame-

ters, significantly reducing computational and communication

overhead during training while providing customizable privacy

protection. Xu et al. [26] provided a complete solution for

parameter transmission during the interactive training pro-

cess of FL models. This solution uses the double-masking

protocol to achieve privacy-preserving local gradient upload

and enables verification of the aggregation results (global

gradients). Additionally, this scheme ensures that no client

drops out in each round of model training through the Shamir

secret sharing protocol. Yu et al. [27] pointed out that clients

are usually resource-constrained, and previously proposed FL

schemes with verifiable aggregation would impose additional

and heavy computational overhead on clients. Then, they

proposed an efficient verifiable gradient aggregation method

that can support weighted aggregation. Regarding the security

of downlink data (global parameters) in FL, Yin et al. [28]

proposed a client selection scheme based on ABE, where only

clients meeting specific requirements can participate in FL.

Specifically for UAV networks, Wang et al. [29] proposed a

secure federated learning framework for UAV-assisted mobile

crowdsourcing. This framework introduces a blockchain-based

collaborative learning architecture that enables UAVs to se-

curely exchange local model updates and verify contributions

without a central administrator. Building on this, they designed

a privacy-preserving algorithm for federated UAV networks

Page 7 of 107

IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, VOL. , NO. , 5

based on a local differential privacy mechanism. Hou et al.
[30] show that federated learning for UAV networks can

infer original data from shared parameters, whereas previous

work has focused on encrypting uploaded parameters. They

propose a UAV-supported covert federated learning architec-

ture, in which the UAV not only coordinates the federated

learning operations but also generates artificial noise to disrupt

eavesdropping by non-target users. Xu et al. [31] integrates

various cryptographic tools, proposed a verifiable and privacy-

preserving collaborative federated learning (VPPFL) scheme

for UAV-assisted intelligent connected vehicle networks. Tech-

nically, the scheme first generates anonymous identifiers for

vehicles. To further protect data privacy, vehicle updates are

encrypted using the Paillier homomorphic encryption algorith-

m, allowing UAVs to directly aggregate the encrypted updates

globally. Furthermore, a pseudonymous signature mechanism

is proposed, enabling vehicles to generate verifiable signatures,

thereby ensuring the authenticity and validity of uploaded local

model updates.

II. PRELIMINARIES AND BUILDING BLOCKS

A. Hardness assumption

Consider two prime-order multiplicative cyclic groups, de-

noted as G0 and G1, with g serving as a generator for G1.

Random elements a, b, and c are selected uniformly from the

finite field Zp. We define a bilinear pairing operation e : G0×
G0 → G1. For the input tuple (g, ga, gb, gc,Z) ∈ G

4
0 × G1,

determining whether Z equals e(g, g)abc or represents a ran-

dom group element in G1 constitutes the computationally hard

Decisional Bilinear Diffie-Hellman (DBDH) challenge.

Definition 1: The DBDH assumption holds if there exists
no probabilistic polynomial-time algorithm capable of solving
the DBDH problem with a non-negligible probability.

Consider an elliptic curve E defined over a finite field Fq ,

where G denotes a base point generating a cyclic subgroup of

prime order p. Given two points P and Q = kP on the curve,

where k is randomly selected from Zp, the Elliptic Curve

Discrete Logarithm Problem (ECDLP) requires determining

the integer k.

Definition 2: The ECDLP assumption holds if no proba-
bilistic polynomial-time (PPT) adversary can compute k ∈ Zp

from (E,Fq,G, p, P,Q = kP) with non-negligible advantage.

B. Functional encryption supporting basic operations

Functional encryption supporting basic operations (FEBO)

was proposed by Xu et al. [32] to facilitate encrypted matrix

operations on convolutional neural networks in conjunction

with Inner-product Functional Encryption. FEBO supports

four fundamental arithmetic operations: addition, subtraction,

multiplication, and division. The specific definitions of each

algorithm are as follows.

• Setup(1κ): Given security parameter κ, outputs master key

pair (PK, SK). First generates group parameters (G, q, γ)←
GroupGen(1κ) and randomly selects α ∈ Zq . Sets SK = α
and PK = (η, γ), where η = γα.

• KeyDerive(PK,SK, σ,∇, z): Takes master secret SK,

commitment σ, and function input z, outputs functional key

skf∇ . The derivation follows:

skf∇ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
σα · γ−z if ∇ = + (addition)

σα · γz if ∇ = − (subtraction)

(σα)z if ∇ = × (multiplication)

(σα)z
−1

if ∇ = / (division)

• Encrypt(PK, w): Using public key PK and input w,

outputs commitment σ and ciphertext ψ. Randomly select ρ ∈
Zq , computes σ = γρ, and ψ = ηρ · γw.

• Decrypt(PK, κf∇ , ψ,∇, z): Given public key PK, func-

tional key skf∇ for operation f∇ with input z, and ciphertext

ψ, recovers:

γf∇(w,z) =

⎧⎪⎨
⎪⎩
ψ/κ for ∇ ∈ {+,−}
ψz/κ for ∇ = ×
ψz

−1

/κ for ∇ = /

C. Attributes and access policy vectorization

Our scheme implements privacy-preserving attribute-based

access control via inner-product operations between policy and

attribute vectors. Algorithm 1 technically realizes the trans-

formation of a symbolic access policy (comprising wildcards

“*”, positive “+”, and negative “-” attributes) into computable

numerical vectors. It maps the policy and user attributes to a

policy vector v and an attribute vector u, respectively, such that

policy satisfaction is equivalent to their inner product being

zero: 〈u, v〉 = 0. This is achieved by expanding a polynomial

constructed from wildcard positions to generate the coeffi-

cients of v, while aggregating exponentiated valid attribute

positions to form u. The algorithm thus converts semantic

access conditions into an algebraic form suitable for inner-

product-based cryptographic operations, enabling efficient and

privacy-preserving access control.

D. Key update nodes algorithm

The presented cryptographic constructions achieve efficient

user revocation through the key update nodes (KUNodes)
algorithm [35]. Algorithm 2 details this procedure, beginning

with a binary tree T containing n leaves and system state

σ. For any internal node x, its children are denoted xL (left)

and xR (right). Each legitimate user is uniquely associated

with a leaf node λ, with P(λ) representing all nodes from

root to λ. The algorithm processes a revocation list RL and

current time interval τ , initially storing all P(λ) nodes in set X
for each revoked user λ. Subsequently, it constructs set Y by

including sibling nodes of X members not already in X . The

final output Y = KUNodes(RL, σ, τ) identifies the minimal

nodes requiring key updates.

For active users, key updates occur for nodes in P(λ) ∩
KUNodes(RL, σ, τ), while revoked users satisfy P(λ) ∩
KUNodes(RL, σ, τ) = ∅.

Page 8 of 107

IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, VOL. , NO. , 6

Algorithm 1 Policy-Attribute Vector Conversion

Input: Access structure containing � wildcards (“*”), �+
positive (“+”) and �− negative (“-”) attributes; Attribute set

A = {A1, . . . ,AN} where Ai ∈ {“ + ”, “ − ”} for i ∈
{1, . . . , N}.
Output: Policy vector v and attribute vector u.

1) Partition positive attributes and wildcards into position

sets P and W respectively

2) For each wildcard position w ∈ W :

• Expand
∏
w∈W(i − w) =

∑n
j=0 cji

j to obtain

coefficients cj
3) For each w ∈ W and i ∈ P:

• Compute
∏
w∈W(i− w) and aggregate results

4) Extract positive attribute positions P ′ ⊆ P
5) For i ∈ P ′ and j = 0 to �:

• Calculate uj =
∑
i∈P′ i

j

6) Construct vectors:

• u = (u0, u1, . . . , u�)
• v = (c0, c1, . . . , cn, 0, . . . , 0) (zero-padded to length

�+ 1)

Algorithm 2 Key Update Nodes Selection

Input: Binary tree T , revocation list RL, time τ
Output: Node set Y

1: Initialize X ← ∅, Y ← ∅

2: for each (λj , τj) ∈ RL do
3: if τj ≤ τ then
4: X ← X ∪ P(λj)
5: for each x ∈ X do
6: if xL /∈ X then
7: Y ← Y ∪ {xL}
8: if xR /∈ X then
9: Y ← Y ∪ {xR}

10: if RL = ∅ then
11: Y ← Y ∪ {root}
12: return Y

E. Message-lock encryption

Message Lock Encryption (MLE) [38] is a cryptographic

technique designed to securely encrypt messages based on

their unique content. Unlike traditional encryption methods

that rely on external keys, MLE derives the encryption key

directly from the message itself or a hash of the message.

This ensures that identical messages produce the same ci-

phertext, enabling efficient deduplication in storage systems

while maintaining confidentiality. MLE is particularly useful in

cloud storage and secure messaging systems, where reducing

redundant data is critical without compromising security.

A key feature of MLE is its ability to provide convergent

encryption, where the same plaintext always encrypts to the

same ciphertext under the same conditions. This approach

eliminates the need for key management in certain scenarios

but requires careful handling to prevent vulnerabilities, such as

brute-force attacks on predictable messages. MLE is often used

in applications like secure file sharing or encrypted backup

solutions, where both data privacy and storage efficiency are

prioritized. However, additional safeguards, like salting or key

wrapping, may be needed to enhance security.

F. Federated LLM tuning with LoRA

LoRA-based Fine-tuning: The Low-Rank Adaptation (Lo-

RA) method [36] approximates parameter updates via low-

rank decomposition:

Wnew = W +ΔW = W +PQ

where W ∈ R
m×n represents original pre-trained weights

(e.g., in attention layers) and Wnew denotes the adapted ver-

sion. The update is factorized into P ∈ R
m×r and Q ∈ R

r×n,

with rank r � min(m,n). For the Bert-base model with

weight matrix W ∈ R
768×768, we adopt a low-rank adaptation

(LoRA) method [39] by setting the rank r = 8, which enables

memory-efficient fine-tuning.

FedIT: Federated Homogeneous LoRA: FedIT integrates

FedAvg and LoRA to provide parameters aggregation in

federated LLMs. FedAvg computes global updates through

weighted aggregation:

W(t+1) = W(t) +
K∑
k=1

pkΔW
(t)
k = W(t) +ΔW,

where pk represents client weighting factors.

FedIT [37] applies FedAvg specifically to Homogeneous

LoRA modules. Clients locally fine-tune Pk and Qk before

the server aggregates, where pk = |Dk|∑K
k=1 |Dk|

, |Dk| denotes the

size of a local data set:

P =
K∑
k=1

pkPk, Q =
K∑
k=1

pkQk.

This approach introduces approximation errors because:

K∑
k=1

pk(PkQk)
=
(

K∑
k=1

pkPk

)(
K∑
k=1

pkQk

)
.

For two clients with updates ΔW0 = P0Q0 and ΔW1 =
P1Q1, the aggregated update deviates from the true average

by cross-client interaction terms.

