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This study addresses the efficiency of antimony-doped tin oxide (ATO)-based
electrodes for electrochemical oxidation. We synthesised and compared three
electrodes: bare titanium (Ti), nickel-ATO on Ti (NIATOTi), and platinum-nickel-ATO on
Ti (NIATOTIPt), fabricated via metal coating and annealing at 520°C. Comprehensive
characterisation using XRD, EDS, SEM, and XPS confirmed phase structure, metal
distribution, and composition. Electrochemical performance was assessed using
methylene blue dye degradation, -OH generation, and Electrical Energy per Order
(EEO). NIATOTIPt exhibited the highest -OH production and the lowest EEO, attributed
to enhanced charge transfer and homogeneous surface properties. At 5V, its
degradation rate constant was 2.6 and 1.3 times higher than NiATOTi and Ti,
respectively, increasing to 7.5 and 3.3 times at 10V. A strong linear correlation was
observed between degradation rate and -OH generation. While higher circulation flow
rates improved degradation, excessive flow led to channelling, reducing efficiency.
Ozone formation was negligible, confirming -OH as the main oxidant. Repeated use of
NiATOTIPt electrode did not significantly affect its performance, showing higher
degradation kinetics in simulated textile wastewater than in deionised water, albeit with
higher EEO. Degradation products were identified and monitored using LC-MS/MS,
and a degradation mechanism was proposed based on density functional theory (DFT)
calculations. Fukui fO values correlated strongly with rate constants (R2=0.991),
indicating that higher local fO leads to faster degradation. Overall, NIATOTiPt
demonstrated superior efficiency, achieving EEO values below 1kWh/(m3.order) for
solutions in DI water and below 10 kWh/(m3.order) for simulated textile wastewater.
These findings suggest that ATO-based electrodes, particularly NIATOTIPt, hold strong
potential as an advanced oxidation process for effective and energy-efficient water
treatment.
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NiATOTiPt showed the highest hydroxyl radical production and lowest energy use.
Strong linear correlation found between degradation rate and *OH production.
ATO-based electrodes achieved EEO below 1 kWh/m?®.order for dye removal.
Flow rate impacted mass transfer efficiency and overall degradation performance.

LC-MS/MS and DFT revealed MB degradation pathway and intermediates.
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13 Abstract

14  This study addresses the efficiency of antimony-doped tin oxide (ATO)-based electrodes for
15  electrochemical oxidation. We synthesised and compared three electrodes: bare titanium (Ti), nickel-
16  ATO on Ti (NIATOTi), and platinum-nickel-ATO on Ti (NIATOTIPt), fabricated via metal coating
17 and annealing at 520 °C. Comprehensive characterisation using XRD, EDS, SEM, and XPS
18  confirmed phase structure, metal distribution, and composition. Electrochemical performance was
19  assessed using methylene blue dye degradation, *OH generation, and Electrical Energy per Order
20 (EEO). NIATOTIPt exhibited the highest *OH production and the lowest EEO, attributed to enhanced
21  charge transfer and homogeneous surface properties. At 5V, its degradation rate constant was 2.6
22 and 1.3 times higher than NiATOTi and Ti, respectively, increasing to 7.5 and 3.3 times at 10 V. A
23 strong linear correlation was observed between degradation rate and *OH generation. While higher
24 circulation flow rates improved degradation, excessive flow led to channelling, reducing efficiency.
25  Ozone formation was negligible, confirming *OH as the main oxidant. Repeated use of NiIATOTIPt
26  electrode did not significantly affect its performance, showing higher degradation kinetics in
27  simulated textile wastewater than in deionised water, albeit with higher EEO. Degradation products
28  were identified and monitored using LC-MS/MS, and a degradation mechanism was proposed based
29  on density functional theory (DFT) calculations. Fukui f values correlated strongly with rate
30 constants (R?=0.991), indicating that higher local f° leads to faster degradation. Overall, NIATOTiPt

31 demonstrated superior efficiency, achieving EEO values below 1 kWh/(m?3.order) for solutions in DI
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water and below 10 kWh/(m?®.order) for simulated textile wastewater. These findings suggest that
ATO-based electrodes, particularly NiIATOTIPt, hold strong potential as an advanced oxidation

process for effective and energy-efficient water treatment.

Keywords: Electrochemical oxidation; Advanced oxidation process; Hydroxyl radical; Methylene
Blue; Textile wastewater; DFT.

1 Introduction

The rapid expansion of industrial activity has resulted in the release of harmful organic pollutants,
significantly impacting global environmental quality and human health. These pollutants are key
contributors to the contamination of both surface and ground waters [1-3]. The 2024 United Nations
World Water Development Report reveals that textile mills are responsible for one-fifth of global
industrial water pollution, with textile dyeing the second largest contributor to water pollution
worldwide [4]. Specifically, the textile industry discharges wastewaters containing highly toxic, non-
biodegradable synthetic dyes into the environment [4-6]. These dyes are known potential carcinogens,
and even in trace amounts they pose significant risks to both human health and the environment [7].
For instance, the release of dyes in the aquatic environment can colour the water, reducing light
penetration and hampering photosynthesis [8]. Textile dyes are also toxic to aquatic organisms such
as fish and invertebrates, interfering with their physiological processes, and causing mutations,
inhibited growth or even death. In addition, dyes can cause oxygen depletion in the aquatic
environment and negatively impact water quality in rivers, lakes and oceans, reducing the availability
of drinking water sources. Thus, the release of textile dyes into the environment not only threatens
ecosystems but also hampers progress toward achieving the United Nations Sustainable Development
Goal 6 (SDG6), aiming to ensure the sustainable management of water and sanitation for all.
Addressing industrial pollution, such as textile dyes, is not only one of the pillars of SDG6 but it is
essential for safeguarding both public health and the planet’s water resources. Aligned with SDG6,
the Electrochemical Advanced Oxidation Process (EAOP) offers a cleaner and more sustainable
method for treating wastewater and removing pollutants, thereby improving water quality by reducing
pollution. Besides, EAOP offers multiple advantages over other methods, including low cost, high

