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Highlights

OctMamba: Mamba-Based Octree Context Entropy Model for Point Cloud Ge-

ometry Compression

Zhaoyi Jiang, Yi Xu, Frederick W.B. Li, Gary K.L Tam, Chao Song, Bailin Yang

• Jointly models spatial, channel, and topological redundancies, moving beyond

conventional spatial-only designs.

• Embedding Mamba layers locally within specialized subcomponents instead of

as a global backbone, enabling structured context modeling.

• Achieves efficient long-range modeling with linear complexity, yielding a smaller

model and faster decoding while outperforming baselines.
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Abstract

Existing learned point cloud compression frameworks face two major limitations: (1)

they focus almost exclusively on spatial redundancy and (2) rely on architectures built

around local-global transformers or global Mamba blocks. Transformers incur quadratic

complexity, while global Mamba lacks the granularity to capture structured correla-

tions across multiple dimensions. We propose OctMamba, the first unified framework

to jointly exploit spatial, channel, and topological redundancies, dimensions previously

overlooked in point cloud geometry compression. Our approach introduces a new ar-

chitectural principle: embedding Mamba modules within specialized subcomponents

rather than applying them globally, challenging existing design paradigms. OctMamba

combines two modules: Spatial-Channel Coupled Grouping Mamba (SCCGM) for

spatial-channel fusion and Local Graph CNN-Mamba (LGCM) for topological encod-

ing. This design enables efficient long-range modeling with linear complexity, deliv-

ering a smaller model and faster decoding while outperforming transformer-based and

global Mamba baselines. On SemanticKITTI, OctMamba reduces bitrate by 60.2%

over GPCC (D1 PSNR) and achieves state-of-the-art performance across LiDAR and

dynamic human point cloud benchmarks with practical speed and scalability. By intro-

ducing multi-dimensional redundancy modeling, OctMamba has the potential to influ-
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ence future research on efficient point cloud compression.

Keywords: Point cloud compression, State space models, Multi-dimensional

redundancy, Occupancy-probability modeling
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Figure 1: Overview of OctMamba. By coupling spatial, channel, and topological information, OctMamba

aggregates multi-dimensional redundancies, reduces edge/sparsity ambiguity, and improves occupancy esti-

mation, yielding smoother reconstructions and a more uniform error distribution. Visual comparisons with

OctAttention further demonstrate more stable reconstructions in edge/sparse regions and flatter error maps.

1. Introduction

Point clouds play a fundamental role in 3D scene representation across applications

such as autonomous driving, virtual reality (VR), and augmented reality (AR) [1, 2].

While they capture rich spatial detail, their large data volumes pose significant chal-

lenges for storage, transmission, and real-time processing. Efficient geometry compres-

sion is therefore essential for scalable and high-quality 3D scene understanding. Recent

deep learning methods have advanced point cloud compression using data-driven en-

tropy models and hierarchical neural architectures [3, 4]. Octree-based models, such

as OctAttention [5], exploit autoregressive context for probability estimation, while

block- or grouped-processing methods like EHEM [6] improve efficiency through par-

allelized node processing. Beyond octrees, implicit neural representation (INR) frame-

works [7] model occupancy and attributes via coordinate-based networks, and graph-

or attention-based models, such as GAEM [8], capture local structural dependencies.
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Conventional 3D CNNs [9, 10] model local context, and transformers [5, 6] handle

global dependencies.

Despite these advances, current approaches exhibit fundamental limitations that

hinder both efficiency and fidelity [11]. First, most frameworks primarily focus on

spatial redundancy, with limited use of channel and topological correlations. Point

clouds exhibit rich dependencies beyond spatial structure (Fig. 1): multi-scale neigh-

bor relationships arise from varying densities and geometric patterns [12, 13], latent

feature channels often display strong correlations [14, 15], and topological relation-

ships govern connectivity and hierarchy. Explicitly modeling these dimensions can

reduce redundancy and improve prediction quality. Second, existing architectures typ-

ically rely on local–global transformers or globally applied Mamba blocks to capture

long-range dependencies. While transformers can model global context, they incur

quadratic complexity with sequence length, making them costly for large point clouds.

Global Mamba improves efficiency but does not explicitly model structured spatial,

channel and topological correlations within the octree. Introducing multi-dimensional

dependencies further complicates the design space: modeling spatial, channel, and

topological features jointly requires architectures that balance fidelity, complexity, and

parallelism (Fig. 2).

To address these limitations, we propose OctMamba, the first unified octree-based

framework that jointly exploits spatial, channel, and topological redundancies for point

cloud geometry compression. Our approach introduces a new architectural principle:

embedding Mamba modules within specialized subcomponents rather than applying

them globally. OctMamba comprises two modules: Spatial–Channel Coupled Group-

ing Mamba (SCCGM), which performs staged spatial–channel fusion inside each con-

text window, and Local Graph CNN–Mamba (LGCM), which encodes topological de-

pendencies through local neighbor graphs fused with ancestor context. This local-

ized embedding principle preserves granularity, removes the autoregressive bottleneck,

achieves linear complexity, and delivers a significantly smaller model compared to

transformer-based and global Mamba designs.

Our design is rigorously validated through standardized protocols and comprehen-

sive analysis. We adopt standard PSNR-based rate–distortion evaluation and dataset
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splits for fair comparison and report complexity metrics—FLOPs, memory, and param-

eter counts—alongside encoding and decoding times across octree depths. Experimen-

tal results demonstrate OctMamba’s efficiency and scalability: on SemanticKITTI [16],

it reduces BD-rate by 60.2% over GPCC and achieves consistent gains on Ford [17],

MVUB [18], and MPEG 8i [19]. Ablation studies confirm the necessity of channel

grouping and LGCM, the benefits of larger context windows and neighborhood sizes,

and the superiority of localized Mamba embedding over transformer-based alternatives.

Computational analysis further shows that OctMamba uses fewer parameters and lower

FLOPs per window, while decoding remains faster than transformer-based and global

Mamba designs at deeper octrees.

These findings highlight two core contributions addressing the observed limita-

tions. First, OctMamba explicitly models spatial, channel, and topological redundan-

cies, moving beyond a spatial-only focus to capture richer correlations for improved

prediction and structural fidelity. Second, by embedding Mamba locally within sub-

modules (SCCGM and LGCM), it eliminates the autoregressive bottleneck, achieves

linear complexity, and delivers a smaller model without sacrificing accuracy. Together,

these innovations combine high compression performance with practical scalability,

providing a solid foundation for future research on efficient and high-fidelity point

cloud geometry compression.