III. SYSTEM ARCHITECTURE AND DEFINITIONS

A. System model and threat model

The proposed technical solution in this paper can be ab-

stracted as the system model shown in Fig. 1, which involves

four types of entities: the Trusted Authority, Unmanned Aerial

Vehicles (UAVs), the Large Language Model Server (LLM

Server) and the Verifier. The extended solution DE-SPFF

additionally involves edge nodes. These entities are described

as follows:

• Trusted Authority: It is a fully trusted entity responsible

for creating the security system, issuing parameters, and

UAV secret keys. Additionally, it assists and supervises

Page 9 of 107

IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, VOL. , NO. , 7

UAVs in completing key updates and maintains a revo-

cation list.

• LLM Server: It is a semi-trusted (honest-but-curious)

entity responsible for establishing the initial LLM and

providing UAVs with the initial global parameters. It

also periodically collects local parameters from UAVs to

fine-tune the global model and returns the final global

parameters to the UAVs.

• UAV: It is an untrusted entity that receives initial and fine-

tuned global parameters from the LLM Server, performs

local model training, and sends local parameters to the

LLM Server in each round. When the global LLM

completes fine-tuning, the UAV obtains the final global

parameters and enjoys the LLM service. In the extended

scheme DE-SPFF, it also needs to issue re-encryption

keys to edge nodes. A UAV may also act as a Delegatee,

receiving a re-encrypted ciphertext from an edge node and

decrypting it to obtain the global parameters on behalf

of a delegator UAV that has dropped out. We assume

the Delegatee UAV is also untrusted and is considered a

potential adversary that might deviate from the protocol

or collude with a compromised edge node to illegally

access the global model parameters.

• Edge Node: It only appears in the DE-SPFF scheme and

is a semi-trusted entity. When a UAV has task delegation

requirements, it receives re-encryption keys from the

UAV and performs re-encryption operations.

• Verifier: It is a new entity introduced in the DE-SPFF

scheme to ensure accountability in the open swarm net-

work. The Verifier is a third-party entity that is not trusted

with any secret keys or sensitive data. Its sole function

is to publicly verify the correctness of re-encryption

operations performed by edge nodes, ensuring they have

been executed faithfully without tampering.

LLM server

Trusted

Authority Edge Node

UAV

fu
n
c
ti

o
n
a
l

k
e
y

re-encryption

key

master secret key

Delegatee UAV

re-encrypted

ciphertext

Verifier

ciphertext of global parameter

ciphertext of local parameter

verification

result

updated UAV

secret key

SPFF Special for DE-SPFF

Fig. 1: System model

The data interactions among entities in this paper are shown

in Fig. 2. First, the Trusted Authority (TA) runs the Setup
algorithm to generate the system public parameters params
and master secret key msk, then broadcasts params to the

system. Subsequently, the TA executes the SKGen algorithm

to generate a UAV secret key usk for each UAV and function

key skf for the LLM Server. The LLM Server then executes

the Enc algorithm to generate ciphertext CT0 for the initial

global LLM parameters W0. Each UAV runs the Dec-initial

Trusted authority LLM server Delegatee UAV

master secret key

public parameters

user secret key

Setup

SKGe

n

Edge nodeUAV Verifier

functional key

ciphertext of initial global parameter Enc

initial global

parameter

Dec-

initial

functional ciphertext of local parameter Localpar

a

global parameter Fine-

tuning

ciphertext of global parameter Enc*

updated revocation list
UAVUpda

te

update key
UKG

en

updated

UAV secret

key

USKUpda

te

global

parameter

re-encryption key

re-encrypted

ciphertext

global

parameter

verification

result

Dec-

tuning

RekeyG

en

ReEnc

Dec-re

Pub-

verify

Special

for DE-

SPFF

Fig. 2: The interactive workflow

algorithm to decrypt CT0 using its usk and obtains W0, upon

which it performs local model fine-tuning. The UAV then

encrypts and returns its local model parameters Enc(Pk) and

Enc(Qk) to the LLM Server via the Localpara algorithm.

The LLM Server executes the Fine-tuning algorithm to ag-

gregate and decrypt the local parameters from all UAVs in

the previous round, using them to fine-tune the global model

and obtain updated global parameters W. Subsequently, the

LLM Server runs the Enc* algorithm to generate ciphertext

CT for the updated global parameters W and sends it to

the UAVs. Independently, based on UAVs’ participation in

the previous round of fine-tuning, the LLM Server requests

the TA to update the revocation list RL (via the UAVupdate
algorithm). According to RL, the TA periodically executes the

UKGen algorithm to issue update keys for UAVs not in RL.

If a UAV receives an update key, it runs the USKUpdate
algorithm to update its usk. Finally, the UAV executes the Dec-
tuning algorithm to decrypt the global parameters W. These

algorithms execute iteratively until the LLM completes fine-

tuning, at which point UAVs obtain the final global parameters.

Note that in the DE-SPFF scheme, we additionally allow UAVs

that cannot continue participating in fine-tuning to delegate

their tasks to other UAVs: First, the delegator UAV executes

the RekeyGen algorithm to generate a re-encryption key rk
and sends it to an edge node. The edge node then runs the

ReEnc algorithm to produce a re-encrypted ciphertext RCT,

which is sent to the delegatee UAV. The delegatee UAV can

execute the Dec-re algorithm to decrypt and obtain the global

parameters W. Finally, a third-party verifier can determine

the relationship between RCT and CT by executing the Pub-
verify algorithm.

This system also faces the following potential security

threats stemming from its open and decentralized nature: First-

Page 10 of 107

IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, VOL. , NO. , 8

ly, unauthorized UAVs or external adversaries might engage in

“free-riding” attacks. These malicious entities aim to illicitly

access and exfiltrate the final fine-tuned global parameters

without actively participating in the federated learning process

or possessing the proper authorization attributes. This under-

mines the intellectual property and collaborative incentive of

the system. Secondly, we consider a sophisticated collusion

attack: an edge node, once compromised, could conspire with

a malicious delegatee UAV. Their objective is to pool their

knowledgełthe edge node’s view of the re-encryption process

and the delegatee’s partial secretsłto decrypt and obtain the

global parameters in violation of the access policy dictated

by the LLM server. Finally, a malicious or infiltrated edge

node could attempt to sabotage the federated learning process

by sending deliberately falsified or incorrectly computed re-

encrypted ciphertexts to a benign delegatee UAV. This Denial-

of-Service (DoS)-style attack aims to prevent the delega-

tee from correctly obtaining the global parameters, thereby

disrupting its local training and compromising the overall

robustness of the federated tuning process.

B. Security model
The selective indistinguishability of DE-SPFF under

chosen-plaintext attacks is formalized through an interactive

game between adversary A and challenger C:

1. Initialization: A selects target access policy A
∗ and

challenge timestamp t∗, sending them to C.

2. Setup: C generates public parameters pp using Setup and

provides them to A.

3. Query Phases: A can adaptively request:

– UAV secret keys via SKGen
– Key updates via UKGen
– Revocation status via UAVupdate

4. Challenge: A submits messages ε0, ε1. C randomly

chooses b ← {0, 1}, computes CTb ← Enc(εb), and

returns CTb.
5. Guess: A outputs guess b′. The advantage is defined as

|Pr[b′ = b]− 1
2 |.

Definition 2 (IND-CPA Security): DE-SPFF achieves
IND-CPA security if all PPT A have negligible advantage
|Pr[b′ = b]− 1

2 |, and any such adversary would imply a DBDH
problem solver with non-negligible advantage.

For verifiability, consider the following game:

1. Initialization: A specifies target policy A
∗ to C.

2. Setup: C runs Setup and gives pp to A.

3. Queries: A can query:

– Secret keys via SKGen
– Re-encryption keys via RKGen
– Verification results via Pub-verify

4. Challenge: A requests encryption of ε∗ under A
∗. C

returns original ciphertext CT∗ and re-encrypted CT∗
′
.

5. Guess: A wins if both ciphertexts verify correctly under

Pub-verify.

Definition 3 (Verifiability): DE-SPFF provides verifiability
if no PPT A can win GameVerifiability with non-negligible
probability, unless the ECDLP assumption can be broken with
comparable advantage.

IV. SECURE AND PRIVACY-PRESERVING FEDERATED

FINE-TUNING SCHEME

This section will describe the construction of the secure

and privacy-preserving federated fine-tuning (SPFF) scheme

for UAV swarm networks. The secure sharing of global

parameters is based on Bao et al.’s PH-ABE-DS scheme

[40], while the process of UAVs returning locally trained

parameters in ciphertext that participates in global LLM tuning

design follows Xu et al.’s FEBO scheme [32]. The proposed

scheme consists of three phases: The System initialization

phase generates system parameters and distributes keys to

entities. The Initial global parameter distribution phase details

how the LLM server securely delivers initial global parameters

to UAVs. The federated fine-tuning of LLM stage, the core of

this scheme, orchestrates UAVs’ local model training, secure

parameter uploading, and iterative global model refinement

until completion. Notably, to address frequent UAV dropout

issues in open swarm networks, the scheme incorporates

key update and UAV revocation mechanisms to minimize

disruption to federated fine-tuning.

A. System initialization

• Setup (λ): The trusted authority defines and generates

system public parameters and a master key by executing the

following steps, which are essential for subsequent procedures.

1). Take the security parameter λ as input, it generates

the tuple 〈G,GT , g, e〉, where G,GT two multiplicative

cyclic groups with the prime order p, g is a generator of

the group G, and e : G×G→ GT .

2). Assume the size of the attribute universe to be n, it

randomly selects α, τ1, ..., τn ∈ Zp, then computes gi =
gτi and Z = e(g, g)α, where i ∈ [1, n].

3). Define an empty revocation list RL = ∅ for storing all

revoked data users. Besides, initialize a binary tree BT

with q leaf nodes and the state st.
4). Initialize a l-bit timestamp t, then randomly choose
0 ∈
Zp and
1, ...,
l ∈ Zp for each bit of t.

5). Execute the FEBO.Setup algorithm to obtain the pub-

lic parameters mpk and secret key msk for functional

encryption.

6). The trusted authority outputs the public parameter

params = {G,GT , p, e, g, {gi}i∈[1,n], Z,
0, {
j}j∈[1,l],
t,mpk} as well as the binary tree BT with state st,
and the revocation list RL, then secretly holds the master

secret key msk = {α, {τi}i∈[1,n],msk}.
• SKGen (params,msk, S,BT, st): The trusted authority

takes the public parameter params, the master secret key msk,

the attribute set S of a UAV, the binary tree BT with state

st as input, then generates the initial UAV secret key usk as

following steps:

1). Convert the attribute set S to an attribute vector u =
(u1, ..., un) by executing Algorithm 1.

2). It first stores the identifier id of a UAV into an undefined

leaf node θid of the binary BT. Then according to the

Algorithm 2, for each node x ∈ Path(θid), it fetches gx
from the node x if available. Otherwise, if x is undefined,

Page 11 of 107

IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, VOL. , NO. , 9

it randomly selects gx ∈ G, then stores gx into the node

x and update the state st← st ∪ {x, gx}.
3). Randomly choose s ∈ Zp, then computes g′x = gα/gx
, sk1 = g′xg

s
∑n
i=1 τiui and sk2 = gs.