efficiency, modularity, enhanced process safety, and minimal waste generation [9-12]. As a result,
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there is increasing interest in using this approach for the effective treatment of wastewater
contaminated with organic compounds such as textile dyes. In this study, methylene blue (MB), a
synthetic dye with documented toxicity to aquatic organisms and potential health risks to humans at
high concentrations [13-15], was selected as a model textile dye. MB is a cationic thiazine dye
structurally similar to many industrial dyes used in the textile and printing sectors, containing
aromatic rings, heteroatoms, and chromophores such as —C=N- and —S=. These structural features
make its degradation behaviour representative of how actual industrial dyes respond to
electrochemical treatment. Owing to its environmental relevance, well-characterised chemical
structure, and distinctive optical properties, MB serves as an excellent model compound for
electrochemical oxidation studies. Its extensive prior use in research also enables direct comparison
with literature data and facilitates benchmarking of new electrode materials and treatment

technologies.

EAOP utilises electrodes connected to an electrical power supply to generate reactive species,
including hydroxyl radicals, hydrogen peroxide, and ozone, to degrade a wide range of contaminants
[11, 16-18]. It is particularly effective against organic pollutants, which are often resistant to
conventional treatment methods, such as pharmaceuticals, textile dyes, and endocrine disrupting
chemicals. A key component of the electrochemical oxidation reactor is the anode, the electrode
connected to the positive pole of the power supply, where the degradation of contaminants takes
place. Degradation at the anode can occur through direct anodic oxidation, which involves the direct
transfer of electrons to the anode and typically results in poor decontamination, or via indirect
reactions involving reactive species including physisorbed hydroxyl radicals (*OH) or chemisorbed
active oxygen [11]. Hydroxyl radicals are the most potent and are key species in EAOP responsible
for breaking down the contaminants in water. Their strength of interaction with the anode, which is
influenced by the material type of the anode, plays a key role in the overall reactivity of the EAOP
process in degrading pollutants. Anodes with high overpotentials for the oxygen evolution reaction
(OER) (i.e., poor electrocatalytic ability for OER) are particularly suited for wastewater treatment.
The high OER overpotentials of these anodes reduce competition between OER and the oxidation of
organic contaminants, thereby enhancing treatment efficiency. Based on the type of hydroxyl radicals
formed on the anode surface, anodes in electrooxidation processes are classified as “active” or “non-

active” [16, 19]. Active anodes (e.g., Pt, IrO2, RuO2) have low OER potential and offer only little
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partial and selective oxidation of contaminants, while non-active anodes (e.g., BDD, PbO2, SnO-Sb)
exhibit high OER potential, resulting in the complete oxidation of organic compounds to carbon
dioxide, water, and mineral salts [12, 20]. Thus, an ideal electrode for EAOP processes in water
treatment should have a high OER potential to minimise side reactions, while also exhibit weak
adsorption affinity for *OH to enhance the generation of highly reactive hydroxyl radicals freely

available for degrading contaminants in water coupled with high current efficiency [12, 21, 22].

Generally, dimensionally stable anodes are made by depositing a thin layer of metal oxide on a
suitable base metal, a method that has been proven to be highly effective for organic degradation [23,
24]. Titanium (Ti) is a widely used base material substrate for the fabrication of anodes because of
its low price, good corrosion-resistance, and high tensile strength [25]. Although boron-doped
diamond (BDD) has proven to be an excellent anode in EAOP, its high cost has driven researchers to
explore more affordable alternatives such as PbO: catalysts. However, concerns regarding the
potential leaching of toxic Pb?* from PbO; in water treatment persist, which led to the emergence of
antimony-doped tin dioxide (SnO2-Sb or ATO) as a promising alternative electrode. ATO has
received particular attention due to its high oxygen evolution potential, low toxicity, and effectiveness
in degrading contaminants, yet there are concerns around its stability [16, 26]. Thus, to improve
ATO’s stability and lifetime, various electrode preparation methods have been undertaken including

application of interlayer [27] or doping with metals [28-30].