Our main contributions are summarized as follows:

• We introduce OctMamba, the first efficient octree-based framework that jointly

exploits spatial, channel, and topological redundancies for point cloud geometry

compression, moving beyond spatial-only approaches.

• We propose two novel modules, SCCGM for spatial–channel fusion and LGCM

for topological graph modeling, combined with the principle of embedding Mamba

locally for fine-grained correlation and linear complexity.

• OctMamba achieves state-of-the-art performance across LiDAR and dynamic

human point cloud benchmarks while maintaining practical encoding speed and

scalability.
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Figure 2: Comparison of octree-based point cloud compression approaches. (a) Autoregressive (e.g., Oc-

tAttention [5]): Sequential decoding restricts each undecoded node (“?”) to access only previously decoded

nodes (blue), resulting in high latency and no context sharing among nodes at the same level. (b) Spatial

grouping (e.g., EHEM [6]): Nodes are processed in isolated spatial groups, so the first-row undecoded

groups (“?”) lack access to decoded siblings at the same level, resulting in fragmented context across group

boundaries. (c) Spatial and channel grouping (OctMamba): All undecoded nodes (“?”) at the current

level can access information from all decoded siblings (blue), enabling full spatial-channel context integra-

tion within the level and efficient multi-dimensional redundancy exploitation with linear complexity.

2. Related Work

2.1. Learned Point Cloud Geometry Compression

Recent deep learning-based methods have achieved impressive results in point

cloud compression by leveraging diverse data structures and models [20, 21, 22, 23].

Many adopt PointNet-style architectures [12, 24] or sparse voxel grids, encoding latent

representations through hyper-prior entropy models to enable lossy compression at low

bitrates. However, the transformation to latent space often distorts high-frequency de-

tails due to limited capacity in low-dimensional representations. Mamba-PCGC [22]

recently introduced a state-space model to extend contextual dependencies with mini-

mal complexity, but its voxel-based, globally focused framework struggles with point
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cloud sparsity.

In lossless geometry compression, octree-based learned entropy models have demon-

strated strong performance [5, 6], minimizing spatial partitioning loss via hierarchical

structures. Some methods combine voxel data with octrees for improved local feature

extraction [9], though often at high computational cost. For example, OctAttention [5]

captures rich octree contexts but suffers from slow autoregressive decoding. Recent

efforts such as EHEM [6] and ECM-OPCC [25] enhance global attention efficiency,

yet still face the quadratic complexity inherent to attention mechanisms.

A key limitation across existing methods is their predominant focus on spatial re-

dundancy, often overlooking additional multi-dimensional feature correlations. Fea-

ture channels, including encoding geometry, spatial context, and semantics, exhibit

strong interdependencies, while topological structures represent point connectivity and

higher-order geometry, both of which are critical for preserving structural fidelity.

However, the high computational cost of modeling these dependencies has hindered

their integration into current frameworks.

To address this, we propose OctMamba: a unified framework that explicitly incor-

porates spatial, channel, and topological correlations for point cloud geometry com-

pression. By combining octree representations with the efficient Mamba sequence

model, OctMamba captures multi-dimensional dependencies while maintaining low

complexity and strong compression performance.

2.2. Multi-dimensional Redundancy Beyond Point Clouds

Research on hyperspectral image (HSI) denoising offers complementary evidence

that jointly modeling correlations across multiple axes is beneficial. The SLRP–DSP

framework demonstrates that explicitly combining spectral low-rank structures with

deep spatial priors effectively suppresses noise while preserving spatial detail [26]. A

recent survey on HSI denoising systematically compares model-driven, data-driven,

and model–data-driven paradigms, emphasizing the importance of coordinated spec-

tral–spatial priors [27]. Additionally, a TDSAT method couples band-wise and spatial

features through attention mechanisms [28].
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These approaches operate on grid-structured images and primarily address spec-

tral–spatial axes, with spectra loosely analogous to latent channels in our context, but

do not incorporate explicit octree hierarchy or graph/topological relations. Further-

more, their attention-based designs typically incur quadratic complexity in sequence

length, while our approach utilizes linear-time state-space modeling to integrate spa-

tial, channel, and topological dependencies within octree sequences.

2.3. State Space Models

Linear state-space models (SSMs) [29, 30] have recently gained traction for se-

quence modeling, combining latent state transitions with deep learning. The S4 model [31]

improved efficiency via convolution while retaining RNN-like strengths. Mamba [32]

further advanced SSMs by introducing a selective mechanism that achieves linear com-

plexity, in contrast to the quadratic cost of Transformers [33], enabling its adoption in

vision [34], graphs [35], and point cloud processing [36, 37, 38, 39].

In point cloud analysis, PointMamba [39] adapts Mamba using space-filling curves

and geometric reordering, while Mamba3D [38] introduces bidirectional channel mod-

eling to enhance local feature extraction. PointCloudMamba [37] proposes Consistent

Traverse Serialization with order prompts to preserve spatial adjacency and inform

sequence structure. These approaches demonstrate Mamba’s utility for tasks like clas-

sification and segmentation, focusing mainly on spatial and sequential modeling.

In compression, Mamba-PCGC [22] applies Mamba globally for point cloud ge-

ometry compression but does not exploit multi-dimensional feature correlations. Our

work addresses this gap by introducing OctMamba, which is a unified framework

that integrates spatial, channel, and topological features using Mamba’s efficient se-

quence modeling. Unlike prior methods that apply Mamba globally [36, 38] or stack

Mamba blocks for long-range spatial modeling [37, 22], we embed Mamba modules

locally within LGCM and SCCGM subcomponents. This localized strategy enables

fine-grained modeling and fusion across dimensions, resulting in structurally aware,

topologically informed, and channel-sensitive representations that improve compres-

sion fidelity and efficiency.
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Figure 3: Architecture Overview. Left: The point cloud is organized as an octree with node occupancy (col-

ored circles) and Z-order indices (numbers), divided into non-overlapping context windows (e.g., Window 1

and Window 2, N=4) shown by red dashed and black dotted boxes. With D=3 ancestor levels, ancestor (red)

and sibling (blue) features in each window are aggregated and fused by LGCM, capturing local topology

(via neighborhood graphs) and hierarchical context. The fused features are split and fed to SCCGM. Right:

SCCGM has four spatial–channel groups (S1C1, S1C2, S2C1, S2C2), each with Mamba stages, MLPs, and

split operations. Inter-group dependencies (arrows) propagate ancestor and sibling context from earlier (e.g.,

S1C1) to later groups (e.g., S2C2), enabling multi-dimensional redundancy modeling for occupancy predic-

tion and entropy coding. Feature tensor dimensions are annotated; notation definitions are in Tab. 1.