4). It runs FEBO.KeyDerive algorithm to obtain the func-

tional key skf for the multiplication operation f .

5). The trusted authority outputs the UAV secret key usk =
(id, u, {sk1, sk2}x∈Path(θid)) and delivers it to the UAV

via secure channel. Also, it secretly sends the functional

key skf to the LLM server.

B. Initial global parameter distribution

In this phase, the LLM server establishes a globally ini-

tialized LLM Modelglobal, while each UAV loads an initial

local model ModelUAV . The LLM server implements the

secure distribution of initial global parameters according to

the following algorithm.

• Enc (params,A,W0, t): The LLM server takes the public

parameters params, the access policy A and the timestamp t
as input, then generates the ciphertext for the initial parameter

W0 by following the steps below.

1). It first creates the access vector v = (v1, ..., vn) accord-

ing to the access policy A by invoking the Algorithm
1, parses W0 as a bit string ε0, then randomly chooses

δ, θ ∈ Zp and computes c = ε0 ·Zδ , γi = ηi+viθ, where

i ∈ [1, n].
2). For each attribute i ∈ [1, n], it randomly selects

{ηi}i∈[1,n] ∈ Z
n+2
p , and calculate c0 = gδ, c1 =

gδ1g
−η1 , ..., cn = gδng

−ηn . And for each bit j ∈ [1, l] of

the timestamp t, it computes ĉ0 =
δ0, ĉj =
δj .
3). The LLM server finally outputs the ciphertext CT0 =
(c, c0, ĉ0, {ci, γi}i∈[1,n], {ĉj} j∈[1,l]).
• Dec-initial (params,CT, usk): On input the tuple the

ciphertext CT and the UAV secret key usk, this algorithm

calculates c′0 = g
∑n
i=1 γiui

∏n
i=1 c

ui
i , then obtain ε0 and

reconstructs the initial parameter matrix W0 of the global

model by computing ε0 = c · e(c′0, sk2)/e(c0, sk1).

C. Federated fine-tuning of LLM

• Localpara (W0,ModelUAV): After obtaining the initial

global parameters W0, the k-th UAV continues to train its

local model ModelUAV , resulting in local parameters Pk, Qk.

The UAV runs FEBO.Encrypt algorithm over Pk, Qk to

obtain Enc(Qk) and Enc(Pk), then forwards them to the

LLM server.

• Fine-tuning ({Enc(Pk)}, {Enc(Qk)}, skf ,Modelglobal):
The LLM server can obtain the update parameter ΔW by

inputting the encrypted local parameters Pk, Qk, then

invokes FEBO.Decrypt algorithm and executes the following

functional decryption, where pk denotes the corresponding

scaling factor [36].

ΔW = Q ·P =
K∑
k=0

pkQk ·
K∑
k=0

pkPk

=
K∑
k=0

skf (pk)Enc(Qk) ·
K∑
k=0

skf (pk)Enc(Pk)

=
K∑
k=0

skf (pk)Enc(Qk) ·
K∑
k=0

skf (pk)Enc(Pk)

The LLM server then updates the global parameter by W←
W +ΔW.

• Enc* (params,CT′,A,W, t): LLM server takes the up-

dated global parameter W, current timestamp t and the access

policy A as input, then generates the ciphertext of W with the

following steps:

1). It first creates the access vector v = (v1, ..., vn) accord-

ing to the access policy A by invoking the Algorithm
1, parses W0 as a bit string ε0, then randomly chooses

δ, θ ∈ Zp and computes c = ε0 ·Zδ , γi = ηi+viθ, where

i ∈ [1, n].
2). For each attribute i ∈ [1, n], it randomly selects

{ηi}i∈[1,n] ∈ Z
n+2
p , and calculate c0 = gδ, c1 =

gδ1g
−η1 , ..., cn = gδng

−ηn . And for each bit j ∈ [1, l] of

the timestamp t, it computes ĉ0 =
δ0, ĉj =
δj .
3). The LLM server finally outputs the ciphertext CT0 =
(c, c0, ĉ0, {ci, γi}i∈[1,n], {ĉj} j∈[1,l]).
• UAVupdate (id∗, t,RL, st): The LLM server determines

the UAV identifiers id∗ that need to be revoked based on

the drop-out status and behaviors (such as sending deceptive

parameters, being compromised, etc.) of UAVs during the

previous round of fine-tuning in the federated LLM. The

trusted authority obtains id∗ from the LLM server, then takes

the timestamp t, the revocation list RL with state st of the

full binary tree BT as input, updates the revocation list by

operating RL← RL ∪ (x, t) for all nodes x ∈ Path(θid∗).
• UKGen (RL, params, st, t): The trusted authority takes

the public parameter params, the revocation list RL with

state st and the current timestamp t as input, then for each

x ∈ KUNodes(RL, st, t), it randomly chooses π ∈ Zp, and

calculates

uk1 = gx · (
0
∏

j∈I
j)
π, uk2 = gπ

The trusted authority outputs the update key uk = (t, {uk1
, uk2} x∈KUNodes(RL,st,t)) and broadcast it to the UAV network.

• USKUpdate (params, usk, ukt, t): After receiving the

updated key, an UAV that has not drop-out executes the

following steps to update its own secret key. If the UAV

fails to decrypt with the updated UAV secret key, it implies

that the UAV was unable to obtain the updated key due to

drop-out and thus cannot update its own secret key, or it has

voluntarily relinquished its permission to participate in the

federated LLM system. Specifically, the UAV takes the public

parameter params, the UAV secret key usk, the update key

uk as well as the timestamp t as input, then for each node

x ∈ Path(θid)∩KUNodes(RL, st, t), it updates the UAV secret

key as follows

sk1 ← sk1 · uk1 = gαg(s+π)
∑n
i=1 τiui · (
0

∏
j∈I
j)

π

sk2 ← sk2 · uk2 = gs+π

sk3 = uk2 = gπ

For each x ∈ Path(θid) ∩ KUNodes(RL, st, t), this algo-

rithm outputs the (updated) UAV secret key usk =
((id, t), u, {sk1, sk2, sk3}).

Page 12 of 107

IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, VOL. , NO. , 10

• Dec-tuning (CT, usk): UAV takes the ciphertext CT and

the (updated) UAV secret key usk as input, then calculates

c′0 = g
∑n
i=1 γiui

∏n
i=1 c

ui
i and obtains the global parameter

W by computing ε = c · e(c′0, sk2)e(c′, sk3)/e(c0, sk1). Now,

the UAV can reconstruct and load the current LLM global

parameters W and iterate through the Localpara and Fine-
tuning algorithms until the fine-tuning of the LLM global

model Modelglobal is completed.

V. A DELEGABLE EXTENSIONAL SCHEME

Building upon the proposed SPFF scheme, this section

presents a more flexible and scalable scheme named DE-SPFF

(delegated extensional SPFF) to address the UAV dropout

issue in federated fine-tuning of large models. The scheme

incorporates the concept of proxy re-encryption, enabling a

UAV to securely delegate its tasks to another qualified UAV

when it can no longer participate in the federated fine-tuning

process. This solution designates edge nodes to perform the

re-encryption computations. Considering the open nature of

UAV swarm networks and the partial trustworthiness of edge

nodes, the scheme provides a publicly verifiable mechanism

that allows third parties to validate the correctness of re-

encryption operations. The specific algorithmic construction

of the DE-SPFF scheme is as follows.

A. System initialization

• Setup (λ): The trusted authority defines and generates

system public parameters and a master key by executing the

following steps, which are essential for subsequent procedures.

1). Take the security parameter λ as input, it generates

the tuple 〈G,GT , g, e〉, where G,GT two multiplicative

cyclic groups with the prime order p, g is a generator of

the group G, and e : G×G→ GT .

2). Assume the size of the attribute/access universe to be n,

it randomly selects α, τ1, ..., τn ∈ Zp, w, x, y ∈ G, then

calculates gi = gτi and Z = e(g, g)α, where i ∈ [1, n].
3). Define an empty revocation list RL = ∅ for storing all

revoked data users. Besides, initialize a binary tree BT

with q leaf nodes and the state st.
4). Initialize a l-bit timestamp t, then randomly choose
0 ∈
Zp and
1, ...,
l ∈ Zp for each bit of t.

5). Define two collision-resistant hash functions H1 : GT →
G and H2 : {0, 1}∗ → Z

∗
p.

6). Execute the FEBO.Setup algorithm to obtain the pub-

lic parameters mpk and secret key msk for functional

encryption. Also, predefine a message lock encryption

algorithm MLE [42].

7). The trusted authority outputs the public parameter

params = {G,GT , p, e, g, x, y, w, {gi}i∈[1,n], Z,H1,H2

,
0, {
j}j∈[1,l], t,mpk,MLE} as well as the binary tree

BT with state st, and the revocation list RL, then secretly

holds the master secret key msk = {α, {τi}i∈[1,n],msk}.
• SKGen (params,msk, S,BT, st, upk): The trusted author-

ity takes the public parameter params, the master secret key

msk, the attribute set S of a UAV, the binary tree BT with

state st as input, then generates the initial UAV secret key usk
as following steps:

1). Convert the attribute set S to an attribute vector u =
(u1, ..., un) by executing Algorithm 1.

2). It first stores the identifier id of a UAV into an undefined

leaf node θid of the binary BT. Then according to the

Algorithm 2, for each node x ∈ Path(θid), it fetches gx
from the node x if available. Otherwise, if x is undefined,

it randomly selects gx ∈ G, then stores gx into the node

x and update the state st← st ∪ {x, gx}.
3). Randomly choose s ∈ Zp, then computes sk1 =
g′xg

s
∑n
i=1 τiui and sk2 = gs.

4). It runs FEBO.KeyDerive algorithm to obtain the func-

tional key skf for the multiplication operation f .

5). The trusted authority outputs the UAV secret key usk =
(id, u, {sk1, sk2}x∈Path(θid)) and delivers it to the UAV

via secure channel. Also, it secretly sends the functional

key skf to the LLM server.

B. Initial global parameter distribution

This phase is the same as that of the SPFF scheme.

C. Federated fine-tuning of LLM

• Localpara (W0,ModelUAV): This algorithm is the same

as that of the SPFF scheme.

• Fine-tuning ({Enc(Pk)}, {Enc(Qk)}, skf ,Modelglobal):
This algorithm is the same as that of the SPFF scheme.

• Enc* (params,CT′,A,W, t): LLM server takes the up-

dated global parameter W, current timestamp t and the access

policy A as input, then generates the ciphertext of W with the

following steps:

1). It first obtains the access vector v = (v1, ..., vn)
from the access policy A

′, disassembles the parameter

matrix W into a bit string ε, then randomly chooses

R ∈ {0, 1}|ε|, θ ∈ Zp, computes ϕ = H2(MLE(R||ε)),
c = (R||ε) ⊕ H1(Z

ϕ), γi = ηi + viθ, where i ∈ [1, n],
c1 = xH2(ε)yH2(R), c2 = gϕ, c3 = wϕ.