Despite efforts to develop high-performance ATO electrodes for EAOP, there remains a lack of
comprehensive comparisons and benchmarking regarding efficiency improvements as the electrode
transitions from virgin Ti material to stable ATO [30, 31]. A key knowledge gap lies in the lack of a
quantitative relationship between electrode composition and the generation of active oxidants,
particularly hydroxyl radicals. Efficient hydroxyl radical production is a critical determinant of EAOP
performance in degrading organics during wastewater treatment. The influence of co-dopants also
warrants attention; for instance, in other electrode systems, the addition of dopants such as Pt has
enhanced efficiency of the electrochemical process [32, 33]. Furthermore, comparing energy per
order (EEO) across ATO variants is crucial to identify configurations that deliver maximum removal
efficiency with minimal energy input. A comprehensive characterisation of transformation products
is also necessary to ensure that high-efficiency electrodes not only achieve rapid degradation of the

parent compound but also avoid generating persistent or toxic byproducts.
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To address existing gaps, this study evaluated different ATO electrodes, comparing their performance
and providing valuable insights into their ability to generate hydroxyl radicals and the transformation
products formed as the reaction progressed over time. Specifically, ATO electrodes were synthesised
using the dip-and-dry method, including Ti/Ni-Sb-SnO2 (NIiATOTI), Ti-Pt/Ni-Sb-SnO>
(NIATOTIPt), and virgin Ti. These electrodes were characterised and compared for their
electrochemical oxidation of the textile dye methylene blue (MB), with performance properties
evaluated based on degradation times, rate constants, degradation efficiency, surface composition,
and *OH production. Triple quad mass spectrometry (LC-MS/MS) was employed to detect
transformation products during MB degradation, and plausible mechanisms for the electrocatalytic

oxidation of MB were suggested using both the LC-MS/MS data and molecular DFT calculations.

2 Experimental Methods

2.1 Materials

Titanium metal mesh, Nafion-117 membrane and nickel chloride hexahydrate (NiCl.-6H20) were
purchased from Alfa Aesar. Antimony Chloride (SbCls), Potassium hexachloroplatinate (K2PtCle)
and disodium terephthalic acid (Na2TPA) (CsHsNa204) were procured from Acros Organics. Tin
chloride (SnCls-5H20) and 2-hydroxy terephthalic acid (OHTPA) (CsHsOs) were purchased from
Sigma-Aldrich. Methylene blue (C16H18CIN3S-3H20), isopropanol (CsH;OH) and oxalic acid
(C2H204) were brought from Thermo Fisher Scientific Inc., UK. A simulated methylene blue
synthetic textile wastewater was prepared using a slightly modified formulation adapted from
previous studies [34, 35] (Text S1), and its composition is summarised in Table S1. All chemicals
were of reagent grade and used without further purification. Deionised water was used throughout for

the preparation of all the experimental solutions.

2.2 Fabrication of NIATOTi (Ti/Ni-Sb-SnOz2) and NIATOTIPt (Ti-Pt/Ni-Sb-SnOz2) Electrodes

The fabrication of the electrodes started with the preparation of a nickel in antimony tin oxide solution
by dissolving 0.050 g of NiCl..6H20, 0.050 g of SbClz and 5.0 g of SnCls.5H.0 in 50 mL of
isopropanol and stirred using a magnetic stirrer. This prepared solution is designated as the NiIATO
solution. The base material was a titanium metal mesh substrate (size 3x3 inches). The Ti mesh

substrate was properly cleaned by boiling in an oxalic acid (10 wt%) for 1 h followed by rinsing with
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distilled water. The cleaned titanium mesh was used as the virgin Ti electrode or for the preparation
of the other two electrodes using the dip-dry method. Briefly, the cleaned Ti mesh was dipped in the
prepared NiATO solution and dried in a glove box, then it was placed in a hot air oven at 100 °C for
10 min, after which it was calcined in an air furnace at 520 °C for 10 min. This process was repeated
7 to 8 times and finally the mesh was annealed in the furnace at 520 °C for 1 hour. At the end of this
process, the NIATOTi electrode was obtained. The NiATOTIPt electrode was also prepared following
the same protocol, but the starting solution was a NiATO solution with the platinum precursor. For
electrical connection, a thin layer of copper (Cu) conductor tape was applied over the edges of the
annealed NiIATOTi mesh.

2.3 Characterisation Techniques

The physical properties of Ti mesh, NIATOTi and NiATOTIPt electrodes were determined using
various characterisation techniques. The X-ray diffraction (XRD) profile of the used electrodes was
performed on Bruker D8 Discover X-ray powder diffractometer equipped with Cu Ko radiation A =
1.5406 A over a 20 range of 20-90°. A scanning electron microscope (ZEISS Evo LS 25) equipped
with a HD backscattered electron detector (BSD) was used to characterise the top-view morphologies
of the resulting electrodes. Elemental analysis (EDS and elemental mapping) was performed using
an Oxford Instruments EDS detector with Aztec 6.1 software equipped with the same scanning

electron microscope ZEISS Evo LS 25.

The surface chemical states and elemental composition of the solutions on the Ti mesh were
investigated using a multipurpose X-ray photoelectron spectrometer (XPS). XPS measurements of
the resulting electrodes were performed using an Axis Supra XPS system (Kratos Analytical)
equipped with a monochromatic Al-Ka X-ray source (1486.7 eV) and a large area slot mode detector
(approximately 300 um x 800 pum analysis areas). FTIR analysis was performed to detect the
functional groups formed on the surface of the mesh. Meshes were placed on the ATR crystal of a

Perkin Elemer FTIR spectrometer and spectra were measured between 500 and 4000 cm,

2.4 Electrochemical degradation set-up
The electrochemical degradation setup is depicted in Fig. 1. The prepared ATO mesh electrodes were

used at the anode (+ve) side while a bare titanium mesh was used as cathode (-ve). Both electrode
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compartments were separated by Nafion-117 membrane as a proton exchanger. A flow of methylene
blue solution was introduced at the anode side and recycled back to the reactor in a closed loop mode,

while distilled water was introduced at the cathode side, also in a closed loop configuration.