3. Method

3.1. Overview

The core challenge in point cloud geometry compression lies in effectively model-

ing not only spatial redundancy but also the rich channel and topological correlations

present in the data. Most existing methods primarily exploit spatial context, leaving

other dimensions underutilized. OctMamba addresses this gap through a unified frame-

work that captures and integrates spatial, channel, and topological features, enabling

more efficient compression with high geometric fidelity (Figure 3). To aid understand-

ing, key mathematical symbols used in the following sections are summarized in Tab. 1,
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Table 1: Notations

Notation Description

M Total number of nodes in the octree

m Index of the node in the octree’s Z-order traversal.

X Occupancy sequence of all nodes via Z-order traversal in the octree

i Index of the occupancy window

Wi The i-th occupancy window

N Length of Wi

D Number of ancestor levels used in context

xm Occupancy of the m-th node in the octree

rm Structural metadata of the m-th node (octant index, coordinates, and depth)

fm Node feature, defined as fm = {xm, rm}

am Ancestor context of the m-th node, defined as am = {rm, fm(1) , . . . , fm(L) }

m(d) The index of the d-th ancestor of node m

Ai Ancestor context for Wi

Ei Local topological features for Wi

Ci Context window for Wi

Pi Coordinates of nodes in the i-th window

Fa
i Ancestor latent feature for window i; superscript a stands for ancestor-based latent feature

Fa(1)

i , Fa(2)

i Two channel-wise groups of Fa
i ; superscript (1) or (2) denotes channel grouping

Wi1, Wi2 Spatial subgroups of window Wi; subscript 1 or 2 indicates spatial grouping

F s
i1 Embedded feature of spatial group Wi1; superscript s indicates sibling-based latent feature

F̃ s(2)

i2 Sibling-context-inferred feature for spatial group Wi2 from the second (2) channel group

with brief descriptions covering indices, structural features, context, and intermediate

tensors. Specifically, our approach consists of two main components:

• Local Graph CNN-Mamba (LGCM) builds local neighborhood graphs among

sibling octree nodes to extract topological features reflecting connectivity and ge-

ometry, fused with ancestor context to enhance structural representation.

• Spatial-Channel Coupled Grouping Mamba (SCCGM) jointly models spatial-

channel features in grouped stages, where earlier groups inform later ones, enabling

accurate occupancy probability estimation via richer spatial-channel interactions.

OctMamba captures multi-dimensional dependencies and improves occupancy pre-

diction for each octree node by cascading LGCM and SCCGM, with Mamba embedded

in LGCM and each SCCGM submodule for fine-grained feature modeling and fusion.

This design reduces bitrate on evaluated datasets while maintaining competitive run-

time. Its unified modeling of spatial, channel, and topological redundancies uses a

linear-complexity architecture, making OctMamba both novel and efficient.
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3.2. Multi-Dimensional Feature Processing Pipeline

To implement the multi-dimensional modeling, OctMamba processes the point

cloud through a structured pipeline comprising sequence construction, hierarchical

feature extraction, and probabilistic occupancy modeling. Each step is designed to

incrementally encode the spatial, topological, and channel dependencies essential for

high-fidelity compression.

1. Octree-Based Sequence Construction: A point cloud is encoded into an octree

[40]. Each voxel has 8-bit occupancy and is organized via Z-order traversal into a

sequence X = {x1, x2, . . . , xM}, where xm is the occupancy of the m-th node and M is the

total number of nodes. X is divided into fixed-length, non-overlapping windows Wi of

size N, with X = W1∪ ...∪WM/N , enabling localized processing and parallelization. At

each node, xm is paired with structural metadata rm (octant index, coordinates, depth)

forming the node feature fm = {xm, rm}. The ancestor context of a node comprises

features from its D most recent ancestors: am = {rm, fm(1) , . . . , fm(D) }. For window Wi, its

ancestor context is Ai = {ai×N−N+1, . . . , ai×N}, and the contextual information including

neighbors’ occupancies and Ai is the context window Ci. Ancestors are zero-padded

when fewer than D exist.

2. Hierarchical Feature Extraction: Once the context windows are formed, fea-

ture extraction proceeds through two coordinated modules that specialize in distinct

dependency types:

• The LGCM module processes each window by constructing a local voxel-level

topological graph among the neighors. This graph is passed through an Edge-

Conv operator and fused with ancestor context via a Mamba block, yielding en-

hanced representations Fa
i that encode both local structure and global hierarchy.

• The SCCGM module refines Fa
i via a stepwise decoding strategy that progres-

sively integrates earlier channel groups. Features are split along spatial and

channel dimensions, allowing contextual reuse. This staged interaction between

decoded and undecoded features enables SCCGM to iteratively produce more

accurate occupancy distributions for each node in Wi.
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3. Entropy Modeling and Bitstream Generation: The final stage estimates the con-

ditional occupancy distribution for the entire sequence:

q̃(X) =
M/N∏
i=1

q̃i(Wi | Ci), (1)

where q̃i is the predicted conditional probability of the i-th window. Assuming con-

ditional independence between windows, this formulation enables scalable entropy

estimation. Lossless compression is achieved via arithmetic encoding based on the

predicted distribution q̃(X), producing a compact bitstream suitable for lossless recon-

struction. A Z-order curve [41] guides the octree traversal, preserving spatial coherence

and ensuring compatibility with OctMamba’s linear-complexity decoding path.

3.3. Local Graph CNN-Mamba (LGCM)

To enhance coding performance, the LGCM module explicitly models the fine-

grained local topology, which is often overlooked by methods that exploit solely on

hierarchical or global spatial cues. As illustrated in Fig. 4, LGCM constructs a neighbor

graph within a k× k× k spatial region to enrich each node’s representation by capturing

relational structure at the same resolution level.