2). For each attribute i ∈ [1, n], it randomly selects

{ηi}i∈[1,n] ∈ Z
n+2
p , and calculate c0 = gϕ, c1 =

gϕ1 g
−η1 , ..., cn = gϕng

−ηn . And for each bit j ∈ [1, l]
of the timestamp t, it computes ĉ0 =
ϕ0 , ĉj =
ϕj and

c′ = ĉ0 ·
∏
j∈I ĉj = (
0

∏
j∈I
j)

ϕ for current timestamp

t.
3). The LLM server finally outputs the ciphertext CT =
(c, c′, c0, ĉ0, {ci, γi}i∈[1,n], {ĉj}j∈[1,l], c1, c2, c3).
• UAVupdate (id∗, t,RL, st): This algorithm is the same as

that of the SPFF scheme.

• UKGen (RL, params, st, t): This algorithm is the same as

that of the SPFF scheme.

• SKUpdate (params, usk, uk, t): This algorithm is the

same as that of the SPFF scheme.

• Dec-tuning (CT, usk): The UAV takes the ciphertext CT
and its (updated) UAV secret key usk as input, then calculates

c′0 = g
∑n
i=1 γiui

∏n
i=1 c

ui
i calculates

Φ =
e(c0, ek1)

e(c′0, ek2)e(c′, ek3)
ε||R = c̄⊕ H2(Φ)

Page 13 of 107

IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, VOL. , NO. , 11

The UAV accepts ε and retrieves W if c1 = xH2(ε)yH1(R).

Now, the UAV can load the current LLM global parameters W
and iterate through the Localpara and Fine-tuning algorithms

until the fine-tuning of the LLM global model Modelglobal is

completed.

D. Task delegation

If a UAV is unable to continue participating in the fine-

tuning of a federated LLM, for instance, due to impending

battery depletion or being compromised, it can request its

neighboring edge node to re-encrypt the ciphertext. Subse-

quently, the edge node will send the re-encrypted ciphertext

to another UAV. It should be noted that the re-encryption key

and the ciphertext need to be meticulously designed to ensure

that the delegated UAV can comply with the access policies

of both the LLM server and the original UAV. Additionally,

the algorithm structure should be designed to be sufficiently

streamlined to accommodate the processing capabilities of the

lightweight computational units on the UAV.

• RekeyGen (params, ek): The UAV takes the public pa-

rameters params and the edge key ek as input, converts the

attributes of A′ into v′ = (v̄1, ..., v̄n) by invoking Algorithm 1,

and randomly chooses χ ∈ GT , ς, r′ ∈ Zp, then calculates the

re-encryption key components rk0 = ZH2(χ), rk1 = sk
H2(χ)
1 ·

wς , rk2 = sk
H2(χ)
2 , rk3 = sk

H2(χ)
3 , rk4 = gς , rk5 = χ · Zr′ ,

rk6 = gr
′
, rk7,i = γ̄i = ηi + v̄iθ. The UAV assembles the

re-encryption key rk = (rk1, rk2, rk3, rk4, rk5, rk6, {rk7,i}),
and forwards it to the edge node.

• ReEnc (params,CT, rk, t): The edge node takes the pub-

lic parameters params, ciphertext CT, and the re-encryption

key rk as input, then it operates as follows, where c′0 =
g
∑n
i=1 γiui

∏n
i=1 c

ui
i .

c̄0 = rk6, c̄ = c, γ̄i = ηi + v̄iθ, c̄1 = c1, c̄i = ci

c̄2 = c2, c̄3 = c3, c̄4 = rk5

c̄5 =
e(c0, rk1)

e(c′0, rk2)e(c′, rk3)e(c3, rk4)
, c̄6 = rk0

c̄′ = ¯̂c0 ·
∏

j∈I
¯̂cj = (
0

∏
j∈I
j)

r′

For each bit j ∈ [1, l] of the timestamp t, it computes
¯̂c0 =
r

′
0 , ¯̂cj =
r

′
j . The edge node outputs the re-encrypted

ciphertext RCT = (c̄, c̄′, c̄0, c̄1, c̄2, c̄3, c̄4, c̄5, c̄6, {γ̄i}i∈[1,n], ¯̂c0
, {c̄i}i∈[1,n], {¯̂cj}j∈[1,l]), and forwards it to the delegated UAV.

• Dec-re (CT,RCT, usk): The delegatee UAV takes the

ciphertext CT, the re-encryption ciphertext RCT and the

(updated) UAV secret key usk as input, then calculates c′0 =
g
∑n
i=1 γiui

∏n
i=1 c

ui
i and obtains the global parameter W by

computing

χ = c̄4 ·
e(c̄′0, sk2)e(c̄′, sk3)

e(c̄0, sk1)

where c̄′0 = g
∑n
i=1 γiui

∏n
i=1 c̄

ui
i . The UAV computes

ε||R = c̄ ⊕ H1(c̄
1

H2(χ)

5), then accepts ε and retrieves W
if c1 = xH2(ε)yH2(R). Now, the UAV can load the current

LLM global parameters W and iterate through the Localpara
and Fine-tuning algorithms until the fine-tuning of the LLM

global model Modelglobal is completed.

• Pub-verify (CT,RCT, rk, (ε,R)): The verifier takes the

ciphertext CT, the re-encrypted ciphertext RCT, the re-

encryption key rk and the proof (ε,R) of a shared UAV, then

the validity of RCT can be verified as following steps:

1). It verifies whether the following equations hold: c̄0 =
c0, c̄ = c, c̄1 = c1, c̄2 = c2, c̄3 = c3, c̄

′ = c′. If any of

the aforementioned equations fails to hold true, the re-

encrypted ciphertext RCT is deemed incorrect.

2). It calculates ϕ = H2(MLE(R||ε)), and checks whether

there exists c̄1 = c1 = xH2(ε)yH2(R). Please note that the

purpose of checking this equation is to verify whether the

original ciphertext CT is related to the parameter W. It

then tests whether c̄6 = c̄ϕ7 holds, if this formula holds,

it indicates that the re-encrypted ciphertext is related

to the parameters W, in other words, the re-encrypted

ciphertext RCT is correct.

VI. SECURITY ANALYSIS

Theorem 1 (Correctness): The correctness of the proposed
SPFF and DE-SPFF schemes guarantees that if the cipher-
text, re-encrypted ciphertext, and UAV secret key are valid,
then both the original and re-encrypted ciphertexts can be
decrypted properly.

Proof: In SPFF, there are two forms of ciphertext: the

ciphertext of the initial global parameters ε0 and the ciphertext

of global parameter during federated fine-tuning ε. Due to the

similarity in the structure of decryption algorithms, here we

only demonstrate the decryption process for obtaining ε.

c · e(c
′
0, sk2)e(c

′, sk3)
e(c0, sk1)

=
ε·Zδ ·e(g

∑n
i=1 γiui

∏n
i=1 c

ui
i , g

s+π)e((
0
∏
j∈I
j)

δ, gπ)

e(gδ, gαg(s+π)
∑n
i=1 τiui · (
0

∏
j∈I
j)π)

=
ε·Zδ ·e(g

∑n
i=1 γiui

∏n
i=1 c

ui
i , g

s+π)e((
0
∏
j∈I
j)

δ, gπ)

e(gδ, gαg(s+π)
∑n
i=1 τiui)e(gδ, (
0

∏
j∈I
j)π)

=
ε·Zδ ·e(g

∑n
i=1 γiui

∏n
i=1 c

ui
i , g

s+π)

e(gδ, gα)e(gδ, g(s+π)
∑n
i=1 τiui)

=
ε·Zδ ·e(g

∑n
i=1 viuiθg

∑n
i=1 uiδτi , g(s+π))

e(gδ, gα)e(gδ, g(s+π)
∑n
i=1 τiui)

=
ε·Zδ ·e(g

∑n
i=1 uiδτi , g(s+π))

e(gδ, gα)e(gδ, g(s+π)
∑n
i=1 τiui)

= ε

For the DE-SPFF scheme, owing to the structural similarity

with SPFF, we only provide the proof of correctness for the

decryption process during the Task delegation phase.

c̄4 ·
e(c̄′0, sk2)e(c̄′, sk3)

e(c̄0, sk1)

=

χ · e(g, g)αr′e(g
n∑

i=1

r′γiui n∏
i=1

cr
′ui
i , gs+π)e((
0

∏
j∈I

j)
r′ , gπ)

e(gr′ , gαg
(s+π)

n∑

i=1

τiui · (
0
∏
j∈I
j)π)

=
χ · e(g, g)αr′

e(g, g)αr′
= χ

Page 14 of 107

IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, VOL. , NO. , 12

c̄5 =
e(c0, rk1)

e(c′0, rk2)e(c′, rk3)e(c3, rk4)

=

e(gϕ, gαH2(χ)g
H2(χ)(s+π)

n∑

i=1
τiui · (
0

∏
j∈I

j)
πH2(χ) · wς)

e(g

n∑

i=1

γiui n∏
i=1

cuii , g
H2(χ)(s+π))e((
0

∏
j∈I

j)ϕ, gπH2(χ))e(wϕ, gς)

=
e(gϕ, gαH2(χ)gH2(χ)(s+π)

∑n
i=1 τiui)

e(g
∑n
i=1 γiui

∏n
i=1 c

ui
i , g

H2(χ)(s+π))

=
e(gϕ, gαH2(χ)gH2(χ)(s+π)

∑n
i=1 τiui)

e(g
∑n
i=1(ηi+viθ)ui

∏n
i=1(g

τiϕg−ηi)ui , gH2(χ)(s+π))

= e(g, g)αϕH2(χ)

On this basis, we have

c̄⊕ H1(c̄
1

H2(χ)

5)

=(R||ε)⊕ H1(e(g, g)
αϕ)⊕ H1(e(g, g)

αϕH2(χ)· 1
H2(χ)) = R||ε

Theorem 2: The proposed SPFF and DE-SPFF schemes are
indistinguishable under the selectively chosen plaintext attack
(IND-CPA) if that the DBDH problem is intractable.

Proof : Suppose there is a probabilistic polynomial time

(PPT) adversary A can break the IND-CPA security of SPFF

with a non-negligible advantage, then a challenger C can

be constructed that solves the DBDH problem with a non-

negligible probability by invoking the challenger CIBE in

[43]. Given the parameters (g, ga, gb, gc,R), A is required to

determine whether R = e(g, g)abc or R is a random element

in GT . The interactive game between the adversary A and the

challenger C is described as follows.