Figure 1

2.5 Analytical methods

A UV-vis spectrophotometer (Cary 60, Agilent Technologies) was used to monitor the MB
concentration at the maximum absorbance wavelength of 665 nm and an Agilent Cary Eclipse
Fluorescence Spectrophotometer was used to determine the concentration of hydroxyl radicals. The
Total Organic Carbon (TOC) of the simulated synthetic wastewater was made using a TOC meter
(Elementar Enviro, Germany). The degradation efficiency (») was calculated by the change in

concentration using Eq. (1):

n=%x100 1)

0

where Co is the initial concentration (mg/L) and C is the concentration of MB (mg/L) at a given

time t.

The specific energy consumption was evaluated using the electrical energy per unit order (EEO)
concept. EEO is the electrical energy in kWh required to degrade a contaminant by one order of
magnitude in a unit volume of wastewater [36]. EEO (in kwWh/(m?.order)) was calculated using Eq.
(2):

UXIXt

EEO = x 1073 )

3600><Vxl0g10(g—(t))

where U is the cell voltage (V), | is the average current (A), t is the treatment time (s), and V is the
volume of the treated wastewater (m®), Coand C: are the initial and final concentrations of methylene
blue, respectively (mg/L).

All experimental measurements were performed in duplicate unless otherwise stated. Data are
reported as mean values with the associated standard deviation (mean £ SD, n = 2), providing an

indication of experimental variability and measurement reproducibility.
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2.6 Analysis and identification of transformation products

The transformation products of methylene blue were analysed using an Agilent 1260 Infinity 11 HPLC
system and an Agilent Ultivo triple quad mass spectrometer in ESI positive mode (LC-MS/MS).
Nitrogen was used as sheath gas (11L/min, 250 °C) and the fragmentor voltage was 135 V, which
was optimised for methylene blue during the LC-MS/MS method development. The chromatographic
separation was performed using a Phenomenex C18 column (100 mmx4.6 mm, 3 um particle size),
the mobile phase was 100 mM ammonium formate solution and acetonitrile in a ratio of 60:40, and

the flow rate was 0.4 mL/min.

2.7 Degradation pathways

To investigate the electrochemical degradation pathways of MB, we performed LC-MS/MS analysis
(Agilent 1260 Infinity 11 coupled with an Ultivo triple quadrupole mass spectrometer) alongside DFT
calculations. LC-MS/MS was utilised to track the degradation products over time as the reaction
progressed, while the DFT calculations identified potential reactive sites on the MB molecule where
oxidants are likely to attack, based on Fukui functions. Fukui functions pinpoint the locations of
reactive sites and, in their “condensed” form, offer a detailed description of chemical reactivity at the

atomic level. The condensed Fukui functions, or Fukui indices, are defined by Equations (3-5).

fi =qN) —q;(N—-1) 3)
fr=aqN+1) - q;(N) (4)
2=+ £ 5)

Where: f;” represents the Fukui index for electron removal from the molecule, also known as the
Fukui index for electrophilic attack; f;* is the Fukui index for electron addition to the molecule, also
referred to as the Fukui index for nucleophilic attack; £,° is the Fukui index for radical attack of the
molecule; and g; is the charge at atomic centre i for the molecule with N or N-1 or N+1 electrons. For
a given type of reaction (i.e. electrophilic, nucleophilic, or radical), the atom with the highest Fukui
index value is considered the most susceptible to attack. In this study, DFT calculations were
performed using Gaussian 16W with Gaussian View 6.1 as the interface [37]. The molecular
geometries were optimised using hybrid Density Functional Theory (DFT) with the B3LYP
functional and the 6-31G basis set. Electron density and electron orbitals, such as HOMO and LUMO,
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were also obtained using Gaussian software. Active sites for radical attack were identified based on
the Fukui indices £,°, calculated from Mulliken atomic charges derived from Gaussian analysis [38-
40].