The module takes ancestor-derived features Ai and local neighbor node coordinates

Pi as input, combining hierarchical structure and topological information to produce

the enhanced ancestor latent feature Fa
i . This process consists of the following steps:

Local Topology Encoding: A local neighbor graph NG(Pi), with Pi as node co-

ordinates, is built by connecting each center voxel to its non-empty neighbors within a
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k × k × k voxel block. Topological features Ei are then extracted via EdgeConv [42]:

Ei = EdgeConv(NG(Pi)). Although EdgeConv was originally designed for point

clouds, here it operates on octree nodes. At each level, the centers of non-empty nodes

form a coarse point cloud that preserves spatial structure, so neighbor graphs on these

multi-scale nodes yield topological features aligned with the original point cloud and

compatible with the octree-based compression pipeline.

Feature Projection and Fusion: The ancestor-derived features Ai are first pro-

jected into an embedded space via a multilayer perceptron (MLP), yielding A′i =

MLP(Ai). The local topological features Ei and the projected ancestor features A′i are

then concatenated along the channel dimension and processed by a Mamba block to

fuse local structures with the global context features:

F f
i = Mamba(Ei C A′i), (2)

Residual Enhancement: The final ancestor latent feature Fa
i is obtained by com-

bining the Mamba output F f
i with a further transformed version of Ai, acting as a

residual connection to preserve information:

Fa
i = F f

i C MLP(A′i). (3)

By integrating local graph reasoning with global sequence modeling, LGCM ag-

gregates local topology via EdgeConv and captures long-range dependencies through a

linear state-space model [32]. This linear-complexity approach significantly improves

occupancy prediction accuracy and structural consistency.

3.4. Spatial-Channel Coupled Grouping Mamba (SCCGM)

Traditional octree-based entropy models struggle to fully exploit contextual infor-

mation during decoding. Autoregressive methods rely on overlapping windows that

extend backward from the target node until enough context is gathered. While this

captures fine-grained dependencies, it suffers from high latency due to its inherently

sequential nature. In contrast, spatial grouping methods utilize non-overlapping win-

dows to allow parallel processing, but this limits intra-level context because roughly

half of the nodes depend only on ancestor features, not on sibling relationships.
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Figure 5: SCCGM’s four-stage hierarchical context estimation during entropy decoding (window size

N = 4). Top: Ancestor latent features Fa
i split into channel groups Fa(1)

i and Fa(2)

i . Node states: red boxes

(ancestor features), grey (unprocessed channels), blue (completed context), orange dashed “?” (current tar-

gets). Bottom: Sequential activation (S1C1 → S2C1 → S1C2 → S2C2). Progressive context integration:

S1C1 processes F(1)
a ; S2C1 uses S1C1 output; S1C2 integrates priors; S2C2 leverages all prior stages, en-

riching context for enhanced occupancy probability estimation via decoded sibling features (x0, x2).

The SCCGM module uses a structured decoding scheme integrating spatial and

channel-wise context. Unlike autoregressive or spatial grouping methods, which ignore

sibling interactions or suffer from sequential bottlenecks, SCCGM carefully and pro-

gressively unifies ancestor- and sibling-derived features via grouped refinement strat-

egy.

Within each context window, We first consider the ancestor latent feature Fa
i ∈

RB×L×H, where B denotes the batch size, L is the number of nodes within a win-

dow (spatial dimension), and H is the hidden vector dimension (channel dimension);

this feature is then partitioned along the channel dimension into groups denoted as

Fa(c)

i ∈ RB×L× H
N(c) , where c ∈ {1, . . . ,N(c)} indexes the channel group and N(c) is the

total number of channel groups. Each channel group is further divided into two spa-

tial subgroups according to the even and odd indices in the window sequence. This

forms a hierarchical structure in which decoding proceeds in a stepwise manner: chan-

nel subgroups that are computed earlier provide contextual information for subsequent

subgroups, while spatial subgroups that are decoded earlier provide sibling occupancy

information for the later ones.

Formally, the full ancestor latent feature Fa
i ∈ R

B×L×H is split into two channel par-

titions, Fa(1)

i ∈ RB×L× H
2 and Fa(2)

i ∈ RB×L× H
2 , such that Fa

i = Fa(1)

i C Fa(2)

i , where C de-
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blue components denotes sibling context, and yellow components shows the predicted occupancy probability.

notes concatenation along the channel dimension. Similarly, the window Wi ∈ RB×L×1

is divided into two spatial subgroups: Wi1 ∈ RB× L
2 ×1, consisting of even-indexed occu-

pancies, and Wi2 ∈ RB× L
2 ×1, consisting of odd-indexed ones. This two-level grouping,

first by channel, then by spatial index, supports a stepwise refinement strategy in which

earlier-computed subgroups condition the computing of subsequent ones. Specifically,

we define the encoding and decoding process below.

Encoding Process: Fig. 3 illustrates the overall encoding architecture, with specific

steps detailed in Fig. 5:

Step 1: F̃a(1)

i = SCCGM-S1C1(Fa(1)

i ),

Step 2: F̃a(1)

i2 = SCCGM-S2C1(Fa(1)

i , F̃
a(1)

i ),

Step 3: F̃a(2)

i = SCCGM-S1C2(Fa(2)

i F̃a(1)

i , F̃
a(1)

i2 ),

Step 4: F̃ s(2)

i2 = SCCGM-S2C2(Fa(2)

i , F̃
a(2)

i , F
s
i1),

In Step 1, Fa(1)

i ∈ RB×L× H
2 is fed into SCCGM-S1C1 to obtain the first channel-group

feature F̃a(1)

i ∈ RB×L× H
2 , which contains subgroup F̃a(1)

i1 ∈ RB× L
2 ×

H
2 . In Step 2, Fa(1)

i

together with F̃a(1)

i is passed to SCCGM-S2C1, producing F̃a(1)

i2 ∈ RB× L
2 ×

H
2 as context

applied in the probability predictor. In Step 3, F̃a(1)

i2 , Fa(2)

i ∈ RB×L× H
2 and the com-

plete first-channel-group feature are supplied to SCCGM-S1C2, yielding the second

channel-group feature F̃a(2)

i ∈ RB×L× H
2 . Then, its first spatial subgroup F̃a(1)

i1 together

with F̃a(2)

i1 ∈ R
B× L

2 ×
H
2 is exploited to predict the occupancy probabilities of the first spa-

tial subgroup and thus applied to encode or decode its occupancy values Wi1, which