Initialize: A specifies a challenge access policy A
∗, then C

samples σ ∈ {0, 1}. When σ = 0, A is a non-revoked user,

C then aborts if the attribute set S of an identity id contents

the challenge access policy A
∗. When σ = 1, A is a revoked

user, then C aborts if the attribute set S contents the target

access policy A
∗ and the identity id is not revoked before the

challenge timestamp t∗ of the challenge ciphertext CT∗.
Setup: Given the security parameter λ, C sets the bilinear

parameters tuple 〈g,G,GT , e, 〉 as the Setup algorithm in

the DE-SPFF scheme. In addition, C defines the revoca-

tion list RL, the full binary tree BT with state st. When

σ = 0, we sample
0 ∈ Zp and
1, ...,
l ∈ Zp for

each bit of t. For each element in the attribute universe U ,

C randomly chooses ψ, β′1, ..., β
′
n ∈ Zp, it then simulates

g1 = (ga)−ψv1gβ
′
1 = g−aψv1+β

′
1 , ..., gn = (ga)−ψvngβ

′
n =

g−aψvn+β
′
n , Z = e(ga, gb) to implicitly set α = ab, τ1 =

−aψv1 + β′1, ..., τn = −aψvn + β′n. C publishes params =
{G,GT , p, e, g, {gi}i∈[1,n], Z,
0, {
j}j∈[1,l], t} , BT with s-

tate st and RL. And when σ = 1, C calls CIBE for paramsIBE,

then it runs as the simulation for σ = 0. C outputs the public

parameter params = {paramsIBE, g, {gi}i∈[1,n], t}, the full

binary tree BT with state st and the revocation list RL.

Phase 1: A issues a sequence of queries to the challenger

C, then C interacts with A in the following way.

UAV secret key query. A queries on the UAV secret key of

an identity id and an attribute set S, C first invokes the

Algorithm 3 to obtain the attribute vector u then answers

as follows: When σ = 0 and 〈u, v〉 = 0, C aborts to tell

that id is revoked even if S contents A. When σ = 0 and

〈u, v〉
= 0, C samples gx ∈ G, ε ∈ Zp then creates the

UAV secret key for each x ∈ Path(θid):

sk1 = g−1
x

n∏
i=1

(((ga)−ψuigβ
′
i)viε) · (gb)

β′iui
ψ·〈u,v〉

sk2 = gε(gb)
1

ψ·〈u,v〉

Notice that the UAV secret key can be parsed as below

if we set s = ε+ b
ψ·〈u,v〉 :

sk1 =g−1
x

n∏
i=1

((ga)−ψuigβ
′
i)viε · (gb)

β′iui
ψ·〈u,v〉

=g−1
x

n∏
i=1

g−auiviψεg−abψuivi
1

ψ<ui,vi>

· gabψuivi
1

ψ<ui,vi> gβ
′
iviεg

bβ′iui
ψ·〈u,v〉

=g−1
x

n∏
i=1

(g−aψvi)ui(ε+
b

ψ〈u,v〉)(gβ
′
i)ui(ε+

b
ψ〈u,v〉)

· gabψuivi 1
ψ〈u,v〉

=g−1
x gab

n∏
i=1

(g−aψvigβ
′
i)ui(ε+

b
ψ〈u,v〉)

=gα/gx

n∏
i=1

(gi)
uis

sk2 =gε(gb)
1

ψ·〈u,v〉 = gε+
b

ψ·〈u,v〉 = gs

C returns the UAV secret key usk = (id, �u, {sk1
, sk2}x∈Path(θid)) with state st← st ∪ {x, gx}.

When σ = 1 and 〈u, v〉 = 0, C specifies an unoccupied leaf

node θid for an identity id. For each x ∈ Path(θid), it

defines gx if available, otherwise randomly selects gx, s ∈
Zp and calculates

sk1 = gxg
s
∑n
i=1 τiui , sk2 = gs

C returns usk = (id, �u, {sk1, sk2}x∈Path(θid)).
Update key query. A queries for the update key of a

timestamp t, then C defines a collection I = {j|t[j] =
0, j ∈ [1, l]}. When σ = 0, C randomly chooses π ∈ Zp,

then calculates

uk1 = gx · (
0
∏

j∈I
j)
π, uk2 = gπ

C returns the update key uk = (t, {uk1, uk2}
x∈KUNodes(RL,st,t)).

When σ = 1, C calls the secret key skIBE = (sk1,IBE

, sk2,IBE) from CIBE about t, then selects r̄ ∈ Zp

randomly and computes

uk1 = sk1,IBE/gx · (
0
∏

j∈I
j)
r̄

= (gα/gx) · (
0
∏

j∈I
j)
π+r̄

uk2 = sk2,IBE · gr̄ = gπ+r̄

C returns the update key uk = (t, {uk1, uk2}
x∈KUNodes(RL,st,t)) to A.

Page 15 of 107

IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, VOL. , NO. , 13

UAV secret key update query. A requests for the update on

its UAV secret key usk. When σ = 0 and 〈u, v〉 = 0,

C aborts. And when σ = 0, 〈u, v〉 = 1, C retrieves the

UAV secret key usk and the update key uk if available,

otherwise C performs the UAV secret key query and the

update key query to obtain usk and uk. Then C calculates

sk1 =sk1 · uk1 =
n∏
i=1

(((ga)−ψuigβ
′
i)viε) · (gb)

β′iui
ψ·〈u,v〉

· (
0
∏

j∈I
j)
π

sk2 =sk1 · uk2 = gε+π(gb)
β′

ψ·〈u,v〉

sk3 =uk2 = gπ

C returns the updated UAV secret key usk =
((id, t), u, {sk1, sk2, sk3}).

When σ = 1, C also retrieves usk and uk if available,

otherwise C performs the UAV secret key query and the

update key query to obtain usk and uk. C then calculates

sk1 =sk1 · uk1 = gα · gs
∑n
i=1 τiui · (
0

∏
j∈I
j)

π+r̄

sk2 =sk2 · uk2 = gπ+r̄

sk3 =uk2 = gr̄

C returns the updated UAV secret key usk =
((id, t), u, {sk1, sk2, sk3}).

Revocation query. A issues the revocation query on an

identity id and a timestamp t, then C updates the re-

vocation list by operating RL← RL∪ (x, t) for all nodes

x ∈ Path(θid).
Challenge: A specifies two equal-length messages ε0, ε1.

Then, for σ = 0, C picks b ∈ {0, 1} and calculates c∗ =
εb · R and (gc, (gc)β

′
1 , ..., (gc)β

′
n). They can also be parsed as

(c∗0, {c∗i }i∈[1,n]) = (gδ, gv1δ(g1)
δ, ..., (gvnδ(gn)

δ) if it defines

δ = c, θ = acψ, where

c∗i = (gc)β
′
i = (gc)aψvi−aψvi+β

′
i

= (gc)aψvi(gc)−aψvi+β
′
i = gviθ(gi)

t

C also picks η′1, ..., η
′
n ∈ Zp then calculates:

c∗i · g−η
′
i = gviθ(gi)

δg−η
′
i = gviθ−η

′
i(gi)

δ = gδi g
ηi = c∗i

where ηi = −viθ+η′i, so we further obtain η′i = viθ+ηi =
γi.
C then calculates ĉ∗0 =
δ0, ĉ∗j =
δj , and c′∗ = ĉ∗0 ·

∏
j∈I ĉ

∗
j =

(
0
∏
j∈I
j)

δ , where I is the index collection of all zero bits

t[j] = 0 in t.
When σ = 1 and t ≤ t∗, the user with identity id∗

and 〈u, v∗〉 = 0 has been revoked, that is, (id∗, t) ∈ RL.

Then C aborts because id∗ was revoked before the time

period t∗. When σ = 1 and t > t∗, the user with id∗

and 〈u, v∗〉 = 0 has been revoked, that is (id∗, t) ∈ RL.

C sends (ε0, ε1, t
∗) to CIBE, then CIBE returns c∗IBE =

(c∗ = εb · e(g, g)αδ, c∗0 = gδ, c′∗ = (
0
∏
j∈I
j)

δ). Then,

C picks θ, {ηi}i∈[1,n] ∈ Z
n+1
p and calculates γ∗i = ηi + viθ,

c∗i = gδi g
−ηi and ĉ∗0 =
δ0 and ĉ∗j =
δj . C returns CT∗ =

(c∗, c′∗, c∗0, ĉ
∗
0, {c∗i , γ∗i }i∈[1,n], {ĉ∗j}j∈[1,l]) about the message

Mb and A
∗.

Phase 2: This phase is identical to Phase 1.

Guess: A outputs its guess b′ ∈ {0, 1} on b. When σ = 0,

if b′ = b, we say A wins the game GamePH−ABE−DS
IND−CPA , then

C outputs 1 to guess R = e(g, g)abc. Otherwise, A fails and

outputs 0 to indicate that R is a random element in the group

G. When σ = 1, C solves the DBDH problem by resorting to

CIBE.

A comprehensive analysis, considering the number of

queries qsk made by A, shows that the probability that C suc-

cessfully completes the simulation without aborting is at least

1/(2·ξ(qsk)), where ξ(·) is a polynomial function representing

the worst-case number of possible abort conditions per query.

If C does not abort, the simulation for A is perfect. There-

fore, if A wins the IND-CPA game (i.e., guesses b′ = b cor-

rectly), so does C in solving the DBDH instance. Conversely,

if A fails, C guesses randomly.

Thus, the advantage of C in solving the DBDH problem is

directly related to the advantage of A:

AdvDBDH
C (κ) ≥ 1

2 · ξ(qsk)
·AdvIND-CPA

A (κ)− negl(κ)

Since AdvAIND−CPA(κ) is assumed to be non-negligible,

and 1/(2 · ξ(qsk)) is a non-negligible fraction (as qsk is

polynomial in κ), it follows that AdvDBDH
C (κ) is also non-

negligible. This contradicts the DBDH hardness assumption,

proving the theorem.

Theorem 3: The re-encryption process of the proposed DE-
SPFF scheme is verifiable under the discrete logarithm (DL)
assumption.

Proof : Assume an adversary A can break the verifiabili-

ty of the proposed DE-SPFF scheme with a non-negligible

probability , then we can construct a probabilistic polynomial

time challenger algorithm C that solves the DL problem with

a non-negligible probability. More specifically, given the tuple

(e,G,GT , p, g, g
κ), the goal of C is to solve the value κ. The

verifiability game is described as follows.

Initialize: The adversary A claims the challenge access

policy A
∗.

Setup: C randomly selects α, κ, ψ, ω, τ1, ..., τn ∈ Zp,

then calculates gi = gτi , Z = e(g, g)α, x = gκ, y =
gψ , w = gω , where i ∈ [1, n]. It also defines two

collision-resistant hash functions H1 : GT → G and H2 :
{0, 1}∗ → Z

∗
p, and a message lock encryption algorithm MLE.

The challenger C outputs and forwards the public param-

eter params = {G,GT , p, e, g, x, y, w, {gi}i∈[1,n], Z,H1,H2

,
0, {
j}j∈[1,l],MLE}, then secretly holds the master secret

key msk = {α, {τi}i∈[1,n]}.
Phase 1: The adversary A issues a series of queries on

the UAV secret key usk, and the re-encryption key rk and

re-encrypted ciphertext verification. Then, the challenger C
answers these queries by running the SKGen, RKGen and

Pub-verify algorithms.