3 Results and discussion

3.1 X-ray diffraction analysis

Figure 2

The X-ray diffraction (XRD) patterns of the Ti, NIATOTi, and NiATOTIPt electrodes are shown in
Fig. 2. According to Fig. 2(a) for Ti mesh, the most intense diffraction peaks centred at 40.11° belong
to the standard Ti (101) planes and agree well with the standard Crystallography Open Database
(COD) file (COD-9008517) of Ti. The other diffraction peaks are well matched with their
corresponding standard Ti planes. This suggests that the Ti mesh has been properly annealed and has
a pure Ti hexagonal structure. The presence of XRD peaks corresponding to Ni, Sb and SnO> in Fig.
2(b) for the NiATOTI electrode clearly reveal that Ti mesh was coated with Ni, Sb and SnOz. The
peaks related to Ni and Sb were low (Fig. 2(b)), possibly due to the strong signals from the SnO>
since their diffraction angles are very close to those of SnO. [41]. The peaks observed at 35.07° and
45.61° correspond to the most intense peaks of Sb and Ni according to the standard COD file of Ni
and Sb (Ni-1534892 & Sb-1539203), while the peak observed at 78.65° is related to both. The
diffraction peaks centred at 38.38° and 40.16° belong to the standard Ti (002) and Ti (101) planes
respectively. Here, only few peaks of Ti were obtained, which indicates that Ti is covered with the
NiATO materials. The other peaks obtained are related to SnO> and are present in abundance. They
are also well matched with the standard COD file of SnO, (COD-1000062). The XRD pattern of
NIATOTIiPt mesh (Fig. 2(c)) reveals the presence of the four elements Ti, Pt, Ni, Sb and SnO. The
diffraction peaks centred at 39.38°, 45.98°, 80.74°, and 85.15° belong to the standard Pt (111), Pt
(200), Pt (311) and Pt (222) planes respectively, indicating the presence of Pt [42-44]. Again, the
peaks related to Ni (45.50°) and Sb (34.64°) were barely detected while the peaks for SnO2 and Ti
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were present in abundance. In summary, the XRD pattern clearly demonstrates the respective phases
of the electrodes. Ti and Sb have exhibited the hexagonal close-packed (hcp) structure, while Pt and
Ni have demonstrated the face-centred cubic (fcc) structure, and SnOz has exhibited the tetragonal

rutile structure.

3.2 SEM, Energy dispersive X-ray and Elemental mapping analysis

The SEM and EDS results of the pure Ti, NiIATOTi, and NiIATOTIPt electrodes are shown in Fig.3.
Fig. 3(a-1) displayed the top view of the Ti mesh showing that the diameter of the mesh is
approximately 123 um with a clear rough surface [45]. Fig. 3(a-2) illustrates the surface of the
NIiATOTi electrode, demonstrating that the diameter of the mesh is approximately 127 um. This
evidence suggests that the NIATO solution coated the surface of the Ti mesh in a thickness of
approximately 2 um. Due to the coating of the NiATO solution on the surface of Ti mesh, the surface
of NIATOTi electrode is coarse and rough [46]. Fig. 3(a-3) depicts the surface of the NIATOTIPt
electrode showing that the diameter of the NIATOTIPt electrode is approximately 129 um, which is
greater than the diameter of the Ti mesh electrode and NiATOTi electrode. This observation strongly
indicates the presence of a solution consisting of Pt and NiATO solution with a thickness of around
3 um on the Ti mesh substrate in agreement with other studies [47].

According to Fig. 3(b-1), the EDS spectrum of the Ti mesh shows strong presence of Ti in the
electrode which is corroborated by the elemental mapping of Ti mesh (Fig. 4(a)). The EDS spectrum
of the NIATOTi electrode (Fig. 3(b-2)) and its elemental mapping (Fig. 4(b)) illustrate the presence
of Ni, Sh, Sn on the surface of Ti mesh in NIATOTi electrode while these analyses revealed the
presence of Pt in addition to the elements Ni, Sb, Sn on the surface of the NiIATOTiPt electrode (Fig.
3(b-3) and Fig. 4(c)). These results of SEM, EDS and elemental mapping analyses confirm the
presence of the expected elements of NiATO and Pt-NiATO on the surface of the titanium (Ti) mesh
substrates and are in agreement with other studies [48, 49].

Figure 3

10
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Figure 4

3.3 X-ray photoelectron spectroscopy (XPS)

Figure 5

The XPS analysis was performed to investigate the chemical and electronic structure, the oxidation
state, and the surface chemical composition of the electrodes as well as the valence states of the
different species. A wide scan XPS spectrum of Ti, NIATOTi and NiIATOTIPt is shown in Fig. 5(a).
The binding energies observed in the XPS spectrum were calibrated for specimen charging by
referencing the C 1s to 284.8 eV [42, 50]. The photoelectron peaks of C, Pt, Ti, Ni, Sh, Sn and O were
observed at their binding energies respectively. The XPS spectrum of carbon (C 1s) with four fitted
peaks is shown in Fig. 5(b). It displayed two intense fitted peaks at 284.8 eV and 286.30 eV
corresponding to C-C and C-OH bonds respectively. The first peak related to C-C due to the
adventitious carbon and the second peak related to C-OH due to the hydroxyl bond [46]. The other
small peaks at 287.80eV and 288.80 eV were attributed to carboxylate (O-C-O) and carbonyl (O-
C=0) groups respectively [51, 52]. The percentages of these components in C 1s were confirmed to
be 82.47 (C-C), 10.69 (C-OH), 2.22 (O-C-O) and 4.62% (O-C=0). The results in Fig. 5(c)
demonstrates that the Ti 2p curves had a two-band structure. The presented Ti 2p spectra match well
those of TiO2 [53]. The spin-orbit splitting value for the Ti 2p is 5.7 eV in the oxide state. The main
XPS peak of Ti centred at 458.81 eV corresponds to Ti 2pss2, indicating the oxidised state of Ti and
corresponds to Ti*? state. The other peak observed at 464.51 eV reveals the presence of oxide
component of Ti in the form of Ti 2p12 and belongs to Ti*? state [46, 54]. Generally, the Full Width
at Half Maximum (FWHM) for the component of an element is the same, but for Ti 2p it is not
because the Ti 2p12 component is much broader than the Ti 2ps» component. The percentage

components of Ti 2pa and Ti 2p12 are 65.23 and 29.10% respectively, which is close to a ratio of

11
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2:1. A very small peak at 454.33 eV is associated with the pure Ti 2pa;, metal [55, 56]. For the Ti
metal, the spin-orbit splitting value is 6.1 eV, so the other component of the Ti metal is obtained at
460.33 eV, which is the Ti 2p1> metal [56]. The percentages of the metal components of Ti 2ps/» and
Ti 2p12 are 3.76 and 1.89% respectively, which is again in the ratio of 2:1.