14
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Figure 7: Effect of Different Channel Masking on Compression Performance. Masking later channel leads

to accuracy drop. It shows the importance of later channel features.

is embedded as F s
i1 ∈ RB× L

2 ×H. Step 4: F s
i1 is concatenated with both F̃a(2)

i ∈ RB×L× H
2

and Fa(2)

i ∈ RB×L× H
2 , and the combined features are fed into SCCGM-S2C2, which

generates the remaining features F̃ s(2)

i2 ∈ RB× L
2 ×

H
2 . These are then combined with F̃a(1)

i2

to predict the occupancy probabilities of the second spatial subgroup, which are used

to encode its occupancy values Wi2. Specifically, as shown in Fig. 5, SCCGM-S2C2

integrates ancestral context, the first channel group, and the known occupancy values

of nodes 0 and 2 to decode the second channel group for nodes 1 and 3. The pre-

dicted occupancy probabilities are subsequently passed to an arithmetic encoder. This

hierarchical and cumulative scheme allows each subgroup to effectively incorporate

relevant ancestor and sibling information, improving both the prediction accuracy and

compression efficiency of OctMamba.

Decoding process SCCGM decoding (Fig. 6) mirrors encoding: nodes 0 and 2 decode

first, providing context for nodes 1 and 3. By coupling spatial and channel groups,

our method enables all nodes within a window to exploit intra-level context, greatly

improving decoding efficiency and accuracy over purely spatial grouping methods.

Furthermore, encoding and decoding across different windows within the same level

are independent and can be executed in parallel, whereas cross-level computation must

proceed serially due to dependencies on ancestor nodes. Since both employ the same

two-stage procedure across windows and exhibit identical intra-level parallelism, their

runtimes are of the same order.

Empirical analysis (Fig. 7 and ablation in Tab. 9) show that later channel groups
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carry greater semantic importance. We therefore divide channels unevenly, assigning

larger capacity to early blocks and finer granularity to later ones, ensuring influential

features benefit from richer prior context. Within the Mamba framework, SCCGM

maintains linear complexity, enabling efficient long-range dependency modeling with-

out autoregressive delays. Overall, SCCGM unifies intra-window dependency model-

ing and improves occupancy probability estimation in our experiments.

3.5. Probabilistic Modeling and Optimization

To support accurate and efficient entropy coding, OctMamba formulates occupancy

prediction as a conditional probability estimation task. Given contextual features Ci

extracted per window, the model outputs the probability distribution q̃i(Wi | Ci) over

node occupancies Wi. This prediction is optimized via a cross-entropy loss, which

penalizes deviations from the true distribution qi:

L = −
∑

i

qi log q̃i(Wi | Ci) (4)

q̃i(Wi | Ci) = SCCGM( LGCM(Ci) ). (5)

The context Ci encodes rich structural priors, including occupancy history, spatial hi-

erarchy, and octree metadata (e.g., octant index, coordinates, and depth), enabling pre-

cise modeling of local dependencies. Unlike prior entropy models that treat context

in a limited or sequential fashion, OctMamba’s formulation fully exploits the fused

multi-dimensional features produced by LGCM and SCCGM. This integration allows

for more faithful occupancy probability estimation and directly contributes to bitrate

reduction while maintaining decoding accuracy.

4. Experiments

4.1. Experimental Settings.

Datasets Experiments were conducted on SemanticKITTI [16] and Ford [17] Li-

DAR datasets, the human-object dataset MVUB [18], and MPEG 8i [19].

LiDAR Dataset. SemanticKITTI consists of 43,552 LiDAR scans from autonomous

driving scenarios, organized into 22 sequences. For effective model training and eval-

uation, we adhere to the default dataset split: sequences 00 to 10 are designated as
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Figure 8: Rate-distortion performance of different methods on SemanticKITTI and Ford.

Table 2: BD-rate gains (%↓) of different methods over the G-PCC baseline on the Ford and SemanticKITTI

datasets in terms of D1 PSNR, D2 PSNR, and Chamfer Distance (CD).

Method
Ford SemanticKITTI

D1 PSNR D2 PSNR CD D1 PSNR D2 PSNR CD

SparsePCGC [21] -14.0% -14.0% -17.6% -15.7% -10.8% -6.5%

OctAttention [5] -22.2% -22.2% -22.8% -22.4% -26.6% -24.6%

EHEM [6] -25.6% -25.6% -21.0% -29.8% -33.4% -26.4%

SCP-EHEM [43] -40.8% -43.9% -37.7% -40.6% -40.3% -37.7%

GAEM [8] -42.8% -45.8% -39.5% -53.9% -54.1% -49.4%

Ours -52.7% -52.6% -52.6% -60.2% -60.3% -59.0%

the training set, while sequences 11 to 21 serve as the test set. The Ford dataset is a

LiDAR point cloud dataset utilized in the MPEG point cloud geometry compression

standardization. It comprises three sequences, each containing 1,500 scans. According

to the MPEG standard [44], sequence 01 is designated for training, while sequences 02

and 03 are reserved for evaluation.

Object Point Cloud Dataset. MVUB is a voxelized point cloud dataset featuring

dynamic human bodies, encompassing five sequences with 9-bit and 10-bit precision.
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Table 3: This table reports the bitrate (bpp ↓) and PSNR results for various methods on the MVUB and

MPEG 8i datasets. The table also highlights the bitrate gain of OctMamba over G-PCC, demonstrating its

superior compression efficiency.

Dataset Sequence G-PCC VoxelDNN OctAttention EHEM ECM-OPCC
OctMamba

(Ours)

Gain over

G-PCC

MVUB

Phil10 1.07 0.83 0.79 - 0.76 0.34 -68.2%

Phil9 1.23 0.92 0.83 - 0.79 0.40 -67.4%

Ricardo10 1.07 0.75 0.72 - 0.69 0.38 -64.5%

Ricardo9 1.04 0.72 0.72 - 0.76 0.34 -67.3%

Average 1.10 0.81 0.76 - 0.75 0.37 -66.3%

8iVFB

Loot10 0.95 0.64 0.62 0.58 0.55 0.27 -71.6%

Redandblack10 1.09 0.73 0.73 0.69 0.66 0.33 -69.8%

Average 1.02 0.69 0.67 0.64 0.61 0.30 -70.6%

Average 1.06 0.75 0.72 0.64 0.68 0.34 -68.5%

Table 4: Bitrate comparison (bpp ↓) between the lossy Mamba-PCGC and the proposed lossless OctMamba

on selected MVUB and MPEG 8i sequences. For Mamba-PCGC, the D1 PSNR values are reported in

parentheses.