Challenge: The adversary A queries a ciphertext by

sending a message ε∗ and A
∗. The challenger C invokes

the Enc* algorithm and returns the ciphertext CT∗ =
(c∗, c′∗, c∗0, ĉ

∗
0, {c∗i , γ∗i }i∈[1,n], {ĉ∗j}j∈[1,l], c∗1, c∗2, c∗3).

Page 16 of 107

IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, VOL. , NO. , 14

Phase 2: In this phase, the adversary A issues the same

queries to C as Phase 1.

Guess: The adversary A sends a ciphertext CT′∗ =
(c∗

′
, c′∗

′
, c∗

′
0 , ĉ

∗′
0 , {c∗

′
i , γ

∗′
i }i∈[1,n], {ĉ∗

′
j }j∈[1,l], c∗

′
1 , c

∗′
2 , c

∗′
3) to

C. The challenger C obtains a UAV secret key usk, then

decrypts the ciphertext CT∗. If the ciphertext CT′∗ can

be correctly decrypted, which implies c∗1 = c∗
′

1 , that is,

xH2(ε
∗)yH2(R

∗) = xH2(ε
∗′)
yH2(R

∗′). It can be parsed as

gκ(H2(ε
∗))gψ(H2(R

∗)) = gκ(H2(ε
∗′))gψ(H2(R

∗′)), then we have

κ(H2(ε
∗′)− H2(ε

∗)) = ψ(H2(R
∗′)− H2(R

∗)), and κ can be

calculated by κ = ψ(H2(R
∗′)−H2(R

∗))
H2(ε∗

′)−H2(ε∗)
.

If the forgery is valid but RCT∗ is incorrect, it implies thatA
has somehow manipulated the components related to the secret

κ. By examining the difference between a correctly formed

RCT and the forged RCT∗, and by leveraging the answers A
made to the random oracles H2, C can extract a solution to

the DL problem.

Using the Forking Lemma [44], C can rewind A and run

it again with a different response for the H2 query on the

message ε∗ (or R∗). From the two forged signatures obtained

from these two runs with different hash outputs, C can solve

for the unknown exponent κ.

The probability that C successfully extracts the discrete

logarithm κ is polynomially related to the probability that

A produces a forgery. Specifically, there exists a polynomial

function ζ(κ) such that:

AdvDL
C (κ) ≥ 1

ζ(κ)
·
(
AdvVerif

A (κ)− negl(κ)
)2

The square term and the polynomial fraction 1/ζ(κ) are

typical results obtained through the application of the Forking

Lemma. Since AdvVerif
A (κ) is non-negligible by assumption,

it follows that AdvDL
C (κ) is also non-negligible. This con-

tradicts the DL hardness assumption, proving the theorem.

Theorem 4: The proposed DE-SPFF scheme is secure
against free-riding attack, collusion attack, and falsified re-
encryption.

Proof : Resilience against free-riding attack: The threat of

unauthorized entities “free-riding” to steal global parameters

is mitigated by the core design of our attribute-based encryp-

tion scheme. Access to the global parameters W is strictly

controlled by the ciphertext policy A embedded in CT by

the LLM server. An unauthorized UAV or external adversary

possesses a secret key usk linked to an attribute set S that

does not satisfy A. As formally proven in Theorem 2 under

the DBDH assumption, such an adversary cannot decrypt the

ciphertext CT to recover W. The scheme does not rely on

network-level security to prevent access; rather, cryptographic

access control ensures that only authorized participants (those

with valid, non-revoked credentials whose attributes satisfy

the policy) can decrypt and benefit from the fine-tuned model,

effectively eliminating the free-riding threat.

Resilience against collusion between a compromised edge

node and a delegatee UAV: This is a sophisticated attack

where a malicious delegatee UAV (the recipient of a re-

encrypted ciphertext RCT) colludes with a compromised edge

node to try and extract the global parameters. The security of

the proxy re-encryption process in DE-SPFF is specifically

designed to prevent this. The edge node performs its re-

encryption operation using a re-encryption key rk provided

by the delegator UAV. Crucially, this rk is generated from the

delegator’s secret key usk and is bound to the access policy A
′

of the delegatee. While the colluding parties have access to rk
and RCT, they do not possess the private key of the delegatee.

Decryption of RCT (Dec-re algorithm) requires the delegatee’s

own secret key to compute the final symmetric key. The design

ensures that the re-encryption key rk alone is insufficient for

decryption. The confidentiality of the underlying plaintext is

maintained under the hardness of the DBDH problem, as the

re-encryption process does not create a new vulnerability. The

edge node and the delegatee cannot combine their knowledge

to learn anything beyond what the delegatee is already autho-

rized to learn, which is the plaintext W if its attributes satisfy

the policy, an event that is not considered a breach. If the

delegatee’s attributes do not satisfy the policy, the collusion

still cannot decrypt the ciphertext.

Resilience against falsified re-encryption by a malicious

edge node: The threat of an edge node returning a falsified or

incorrectly computed RCT to disrupt the delegation process is

neutralized by the public verifiability feature of the DE-SPFF

scheme. As proven in Theorem 3 under the DL assumption,

any deviation from the correct ReEnc algorithm will be detect-

ed with overwhelming probability by the Pub-verify algorithm.

A third-party verifier (which could be the delegatee UAV

itself, the delegator, or a ground control station) can check

the correctness of RCT relative to the original CT and the

public re-encryption key rk without needing any secret infor-

mation. The verification process checks the structural integrity

and cryptographic consistency of the re-encrypted ciphertext.

Therefore, a malicious edge node cannot successfully sabotage

the learning process of a benign delegatee UAV by sending

garbage data, as such action would be detected and the faulty

RCT would be rejected.

VII. PERFORMANCE ANALYSIS

This section presents the analysis of the proposed DE-

SPFF scheme in terms of theoretical comparison, experimental

comparison, and simulation evaluation. Please note that we are

the first to apply ABE to the scenario of federated LLM fine-

tuning for UAV swarm networks. Therefore, we only compared

DE-SPFF with Ge et al.’s VF-ABPRE scheme [41], Zhang et
al.’s EFPR scheme [45], and Li et al.’s DAPRE scheme [46]

at the algorithmic level.

A. Theoretical comparisons

A functional comparison of the aforementioned schemes is

presented in Table I. Among them, the proposed DE-SPFF

only implements the AND-Gate access structure, whereas the

other schemes provide the more expressive LSSS access struc-

ture. Only DE-SPFF supports user revocation, which means

it can effectively address scenarios involving UAV drop-out

during the execution of federated LLM fine-tuning tasks.

Only DE-SPFF provides access policy hiding, indicating its

Page 17 of 107

IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, VOL. , NO. , 15

capability to protect users’ attribute privacy information while

providing data access control. Similarly, only DE-SPFF sup-

ports wildcard matching, allowing for flexibility in attribute-

based access control. All four schemes are delegatable, which

enhances their scalability and flexibility. Compared to EFPR

[45] and DAPRE [46], both VF-ABPRE [41] and DE-SPFF

enable verifiable delegation, thereby preventing third parties

from generating fraudulent re-encrypted ciphertexts.

TABLE I: Functional comparisons

Schemes Access
structure

User
revocable

Policy
hiding

Wildcard
matching

Cross
domain

Delegation
verifiable

VF-ABPRE [41] LSSS × × × � �
EFPR [45] LSSS × × × � ×

DAPRE [46] LSSS × × × � ×
DE-SPFF AND � � � � �

A comparison of the aforementioned schemes in terms of

storage and computational complexity is presented in Table

II and Table III, respectively. As can be readily observed

from Table II, the proposed DE-SPFF scheme features a fixed

length for user keys. In terms of ciphertext, EFPR [45] and

DAPRE [46] exhibit fixed complexity, which is superior to

that of VF-ABPRE [41] and DE-SPFF. Regarding the storage

complexity of re-encryption keys, DE-SPFF demonstrates a

significant advantage over VF-ABPRE [41], EFPR [45], and

DAPRE [46].

Table III illustrates the comparison of the aforementioned

schemes in terms of computational complexity. It is evident

that the proposed DE-SPFF scheme incurs only constant

overheads in the key generation, key update, re-encryption

key generation, and verification phases. Although the other

schemes do not involve key update and verification phases,

DE-SPFF still exhibits significant advantages over them in

the key generation and re-encryption key generation phases.

Among the other algorithms, the computational complexity of

SPFF is related to the number of attributes or the bit length

of the timestamp.

B. Experimental comparison

We conducted experimental evaluations of the target

schemes on a laptop equipped with an Intel Core Ultra 9 185H

processor (2.30 GHz), 32 GB of RAM, and a 64-bit Windows

10 OS. The primary aim was to assess and contrast the real-

world performance of these schemes. The implementation

leverages the PBC library [47]. These schemes rely on a

supersingular elliptic curve E/Fp : y
2 = x3 + x defined over

the finite field Fp, with an embedding degree of 2. Here, p
represents the prime order of the group G1. Consequently, the

bit-lengths of elements in G1 and G2 are both 128 Bytes, while

the bit-length of elements in Zp is 20 Bytes. The dataset used

is the Semantic Drone Dataset, released by ETH Zurich, which

is an aerial image semantic segmentation dataset. It consists

of high-resolution urban scene images captured by drones

(700 images in total) with pixel-level annotations, covering

20 object categories such as buildings, roads, and vehicles.

We randomly selected a subset of these images and converted

them into bit strings using the OpenCV library to evaluate the

performance of our algorithm on bit strings.

The storage overhead comparison between our proposed

DE-SPFF scheme and the VF-ABPRE [41], EFPR [45], and

DAPRE [46] schemes across different phases is illustrated in

Fig. 3, where we varied the number of attributes from 10 to

50, and set the bit length of timestamp as 10. Fig. 3-(a) shows

that while the user secret key storage overhead of VF-ABPRE

[41], EFPR [45], and DAPRE [46] increases with attribute

count, DE-SPFF maintains a constant and significantly lower

overhead due to our optimized key structure. In Fig. 3-(b), both

VF-ABPRE [41] and DE-SPFF exhibit growing ciphertext

storage overhead with increasing attributes, with DE-SPFF

outperforming VF-ABPRE [41] while remaining below 10 KB

at 50 attributes, though slightly higher than EFPR [45] and

DAPRE [46]. The re-encryption key storage comparison in

Fig. 3-(c) reveals that all schemes scale with attribute count,

but DE-SPFF maintains the lowest overhead (under 10 KB at

50 attributes). Similarly, Fig. 3-(d) demonstrates that while

re-encrypted ciphertext storage grows with attributes in all

schemes, DE-SPFF consistently achieves superior efficiency

compared to the alternatives.

Fig. 4 presents the computational overhead comparison

across different phases, where we varied the number of at-

tributes from 5 to 50 in increments of 5. As shown in Fig.