Looking at the wide scan XPS spectrum of NIATOTi electrode in Fig. 5(a), the peaks related to C 1s,
O 1s, Sb 3d, Ti 2p, Ni 2p, and Sn 3d are observed. The most intense peaks are correlated to C, Ti, O,
and Sn. The XPS spectra of Ni, Sb and Sn are shown in Fig. 5(d), (e) and (f) respectively. The amount
of NiCl, and SbCls was quite low compared to SnCls used for the synthesis of the NiATO solution.
Therefore, it was very difficult to detect Ni and Sb in the XPS spectrum compared to Sn [57]. The
fitted XPS spectrum of O 1s and Sb 3d is presented in Fig. 5(e). It is well known that XPS spectrum
of Sh 3ds2 can not be used to detect the oxidation state of Sb, because the Sh 3ds peak overlaps
almost perfectly with the O 1s peak. Thus, generally Sb 3ds» peak is used for the determination of
the valence of Sb. The spin-orbit splitting for the oxide component of Sb 3d is ~ 9.4 eV, the peak
obtained at 530.98 eV can be designated as Sb 3ds,2 while a tiny peak obtained at 541.03 eV strongly
reveals the presence of Sb 3ds> [48]. The other fitted peak at 530.62 eV corresponds to the metal
oxide of O 1s and the fitted peak centred at 532.52 eV corresponds to the hydroxide of O 1s [50]. The
XPS spectra of Ni and Sb of NIATOTi electrode support the result obtained from XRD, EDS and
elemental mapping. The fitted XPS spectrum of Sn 3d is demonstrated in Fig. 5(f). It distinctly reveals
a two-band structure in the XPS spectrum of Sn 3d. The spin-orbit splitting value for the Sn 3d is 8.4
eV. The peaks of Sn 3d are symmetrical and located at 486.60 and 495.0 eV, corresponding to the
oxides of Sn 3ds2 and Sn 3day2, respectively [48, 56]. The percentages of Sn 3d components are 60.31
(Sn 3ds/2) and 39.69 % (Sn 3ds/2), respectively.

The wide-scan XPS spectrum of NiATOTIPt illustrated in Fig. 5(a) reveals the presence of peaks
corresponding to C 1s, O 1s, Sb 3d, Ti 2p, Pt 4f, Ni 2p, and Sn 3d. The fitted XPS spectrum of Pt 4f
consists of three peaks and is presented in Fig. 5(g). The peak at 71.0 eV indicates the presence of
metallic Pt 4f and corresponds to Pt 4f72. The spin-orbit splitting value is 3.35 eV for Pt 4f, whereas
the other peak at 74.35 eV represents the presence of metallic Pt 4fs,. The broad peak obtained at
76.2 eV corresponds to Pt(OH), or PtO», possibly due to the adsorption of contaminants that react
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with Pt to form these species [57]. We again observed that the XPS spectra of Ni were absent. The
fitted XPS spectrum of Sb 3d is displayed in Fig. 5(h). The peak located at 532.4 eV corresponds to
Sb 3ds/2. The spin-orbit splitting value for the Sb 3d is 9.4 eV and the other peak, obtained at 541.02
eV, clearly depicts the presence of Sb 3dz2. The peak obtained at 537.83 eV between the two peaks
of Sb 3d seems to be due to the satellite function of Sb and is defined as Sb 3ds, satellite [50, 58].
The other peaks centred at 532.8 eV and 534.8 eV belong to O1s, representing the lattice oxide and
organic C=0 bonds of O1s respectively. Fig. 5(i) shows the fitted XPS spectrum of Sn 3d. It again
demonstrates the two band structure due to the spin-orbit splitting of Sn 3d that were discussed for
the NIATOTI electrode. Both peaks are symmetrical and correspond to Sn 3ds, and Sn 3dape
respectively. Overall, the XPS analysis of all electrodes showed a good correlation with the results of
XRD, EDS and elemental mapping.

3.4 FTIR Analysis

Figure 6

Following confirmation of catalyst formation on the Ti mesh as demonstrated in the previous sections,
Fourier Transform Infrared (FT-IR) spectroscopy was conducted to identify the surface functional
groups present on all electrodes after the degradation of the MB solution. The FTIR spectrum of the
Ti mesh shows that only a few peaks are observed (Fig. 6). The characteristic peak of metal-oxygen
stretching appeared at 577 cm™, which is obtained in all FTIR spectra of the electrodes [59]. The peak
appeared at 773 cm™ corresponds to C-H bending. The peak observed at 1047 cm™ is related to the
stretching of the C-OH group while the peaks at 2125 cm™ correspond to the C=0 anhydride [59].