Dataset Sequence
Mamba-PCGC

(bpp, D1)

OctMamba

(Ours)

MVUB andrew10 0.37 (D1 67.1) 0.37

8iVFB Soldier10 0.42 (D1 76.5) 0.30

8iVFB Longdress10 0.41 (D1 76.3) 0.29

Average 0.40 (D1) 0.34

We utilize the Andrew10, David10, and Sarah10 sequences for training, reserving the

remaining sequences for testing. The MPEG 8i dataset includes various human shape

point clouds with 10-bit and 12-bit precision. Following the dataset split in OctAtten-

tion [5], Soldier10 and Longress10 are used for training, while Loot10 and redand-

black10 are employed for testing. To further validate the generalization capability of

our model, we perform cross-experimentation by interchanging the training and testing

sets within both MPEG 8i and MVUB.

Baselines. We comprehensively compared OctMamba with several methods. First,

we compared it with sparse convolution-based techniques, including Unicorn [23],
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Mamba-PCGC [22], and SparsePCGC [21], while Unicorn supports both lossy and

lossless compression, the others primarily perform lossy compression on voxelized

representations of point clouds. Next, we compared it with 3D CNN-based point cloud

geometry compression entropy models, such as VoxelDNN [45]. Additionally, we in-

cluded large-scale context-based point cloud compression models utilizing attention

mechanisms, namely GAEM [8], SCP [43], EHEM [6], ECM-OPCC [25] and OctAt-

tention [5], all of which are dedicated to lossless point cloud compression. Finally,

we also benchmarked OctMamba against the representative handcrafted compression

method MPEG G-PCC [20].

Implementation Settings. To validate the effectiveness of our OctMamba, we be-

gin by constructing an octree from the point cloud data. For the SemanticKITTI dataset,

we adhere to the quantization settings proposed in OctSqueeze [3], utilizing a quanti-

zation step size defined as 400
2D−1 and set the quantization step to 218−D on Ford, where

D indicates the octree depth. We employ a maximum depth of 16 for SemanticKITTI

and Ford, while for the MVUB and MPEG 8i datasets, the octree is segmented into 10

levels during both training and testing phases. The Spatial-Channel Coupled Grouping

Mamba (SCCGM) module’s Mamba stage comprises 3 layers, with feature channel

dimensions configured to 256. The ancestor depth K is set to 3 , context window size

N is 8192, and channel groups are specified as 128, 64, and 64. For the LGCM, the

local voxel block size set to 3. For training, the learning rate is fixed at 10−4 for Se-

manticKITTI and Ford, while for MVUB and MPEG 8i, it is set to 10−3. All models

undergo training for 10 epochs, with evaluations performed on an NVIDIA RTX 4090.

Metrics. We evaluate distortion using four metrics: point-to-point PSNR (D1

PSNR), point-to-surface PSNR (D2 PSNR) [46], Chamfer Distance (CD), and BD-

Rate. To ensure consistency with prior works, such as MuSCLE and OctSqueeze

[47, 3], we adopt a PSNR peak value of 59.70 when evaluating the SemanticKITTI

dataset [16]. This peak value represents the maximum possible range of reconstructed

point cloud values used in the calculation of PSNR (Peak Signal-to-Noise Ratio) [6].

For the Ford dataset, a peak value of 30,000 is used, reflecting its unique characteristics

in terms of range and scale [48]. By aligning our testing environment with these pre-

vious methods, we enable fair and direct comparisons of rate-distortion performance.
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It is important to note that the use of these peak values does not influence the com-

pression performance of our method but ensures that the reported PSNR results are

comparable across studies. This standardization reinforces the validity and relevance

of our experimental findings within the context of established benchmarks.

BD-Rate (Bjøntegaard delta rate) [49] is a metric used to quantify the average bi-

trate difference between two video encoders at the same distortion level. To com-

pute BD-Rate, the rate-distortion (RD) data for both encoders are first fitted using cu-

bic polynomials, resulting in the functions RA(D) and RB(D). Next, the integrals of

these functions are calculated over the common distortion range [Dmin,Dmax], yielding∫ Dmax

Dmin
RA(D) dD and

∫ Dmax

Dmin
RB(D) dD. The core formula for BD-Rate is given by:

∆R =

∫ Dmax

Dmin
RB(D) dD −

∫ Dmax

Dmin
RA(D) dD∫ Dmax

Dmin
RA(D) dD

(6)

A negative ∆R value indicates a bitrate reduction (performance improvement), while

a positive value signifies an increase in bitrate (performance degradation). Using the

BD-Rate metric on the SemanticKITTI dataset, our method achieved a 38.27 % bitrate

reduction compared to the state-of-the-art EHEM, demonstrating its superior compres-

sion efficiency.

4.2. Performance Evaluation

Our quantitative results (Fig. 8) show that OctMamba surpasses all baseline com-

pressors, such as the sparse-convolution Unicorn and the advanced entropy model

EHEM, owing to its efficient fusion of spatial, channel, and octree-topological cues. In

particular, OctMamba achieves a 42.8% BD-Rate reduction relative to EHEM on Se-

manticKITTI and a 36.4% saving on the Ford LiDAR dataset, based on the average D1-

PSNR difference. Additionally, Tab. 2 reports the BD-rate gains of SCP-EHEM [43],

GAEM [8], and our method over the G-PCC baseline on the Ford and SemanticKITTI

datasets, where our method also demonstrates a considerable advantage. These results

highlight OctMamba’s superior compression efficiency in maintaining quality while

substantially reducing data requirements.

In Tab. 3, we compare lossless compression performance across several represen-

tative codecs on voxelized point cloud datasets. On MVUB, OctMamba reduces the
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average bitrate from 1.10 bpp (G-PCC) to 0.37 bpp, corresponding to a 66.3% bitrate

saving while also outperforming stronger learned baselines such as VoxelDNN, OctAt-

tention, and ECM-OPCC on every sequence. A similar trend is observed on MPEG 8i:

OctMamba lowers the average bitrate from 1.02 bpp (G-PCC) to 0.30 bpp, achieving

70.6% savings and consistently yielding the lowest bitrate among all lossless methods.