4-(a), DE-SPFF maintains stable computational time for UAV

secret key generation with an average of 15.27ms, while other

schemes exhibit near-linear growth that significantly exceeds

DE-SPFF’s performance (VF-ABPRE requires nearly 1400ms

for user secret key generation at 50 attributes). For encryption

time (Fig. 4-(b)), EFPR remains stable while other schemes

including DE-SPFF show near-linear growth, with DE-SPFF

requiring 926.10ms at 50 attributes - though higher than EFPR

[45], it demonstrates clear advantages over VF-ABPRE [41]

and DAPRE. Regarding re-encryption key generation (Fig. 4-

(c)), VF-ABPRE [41] and EFPR display near-linear growth,

whereas DAPRE [46] and DE-SPFF maintain stability with

DE-SPFF showing particularly superior efficiency. During re-

encryption (Fig. 4-(d)), EFPR [45] and DAPRE [46] remain

lightweight (¡100ms), while DE-SPFF (539.61ms at 50 at-

tributes) significantly outperforms VF-ABPRE [41] despite its

attribute-dependent growth. Decryption performance (Fig. 4-

(e)) reveals that while all schemes scale with attribute count,

DE-SPFF demonstrates marked superiority (under 500ms at 50

attributes). Fig. 4-(f) compares verification time between VF-

ABPRE [41] and DE-SPFF (the only schemes supporting pub-

lic verification), showing consistently low and stable overhead

for both. Crucially, DE-SPFF innovatively achieves wildcard

matching, user revocation, policy privacy preservation, and

publicly verifiable re-encryption without introducing complex

algorithmic structures, while significantly outperforming other

schemes in user/UAV secret key generation, re-encryption key

generation, and decryption phases, while maintaining com-

petitive advantages in encryption, re-encryption, and public

verification phases.

We also designed an experiment to simulate and evaluate the

additional communication and computational time overhead

incurred by passing upstream and downstream parameters to

Page 18 of 107

IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, VOL. , NO. , 16

TABLE II: Storage complexity comparisons

Schemes user secret key ciphertext re-encryption key re-encrypted ciphertext

VF-ABPRE [41] (n+2)|G| (2n+3)|G| (3n+4)|G|+2|GT | (2n+2)|G|+2|GT |
EFPR [45] (n+4)|G| 3|G|+|GT | (2n+4)|G|+(2n+1)|Zp| (2n+3)|G|+ |GT |+(2n+1)|Zp|

DAPRE [46] (n+2)|G| 9|G|+|GT | (2n+6)|G|+|GT | (2n+6)|G|+2|GT |
DE-SPFF 3|G| (n+l+7)|G|+n|Zp| 4|G|+2|GT |+n|Zp| (n+l+6)|G|+2|GT |+n|Zp|

Notations: n: number of attributes; l: bit length of the timestamp; |Zp|: an element in Zp; |G|: an element in the group G; |GT |: an element in GT .

TABLE III: Computational complexity comparisons

Schemes key generation encryption rk genration re-encryption decryption key update verification

VF-ABPRE [41] (n+3)eG (3n+4)eG+eGT (4n+5)eG+2eGT (2n+2)P (2n+1)P+2eG+eGT N/A 2eG

EFPR [45] (n+7)eG 4eG+eGT (3n+2)eG+eGT 2P (2n+2)P+(3n+2)eG N/A N/A

DAPRE [46] (2n+15)eG+(2n+6)H (4n+7)eG+2nH 14eG+3H 6P (n+4)P N/A N/A

DE-SPFF 2eG (2n+l+6)eG+eGT +H 6eG+2eGT 4P+(n+l+2)eG 3P+(n+3)eG+eGT +H 2eG 2eG

Notations: n: number of user’s attributes; l: bit length of the timestamp; eG: exponential operation over the group G; eGT : exponential operation over the
group GT ; P : bilinear pairig; H: map-to-point hash function; N/A: Not applicable.

10 20 30 40 50

Number of attributes

0

1000

2000

3000

4000

5000

6000

7000

St
or

ag
e

co
ns

um
pt

io
n

(B
yt

es
)

VF-ABPRE
EFPR
DAPRE
DE-SPFF

(a) User/UAV secret key

10 20 30 40 50

Number of attributes

0

2000

4000

6000

8000

10000

12000

14000

St
or

ag
e

co
ns

um
pt

io
n

(B
yt

es
)

VF-ABPRE
EFPR
DAPRE
DE-SPFF

(b) Ciphertext

10 20 30 40 50

Number of attributes

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

St
or

ag
e

co
ns

um
pt

io
n

(B
yt

es
)

104

VF-ABPRE
EFPR
DAPRE
DE-SPFF

(c) Re-encryption key

10 20 30 40 50

Number of attributes

0

2000

4000

6000

8000

10000

12000

14000

16000

St
or

ag
e

co
ns

um
pt

io
n

(B
yt

es
)

VF-ABPRE
EFPR
DAPRE
DE-SPFF

(d) Re-encrypted ciphertext

Fig. 3: Comparisons of storage costs

0

50

100

150

200

250

300

350

C
om

pu
ta

tio
na

l t
im

e
co

st
s

(s
ec

on
ds

)

21 22 23 24 25 26

Number of UAV

0

0.5

1

1.5

2

2.5

3

3.5

4

C
om

m
un

ic
at

io
n

tra
ffi

c
(M

B)

Communication traffic
Computational time costs

(a) UAV side

0

1000

2000

3000

4000

5000

6000

C
om

pu
ta

tio
na

l t
im

e
co

st
s

(s
ec

on
ds

)

21 22 23 24 25 26

Number of UAV

0

100

200

300

400

500

600

C
om

m
un

ic
at

io
n

tra
ffi

c
(M

B)

Communication traffic
Computational time costs

(b) Server side

Fig. 5: Communication traffic and computational costs of the

UAV and the server

UAVs and the server, respectively, during federated fine-tuning

enabled by function encryption. We set the number of UAVs to

increase exponentially from 21 to 26, and recorded the results

for each round of federated fine-tuning, as shown in Fig. 5.

Fig. 5-(a) shows the communication and computational time

overhead on the UAV side. It shows that the overhead per

UAV is nearly constant, with a communication overhead of

3MB and an average (encrypted) computational time of 297.36

seconds for one round of federated fine-tuning. Given the UAV

hardware configuration and task execution cycle, these storage

and computational time overheads are reasonable. Fig. 5-(b)

shows the communication and computational time overhead on

the server side. It shows that both server-side computational

and communication overheads show a significant upward trend

with the number of UAVs. When the number of UAVs reaches

64, the communication overhead for security and privacy

protection in a round of global model fine-tuning on the server

is 584.96 MB, and the computational time is 6291.2 seconds.

These results are simulated on our personal computer. For the

server in real scenarios, the above communication overhead

is reasonable and the computing time will be significantly

reduced.

VIII. CONCLUSION

This paper provides systematic solutions to several critical

issues urgently needing resolution in federated LLM fine-

tuning for UAV swarm networks. Specifically, we propose

the SPFF scheme, which is based on an improved inner-

product ABE algorithm. This algorithm can provide efficient

and privacy-protected one-to-many sharing of downlink global

parameters for federated LLM fine-tuning in UAV swarm

networks. A secure upload mechanism for uplink local up-

date parameters and a fine-tuning mechanism over encrypted

parameters are constructed based on functional encryption.

Aiming at the potential impact of UAV drop-out on the

robustness of the federated LLM system, the scheme judges

Page 19 of 107

IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, VOL. , NO. , 17

5 10 15 20 25 30 35 40 45 50

Number of attributes

0

200

400

600

800

1000

1200

1400

Ti
m

e
co

ns
um

pt
io

n(
m

illi
se

co
nd

s) VF-ABPRE
EFPR
DAPRE
DE-SPFF

(a) User/UAV secret key generation

5 10 15 20 25 30 35 40 45 50

Number of attributes

0

500

1000

1500

2000

2500

Ti
m

e
co

ns
um

pt
io

n(
m

illi
se

co
nd

s) VF-ABPRE
EFPR
DAPRE
DE-SPFF

(b) Encryption

5 10 15 20 25 30 35 40 45 50

Number of attributes

0

200

400

600

800

1000

1200

1400

1600

1800

Ti
m

e
co

ns
um

pt
io

n(
m

illi
se

co
nd

s) VF-ABPRE
EFPR
DAPRE
DE-SPFF

(c) Re-encryption key generation

5 10 15 20 25 30 35 40 45 50

Number of attributes

0

200

400

600

800

1000

1200

Ti
m

e
co

ns
um

pt
io

n(
m

illi
se

co
nd

s) VF-ABPRE
EFPR
DAPRE
DE-SPFF

(d) Re-encryption

5 10 15 20 25 30 35 40 45 50

Number of attributes

0

500

1000

1500

2000

2500

Ti
m

e
co

ns
um

pt
io

n(
m

illi
se

co
nd

s) VF-ABPRE
EFPR
DAPRE
DE-SPFF

(e) Decryption

5 10 15 20 25 30 35 40 45 50

Number of attributes

15

15.5

16

16.5

17

17.5

18

Ti
m

e
co

ns
um

pt
io

n(
m

illi
se

co
nd

s)

VF-ABPRE
DE-SPFF

(f) Public verification

Fig. 4: Comparisons of computational costs

and processes the UAVs that have left the federated fine-

tuning by designing an efficient revocation mechanism. On

this basis, the DE-SPFF scheme designs an efficient and

verifiable proxy re-encryption mechanism. This mechanism

is used to provide task delegation for UAVs that can no

longer participate in tasks and allows public verification of

the validity of re-encrypted ciphertexts. Strict formal security

proofs and performance comparison analyses show that the

proposed schemes are secure, efficient, and practical. Despite

the promising results, our proposed schemes have certain

limitations that warrant further investigation. First, the current

access control structure in DE-SPFF is limited to AND-

gate policies, which may not fully capture complex real-

world access requirements. Future work could explore more

expressive policy structures, such as LSSS, while maintaining

efficiency. Second, the reliance on a trusted authority for key

management introduces a single point of failure and may not

be fully aligned with the decentralized ethos of UAV swarm-

s. Investigating decentralized key management mechanisms,

such as blockchain-based approaches, could enhance system

resilience and trust distribution. Third, while the schemes are

designed for resource-constrained environments, the compu-

tational overhead of cryptographic operations remains non-

negligible for extremely lightweight UAVs. Further optimiza-

tions, including hardware acceleration or more lightweight

cryptographic primitives, could be explored to better suit ultra-

low-power devices. Finally, the current security model assumes

semi-honest edge nodes; extending the scheme to withstand

fully malicious adversaries would strengthen its applicability

in more hostile environments. Future research will also focus

on large-scale real-world deployments and interoperability

with existing UAV communication standards.

REFERENCES

[1] Wang X, Zhao Z, Yi L, et al. “A Survey on Security of UAV Swarm
Networks: Attacks and Countermeasures,” ACM Computing Surveys, vol.
53, no. 3, pp. 1-37, 2024.