The peaks in the FTIR spectra of NIATOTi and NiATOTIiPt are observed at almost the same
positions. The C-OH stretching is responsible for the peak centred at 1047 cm™ [54] and the peaks at
1396 cm™* belong to the -CH3 bending, respectively [54] . The peak obtained at 2125 cm™ belong to
the C=0 aldehyde [60, 61]. The symmetric and asymmetric stretching vibrations of the -C-H and =C-
H groups were identified at 2895 and 2981 cm™, respectively [62, 63]. Two other sharp peaks
appeared at 3670 cm™® and 3741 cm* correspond to -OH stretching [1, 59, 60]. In general, the FTIR
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spectrum of all electrodes reveal the presence of functional groups on the surface of the electrodes
formed during the degradation of MB.

3.5 Reactive species generation

Amongst the various reactive species generated in electrochemical systems, *OH radicals and ozone
are the most important oxidative species responsible for the degradation of organics [64, 65].
Therefore, the efficiency of the electrodes to generate these two important oxidants in water was
evaluated. The reactor was run in a closed-loop circulating mode, the applied voltage was 5 V, and

the circulation flow rate was 88.5 mL/min.

3.5.1. Hydroxyl radicals

The three electrodes were evaluated for *OH generation using disodium-terephthalic acid (Na,TPA)
as a probe molecule for the measurement of *OH [64, 65]. Na>TPA reacts with *OH to produce a
highly fluorescent product, 2-hydroxy-terephthalate (OHTPA), which was measured by the
Fluorescence Spectrophotometer using a preliminary determined calibration curve. The optimised
excitation and emission wavelengths for OHTPA were found equal to 312 and 426 nm, respectively
(Fig. 7(a)). Assuming a 35% yield of the reaction of Na,TPA with hydroxyl radicals [64, 66], the
concentration of ‘OH (['OH]) was estimated as [[OH] = [OHTPA]meas/Yyield; where [OHTPA]meas is
the measured concentration of OHTPA and yield is the yield of the reaction (i.e. 35%).

Figure 7

Fig. 7(b) shows that for all three electrodes, *OH concentration increased linearly initially before it
plateaued for the Ti and NiATOTi electrodes. The NIATOTIPt clearly shows a higher production of
*OH in comparison to the other two electrodes and did not exhibit significant slowing of the "OH
production within the time of 120 minutes. Running the experiments for longer times showed that,
for all three electrodes, *OH concentrations reached maxima before declining as time increased (data
not shown). The *OH production rates of the initial part of the curves for each electrode, determined
from the slope of the tangent lines displayed in Fig. 7(b), are shown in Fig. 7(c). The *OH production

rate is minimum for the Ti mesh (0.8902 nmol/(L.min)) but was maximum for the NIATOTiPt
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electrode (1.9746 nmol/(L.min)). This clearly shows that the most efficient electrode for the
production of hydroxyl radical is NiIATOTIPt. As observed in Fig. 3, the introduction of Pt to the
composition of the electrode produced a homogeneous surface without cracks, improving the grain
sizes and crystallinity of the catalyst, which lowers the charge transfer resistance [16]. In
electrochemical oxidation, lowering the resistance to charge transfer facilitates faster electron
transfer, leading to an increase in the production of hydroxyl radicals [67, 68], which explains the
higher *OH production rate observed for NIATOTIPt.

3.5.2. Ozone Analysis

The formation of ozone in the electrochemical cell was evaluated in neutral media using pure Milli-
Q water and different conductivities of 0.25, 1.5, and 9.82 ps/cm set by addition of NaNO3 solution.
Ozone concentration was measured using the gravimetric indigo method [69, 70]. The results showed
that no ozone was detected. The production of ozone via electrochemical means using the NIATO-
based electrodes is possible but it requires the use of corrosive acidic H2SO4 electrolytes [71]. Rapid
deactivation of the electrodes has also been reported and is considered one of the barriers for the
commercialisation of these electrodes for electrochemical ozone production [71].

3.6 Electrochemical degradation of methylene blue

3.6.1 Efficiency of the three electrodes for MB degradation

Figure 8

The degradation of MB was compared across the three electrodes (Ti, NIATOTi, and NiATOTIPt)
under identical operating conditions (voltage of 5 V, and a circulation flow rate of 88.5 mL/min). Fig.
8 (a-c) illustartes the changes of the UV/Vis spectra as function of time using the three electrodes.
According to this figure, all three anodes degraded MB, though at different efficiencies and rates. The
time required for a degradation percentage of 95% (tes) was 130 min for the Ti electrode while
NIATOTi and NiATOTIPt electrodes required 70 and 50 minutes, respectively. To further illustrate
the efficiency of the electrodes and compare their performances, the values of the pseudo-first-order
reaction rate constant, k, were determined by fitting the experimental results to a first-order model

(i.e. C/Co =exp(-kt)). The model fitting results shown by continuous lines in Fig. 8(d) indicate
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excellent agreement between the experimental and model results. Fig. 8(e) shows that at the used
voltage of 5V, the rate constants varied between 0.0229 min™! to 0.0616 min* for the three electrodes.
At this voltage, the rate constant, k, of NIATOTI electrode was twice that of the Ti electrode while
NIiATOTIPt displayed a rate constant of 2.6 times higher than the Ti electrode (or 1.3 times higher
than NIATOTI). These results suggest that the NiIATOTIPt electrode is the most efficient out of the
three electrodes, which agrees well with our previous findings that showed NiATOTIPt electrode
exhibited the highest *OH production rate due to its improved grain size and crystallinity as a result
of the introduction of Pt. To further support this finding, we plotted the change of the degradation
rate constant, k, as function of the production rate of *OH, Ron, of each electrode. As shown in Fig.
8(f), an excellent linear relationship between k and Ron was found. It can thus be concluded that *OH

plays a key role in the degradation of MB by EAOP.