Overall, the averaged gain of 68.5% over G-PCC demonstrates that OctMamba deliv-

ers substantially more efficient lossless geometry compression across both MVUB and

MPEG 8i.

Our method is designed for lossless geometry compression and is therefore mainly

compared against lossless baselines. For completeness, we additionally report in Tab. 4

a reference comparison with the lossy Mamba-PCGC, which does not provide exact re-

construction. In this case, we take its bit-per-point (bpp) at the peak D1-PSNR as the

operating point. Moreover, because the training/test split used by Mamba-PCGC on the

8i dataset is opposite to that adopted by most lossless methods (including OctMamba),

we follow its experimental protocol by swapping the training and testing sets to en-

sure a fair comparison. As summarized in Tab. 4, OctMamba achieves better lossless

compression performance even when compared against this high-quality lossy codec.

We also evaluated the compression efficiency of various methods. Tab. 5 reports

encoding and decoding times for different quantization steps, highlighting OctMamba’s

effectiveness. Notably, decoding requires reconstructing the octree at each level from

already decoded results, so its latency is slightly higher than encoding but remains of

the same order.

We compress the occupancy sequence after octree construction; reported encoding

and decoding times exclude octree building, following the same protocol as OctAtten-

tion for fair comparison. Tab. 6 compares FLOPs, GPU memory (GPU Mem.), and

model parameters (Params) for a single window of N = 8192. OctMamba shows lower

complexity than previous methods, highlighting its compression efficiency. Its channel

grouping requires inference steps equal to the number of channel groups, while EHEM

and OctAttention require only two and one, respectively. Despite this, Mamba’s lin-

ear complexity keeps encoding speed competitive for large point clouds, confirming

OctMamba’s practical efficiency.
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Table 5: Comparison of encoding / decoding times (in seconds) for different methods at various octree levels

(D) in the KITTI dataset.

Method D=12 D=14 D=16

G-PCC 0.25 / 0.12 0.66 / 0.32 1.07 / 0.54

SparsePCGC 1.14 / 0.86 1.76 / 1.43 2.43 / 2.04

OctAttention 0.08 / 83.00 0.31 / 321.00 0.66 / 708.00

EHEM 0.40 / 0.43 1.21 / 1.39 2.53 / 3.01

SCP-EHEM 0.77 / 0.84 1.91 / 2.13 3.40 / 3.93

GAEM 0.35 / 0.43 0.97 / 1.16 1.96 / 2.38

OctMamba 0.21 / 0.33 0.52 / 0.64 0.97 / 1.19

Table 6: Comparison of model complexity per window for different methods on the KITTI dataset.

Method FLOPs GPU Mem. Params

OctAttention 124.3G 1.3G 4.23M

EHEM 184.4G 2.9G 13.01M

OctMamba 113.2G 2.0G 2.78M

4.3. Ablation Studies and Analysis

Effectiveness of Channel Grouping and LGCM. To evaluate the impact of chan-

nel grouping and the LGCM module, we compared OctMamba with variants that ex-

clude these components. As shown in Fig. 9, removing channel grouping results in sub-

optimal utilization of inter-channel correlations, leading to decreased accuracy in the

entropy model. Similarly, substituting the LGCM module with a simple MLP restricts

the extraction of aggregated local and global features, diminishing the effectiveness of

contextual information. These findings demonstrate that both components are crucial

for enhancing feature dependencies and information aggregation, ultimately improving

OctMamba’s performance in entropy modeling and compression.

Context Scale. OctMamba scales linearly with context size N, enabling model ex-

pansion. As Fig. 10 shows, increasing N from 2048 to 8192 expands the capture region,

linking both legs of the model. This improves rate-distortion performance (Tab. 7), en-

hances entropy accuracy, and reduces the number of context windows, lowering com-
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putation and speeding up encoding/decoding. These results demonstrate how context

expansion boosts OctMamba’s efficiency in capturing spatial relationships.

Neighborhood Size. The neighborhood size significantly affects the Local Graph

CNN-Mamba (LGCM) module. We evaluated different k values with a fixed window

size N = 8192 (Tab. 8). k = 1 uses no neighborhood, k = 8 a 2×2×2 region, and k = 27

a 3×3×3 region. Larger k captures richer local features but increases computation and

latency. Results show k = 27 gives the best performance, with the lowest average bpp

for Loot10 and Redandblack10 (0.271 and 0.328). Compared to KNN-based neigh-

borhoods, our block-based approach is faster while maintaining LGCM performance.

We chose k = 27 to fully leverage local voxel dependencies, improving compression

efficiency with competitive computation.

In OctMamba, the Spatial-Channel Coupled Grouping Mamba (SCCGM) module

efficiently allocates channels based on information density. To validate this, we com-

pared different channel grouping schemes on the MPEG 8i dataset. Results (Tab. 9)
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Table 7: Comparison of the impact of different context sizes N on the model for the MPEG 8i dataset.

Size N
Loot10

(bpp↓)

Redandblack10

(bpp↓)

Avg Time (s)

Encoder Decoder

1024 0.282 0.341 3.26 3.74

8192 0.271 0.328 0.80 1.08

9216 0.267 0.321 0.78 1.07

Table 8: Impact of different k values for neighborhood construction on the model (MPEG 8i dataset).

k
Loot10

(bpp↓)

Redandblack10

(bpp↓)

Avg Time (s)

Encoder Decoder

k=20(KNN) 0.273 0.334 1.35 1.54

k=1 0.278 0.337 0.74 1.02

k=8 0.278 0.334 0.75 1.03

k=27 0.271 0.328 0.80 1.08

show that uneven grouping with finer-grained division for important channels (e.g.,

128,64,64) achieves superior performance (bpp↓: 0.271 for Loot10, 0.328 for Redand-

black10) while minimizing encoding/decoding times (0.80s, 1.08s). Assigning fewer

channels to high-information groups captures critical features, while larger groups en-

hance parallelism and reduce computational overhead. Compared to coarser uneven

(64,64,128) or uniform (85,85,86) schemes, our design optimizes both compression

and runtime, highlighting SCCGM’s ability to balance computational cost with com-

pression quality in OctMamba.