[2] Yu K, Zhou H, Xu Y, et al. “Large Sequence Model for MIMO
Equalization in Fully Decoupled Radio Access Network,” IEEE Open
Journal of the Communications Society, vol. 6, pp. 4491-4504, 2025.

[3] Yu K, Yu Q, Tang Z, et al. “Fully-decoupled radio access networks: A
flexible downlink multi-connectivity and dynamic resource cooperation
framework,” IEEE Transactions on Wireless Communications, vol. 22,
no. 6, pp. 4202-4214, 2022.

[4] Chang Y, Wang X, Wang J, et al. “A survey on evaluation of large lan-
guage models,” ACM Transactions on Intelligent Systems and Technology,
vol. 15, no. 3, pp. 1-45, 2024.

[5] Chen C, Feng X, Zhou J, et al. “Federated large language model: A
position paper,” arXiv e-prints, 2023: arXiv: 2307.08925.

[6] Rezazadeh A, Li Z, Lou A, et al. “Collaborative Memory: Multi-User
Memory Sharing in LLM Agents with Dynamic Access Control,” arXiv
preprint arXiv:2505.18279, 2025.

[7] Wang H, Xu J. “Friends to help: Saving federated learning from client
dropout,” ICASSP 2024-2024 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP). IEEE, pp. 8896-8900, 2024.

[8] Dhuheir M A, Baccour E, Erbad A, et al. “Deep reinforcement learn-
ing for trajectory path planning and distributed inference in resource-
constrained UAV swarms,” IEEE Internet of Things Journal, vol. 10, no.
9, pp. 8185-8201, 2022.

[9] Sun J, Xu G, Li H, et al. “Sanitizable Cross-Domain Access Control With
Policy-Driven Dynamic Authorization,” IEEE Transactions on Depend-
able and Secure Computing, 2025. DOI: 10.1109/TDSC.2025.3541819

Page 20 of 107

IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, VOL. , NO. , 18

[10] Sun J, Bao Y, Qiu W, et al. “Privacy-preserving fine-grained data sharing
with dynamic service for the cloud-edge IoT,” IEEE Transactions on
Dependable and Secure Computing, vol. 22, no. 2, pp. 1329-1346, 2024.

[11] Qu B, Wang Z, Shen B, et al. “Secure particle filtering with Paillier en-
cryptionCdecryption scheme: Application to multi-machine power grids,”
IEEE Transactions on Smart Grid, vol. 15, no. 1, pp. 863-873, 2023.

[12] Klein O, Komargodski I. “New bounds on the local leakage resilience
of Shamirs secret sharing scheme,” Annual International Cryptology
Conference. Cham: Springer Nature Switzerland, LNCS, vol. 14081, pp.
139-170, 2023.

[13] Yang C, Jiang P, Zhu L. “Accelerating decentralized and partial-privacy
data access for VANET via online/offline functional encryption,” IEEE
Transactions on Vehicular Technology, vol. 71, no. 8, pp. 8944-8954,
2022.

[14] Miao Y, Li F, Li X, et al. “Verifiable outsourced attribute-based
encryption scheme for cloud-assisted mobile e-health system,” IEEE
Transactions on Dependable and Secure Computing, vol. 21, no. 4, pp.
1845-1862, 2023.

[15] Chang Y, Zhang K, Gong J, et al. “Privacy-preserving federated learning
via functional encryption, revisited,” IEEE Transactions on Information
Forensics and Security, vol. 18, pp. 1855-1869, 2023.

[16] Luo F, Wang H, Susilo W, et al. “Public trace-and-revoke proxy re-
encryption for secure data sharing in clouds,” IEEE Transactions on
Information Forensics and Security, vol. 19, no. 2919-2934, 2024.

[17] Wu F, Li Z, Li Y, et al. “Fedbiot: Llm local fine-tuning in federated
learning without full model, Proceedings of the 30th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining. pp. 3345-3355,
2024.

[18] Das B C, Amini M H, Wu Y. “Security and privacy challenges of large
language models: A survey,” ACM Computing Surveys, vol. 57, no. 6, pp.
1-39, 2025.

[19] Yao Y, Zhang J, Wu J, et al. “Federated large language models: Current
progress and future directions,” arXiv preprint arXiv:2409.15723, 2024.

[20] Zhang J, Vahidian S, Kuo M, et al. “Towards building the federatedgpt:
Federated instruction tuning,” ICASSP 2024-2024 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE,
pp. 6915-6919, 2024.

[21] Zhang Z, Zhang J, Huang J, et al. “FewFedPIT: Towards Privacy-
preserving and Few-shot Federated Instruction Tuning,” arXiv preprint
arXiv:2403.06131, 2024.

[22] Sun Y, Li Z, Li Y, et al. “Improving lora in privacy-preserving federated
learning,” arXiv preprint arXiv:2403.12313, 2024.

[23] Nguyen T, Thai M T. “Preserving privacy and security in federated
learning,” IEEE/ACM Transactions on Networking, vol. 32, no. 1, pp.
833-843, 2023.

[24] Zhang X, Fu A, Wang H, et al. “A privacy-preserving and verifiable fed-
erated learning scheme,” ICC 2020-2020 IEEE International Conference
on Communications (ICC). IEEE, pp. 1-6, 2020.

[25] Jin W, Yao Y, Han S, et al. “FedML-HE: An efficient homomorphic-
encryption-based privacy-preserving federated learning system,” arXiv
preprint arXiv:2303.10837, 2023.

[26] Xu G, Li H, Liu S, et al. “VerifyNet: Secure and verifiable federated
learning,” IEEE Transactions on Information Forensics and Security, vol.
15, pp. 911-926, 2019.

[27] Yu H, Xu R, Zhang H, et al. “EV-FL: Efficient verifiable federated learn-
ing with weighted aggregation for industrial IoT networks,” IEEE/ACM
Transactions on Networking, vol. 32, no. 2, pp. 1723-1737, 2023.

[28] Yin X, Qiu H, Wu X, et al. “An Efficient Attribute-Based Participant
Selecting Scheme with Blockchain for Federated Learning in Smart
Cities,” Computers, vol. 13, no. 5, pp. 118, 2024.

[29] Wang Y, Su Z, Zhang N, et al. “Learning in the Air: Secure Feder-
ated Learning for UAV-assisted Crowdsensing,” IEEE Transactions on
Network Science and Engineering, vol. 8, no. 2, pp. 1055-1069, 2020.

[30] Hou X, Wang J, Jiang C, et al. “UAV-enabled covert federated learning,”
IEEE Transactions on Wireless Communications, vol. 22, no. 10, pp.
6793-6809, 2023.

[31] Xu Q, Lan Y, Su Z, et al. “Verifiable and privacy-preserving cooperative
federated learning in UAV-assisted vehicular networks,” ICC 2023-IEEE
International Conference on Communications. IEEE, 2023: 2288-2293.

[32] Xu R, Joshi J B D, Li C. “Cryptonn: Training neural networks over
encrypted data,” 2019 IEEE 39th International Conference on Distributed
Computing Systems (ICDCS). IEEE, pp. 1199-1209, 2019.

[33] Phuong T V X, Yang G, Susilo W. “Hidden ciphertext policy attribute-
based encryption under standard assumptions,” IEEE Transactions on
Information Forensics and Security, vol. 11, no. 1, pp. 35-45, 2015.

[34] Sun J, Xiong H, Liu X, et al. “Lightweight and privacy-aware fine-
grained access control for IoT-oriented smart health,” IEEE Internet of
Things Journal, vol. 7, no. 7, pp. 6566-6575, 2020.

[35] Xu G, Xu S, Ma J, et al. “An adaptively secure and efficient data
sharing system for dynamic user groups in cloud,” IEEE Transactions
on Information Forensics and Security, vol. 18, pp. 5171-5185, 2023.

[36] Wang Z, Shen Z, He Y, et al. “Flora: Federated fine-tuning large lan-
guage models with heterogeneous low-rank adaptations”. arXiv preprint
arXiv:2409.05976, 2024.

[37] Bian J, Wang L, Zhang L, et al. “LoRA-FAIR: Federated LoRA Fine-
Tuning with Aggregation and Initialization Refinement,” arXiv preprint
arXiv:2411.14961, 2024.

[38] Bellare M, Keelveedhi S. “Interactive message-locked encryption and
secure deduplication,” Public-Key Cryptography–PKC 2015: 18th IACR
International Conference on Practice and Theory in Public-Key Cryp-
tography, Gaithersburg, MD, USA, March 30–April 1, 2015, Proceedings
18. Springer Berlin Heidelberg, LNSC, vol. 9020, pp. 516-538, 2015.

[39] Yan Y, Yang Q, Tang S, et al. “Federa: Efficient fine-tuning of language
models in federated learning leveraging weight decomposition,” arXiv
preprint arXiv:2404.18848, 2024.

[40] Bao Y, Qiu W, Cheng X, et al. “Fine-grained data sharing with enhanced
privacy protection and dynamic users group service for the IoV,” IEEE
Transactions on Intelligent Transportation Systems, vol. 24, no. 11, pp.
13035-13049, 2022.

[41] Ge C, Susilo W, Baek J, et al. “A verifiable and fair attribute-based proxy
re-encryption scheme for data sharing in clouds,” IEEE Transactions on
Dependable and Secure Computing, vol. 19, no. 5, pp. 2907-2919, 2021.

[42] Bellare M, Keelveedhi S, Ristenpart T. “Message-locked encryption and
secure deduplication,” Annual international conference on the theory and
applications of cryptographic techniques. Berlin, Heidelberg: Springer
Berlin Heidelberg, LNSC, vol. 7881, pp. 296-312, 2013.

[43] Waters B. “Efficient identity-based encryption without random oracles,”
Annual international conference on the theory and applications of cryp-
tographic techniques. Berlin, Heidelberg: Springer Berlin Heidelberg,
LNSC, vol. 3494, pp. 114-127, 2005.

[44] Bagherzandi A, Cheon J H, Jarecki S. “Multisignatures secure under the
discrete logarithm assumption and a generalized forking lemma,” Pro-
ceedings of the 15th ACM conference on Computer and communications
security. pp. 449-458, 2008.

[45] Zhang Q, Fu Y, Cui J, et al. “Efficient Fine-grained Data Sharing Based
on Proxy Re-encryption in IIoT,” IEEE Transactions on Dependable and
Secure Computing, vol. 21, no. 6, pp. 5797-5809, 2024.

[46] Li X, Xie Y, Wang H, et al. “dAPRE: Efficient and Reliable Attribute-
Based Proxy Re-Encryption Using DAG for Data Sharing in IoT,” IEEE
Transactions on Consumer Electronics, vol. 70, no. 1, pp. 584-596, 2023.

[47] Lynn B. “Pbc library-pairing-based cryptography,” http://crypto. stan-
ford. edu/pbc/, 2007.

Page 21 of 107