Base Model. We investigated different backbone networks in OctMamba to vali-

date the use of Mamba. Replacing all Mamba stages with Transformer Encoder Layers

(window size N = 8192) and 4 attention heads to capture long- and short-term depen-

dencies, results (Tab. 10) show the transformer backbone underperforms OctMamba

in efficiency and long-range modeling for octree sequences, highlighting OctMamba’s

integration of local and global information with linear complexity versus the trans-

former’s quadratic complexity. Notably, these findings challenge the sufficiency of

simple local-global modeling for point cloud compression. Our design strategically

integrates Mamba to 1) enhance feature extraction and fusion at each submodule, 2)
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Table 9: Results under different channel grouping schemes on the model (MPEG 8i dataset).

Channel Grouping Scheme
Loot10

(bpp↓)

Redandblack10

(bpp↓)

Avg Time (s)

Encoder Decoder

64,64,128 0.276 0.333 0.81 1.06

85,85,86 0.272 0.330 0.85 1.11

128,64,64 0.271 0.328 0.80 1.08

Table 10: Comparison of the results under different base model configurations on the KITTI dataset.

Base Model
Loot10

(bpp↓)

Redandblack10

(bpp↓)

Avg Time (s)

Encoder Decoder

Transformer 0.783 0.889 1.65 1.89

OctMamba 0.271 0.328 0.80 1.08

capture local-global correlations, and 3) align with iterative encoding. OctMamba is

optimized for point cloud compression, achieving superior performance.

Table 11: Generalization from SemanticKITTI (training) to Ford, MPEG 8i, and MVUB (testing).

Dataset Seq bpp↓

MPEG 8i
Loot10 0.61

Redandblack10 0.71

Ford 02&03 6.19 (PSNR D1 82.21)

MVUB

Andrew10 0.63

Ricardo10 0.62

Phil10 0.65

Generalization Ability. To evaluate the generalization ability of the OctMamba

model across different datasets, we trained the model on the SemanticKITTI dataset

and tested it on the Ford dataset (also a LiDAR dataset), as well as on two human

point cloud datasets, MPEG 8i and MVUB. As shown in Tab. 11, the results on the

Ford dataset are comparable to those obtained when training and testing on Ford itself,

indicating strong intra-domain generalization. Although the performance on the human

point cloud datasets, where the data distribution differs significantly, degrades slightly

compared to the in-domain results, OctMamba still outperforms OctAttention, further

demonstrating the strong potential of our model’s generalization capability.
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Figure 11: Visualized compression results on SemanticKITTI and MPEG 8i, with points color-coded by

error levels (lighter indicating greater discrepancy from ground truth). highlight OctMamba’s superior per-

formance compared to G-PCC and OctAttention, introducing fewer errors.

Table 12: Results under different OctAttention configurations with and without LGCM.

Dataset OctAttention(bpp↓) OctAttention + LGCM(bpp↓)

Loot10 0.62 0.56

Redandblack10 0.73 0.63

LGCM Effectiveness. To validate the effectiveness of the LGCM module, we

integrated it into the OctAttention framework for comparative experiments. The goal
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Table 13: Ablation study on channel grouping on the 8iVFB sequences Loot and Redandblack. ”Params”

denotes the number of trainable parameters. ”Loot10” and ”Redandblack10” report the average bitrate (bpp).

Model Params (M↓) Loot10 (bpp↓) Redandblack10 (bpp↓)

W/O Channel Group 4.93 0.375 0.425

OctMamba (Ours) 2.78 0.273 0.334

was to equip OctAttention with the ability to aggregate both local topological features

and global contextual information. As shown in Tab. 12, OctAttention enhanced with

the LGCM module demonstrates improved compression performance, benefiting from

its strengthened capability to capture diverse information.

Channel Grouping Effectiveness. Channel grouping not only aggregates cross-

channel information but also exploits inter-channel redundancy and enables a lightweight

design. As Tab. 13 shows, disabling channel grouping and processing all latent chan-

nels jointly (“W/O Channel Group”) increases parameters from 2.78M to 4.93M and

degrades rate–distortion performance on the 8i dataset. On KITTI, Fig. 9 shows that

channel grouping reduces BD-Rate by 16.4% at the same distortion level. These re-

sults confirm that channel grouping produces a smaller model and better compression

efficiency, improving both effectiveness and implementation.

4.4. Qualitative Results

In Fig. 11 we present visual comparisons of compression artifacts produced by dif-

ferent methods at similar bitrates across various datasets. The colors of the point clouds

are encoded based on error levels, with lighter colors indicating greater discrepancies

from the ground truth. Our method, which leverages large-scale context and spatial-

channel coupling, demonstrates superior modeling capabilities for sparser regions of

point clouds. Notably, In the sparse regions of the first three rows, our model signif-

icantly outperforms other baseline methods. Additionally, on voxelized human point

cloud datasets, our approach achieves lossless compression, as demonstrated by the

distortion-free visual representations.

In contrast, other baseline methods, such as G-PCC and OctAttention, show vary-

ing levels of distortion, especially in regions with higher error levels, which are high-
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lighted by lighter yellowish colors. For instance, G-PCC shows noticeable artifacts in

the human model, while OctAttention retains more detail but still suffers from visible

discrepancies (esp. foots). This highlights the effectiveness of our method in preserv-

ing the integrity of the data while operating at similar bits per pixel (bpp).

5. Conclusion

This study introduces OctMamba, to our knowledge, the first unified framework

that exploits multi-dimensional redundancies including spatial (local and global), chan-

nel, and topological for high-fidelity point cloud geometry compression. OctMamba

incorporates two novel modules: SCCGM for spatial–channel modeling and LGCM for

topological encoding, guided by a new principle of localized Mamba embedding. Em-

bedding Mamba within these subcomponents rather than globally enables fine-grained

correlation modeling, achieves a smaller model and alleviates traditional autoregressive

bottlenecks by enabling intra-level windowed decoding with linear complexity. This

design addresses major limitations of prior work, including restricted context model-

ing and inefficient sequential decoding, while improving performance in sparse and

boundary regions. By leveraging richer multi-dimensional context, OctMamba deliv-

ers state-of-the-art compression fidelity and efficiency across diverse benchmarks and

opens promising directions for future research, such as hyperprior integration, geo-

metric priors, and adaptive multi-dimensional strategies for next-generation 3D data

compression
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