To evaluate performance, we compared the pseudo-first-order rate constants (k) obtained in this study
with those reported in the literature for Ti/Sb-SnO2-based and modified electrodes used in the
degradation of dyes and other organic pollutants. A summary of these literature values is provided in
Table S2 and Fig. S1 (Supplementary Information). As shown in Fig. S1, 59% of the k-values reported
in the literature fall within the range of 0.03-0.06 min™, which is consistent with the values obtained
in our study. The observed outliers below and above this range are likely due to variations in electrode
composition, fabrication methods, or operating conditions. For example, Zhang, et al. [30] reported
pseudo-first-order rate constants for MB degradation using Sb-SnO»-based electrodes ranging from
0.003 to 0.028 min™. Their most effective electrode, TiO2-NiO@Sb-SnO2, achieved its highest
efficiency primarily due to the incorporation of NiO, which enhanced the fraction of adsorbed
hydroxyl oxygen species, improved charge transfer between the electrolyte and electrode, and
increased both the oxygen evolution potential (OEP) and the electrode’s surface area [30]. Ce-doped
Ti/SnO.-Sb electrodes prepared by electrodeposition with glucose in the plating solution achieved
higher methylene blue degradation rates than those prepared without glucose, with rate constants
ranging from 0.079 to 0.147 min [5]. The enhanced efficiency was attributed to the addition of
glucose at the fabrication stage of the electrode, which increased the oxygen evolution overpotential
and generated a highly porous structure, thereby providing more active catalytic sites. The studies
further demonstrate that the addition of NaCl as an electrolyte enhances the degradation rate constants
through the generation of active chlorine species [72, 73], while increasing the current density or the
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applied potentiostatic voltage also leads to higher degradation rate constants (this study and [5]). The
addition of other metals to the composition of the electrode such as Gd, Ru, or La also enhances the
rate constant [74, 75]. The effect of the operating conditions on the efficiency of our electrodes

evaluated in this study is discussed next.

3.6.2 Effect of Voltage

Figure 9

The impact of voltage on methylene blue (MB) degradation using Ti, NIATOTi, and NiATOTIiPt
electrodes was analysed by varying the voltage from 1.2 V to 10 V, while maintaining a constant
circulation flow rate of 88.5 mL/min in both electrode compartments. The results are presented in
Fig. 9. For clarity of the figure, the time axis in Fig. 9 extends to 90 minutes only, though in some
cases, the experimental duration was longer to ensure that at least 95% of the dye was degraded. For
the Ti electrode, the required time to achieve 95% degradation (tes) (i.e. C/Co = 0.05) was 240 minutes
at 1.2 V but as the voltage increased to 10 V, tgs fell to 90 minutes. A similar trend was also observed
for the NIATOTi and the NiIATOTIPt electrodes where tos was reduced from 180 min and 140 min at
1.2 V to only 50 min and 20 min at 10 V, respectively. Thus, the higher the applied cell voltage, the
faster the degradation of MB, which is clealry shown by an upward correlation between the increased
voltage and the rate constants of MB degradation, k, for all electrodes (Fig. 9(d)). As shown in Fig.
9(d), the NiIATOTIPt electrode exhibited the fastest degradation rates compared to the NiIATOTi and
Ti electrodes at the tested voltages. For instance, at a voltage of 10 V, the rate constant of NIATOTIPt
is 7.5 and 3.3 times higher than that of Ti and NiATOTI, respectively. The results indicate that higher
voltages enhance the electrochemical reactions at the anode by increasing the generation of reactive
species (i.e. hydroxyl radicals). As the voltage rises, the electrical energy driving the oxidation
process strengthens, potentially leading to the production of additional oxidising agents such as ozone

and hydrogen peroxide, which react to further generate hydroxyl radicals via the peroxone reaction:

H,0, +20; > 2 “0OH + 30, (6)
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Higher voltage also improves the rate of electron transfer at the electrode surface and raises the current
density, accelerating the oxidation process by increasing the number of active sites available for the

oxidation reactions [23].

In Fig. 9(d), the effect of voltage was most pronounced with the NIATOTiPt electrode. As the voltage
increased from 1.2 V to 10 V, the rate constant increased by 11 times for NiIATOTIPt, while it
increased by 4 and 2 times for the NiIATOTi and Ti electrodes, respectively. Thus, the incorporation
of Pt into the electrode composition significantly enhanced the electrochemical oxidation process for
MB degradation at high voltages, possibly due to its high catalytic properties and stability [76, 77].
These results demonstrate the superior performance of the Pt-containing electrode. Although
platinum addition is expected to increase electrode material costs, it was used here at very low loading
and delivered a high improvement in degradation kinetics and energy efficiency, as demonstrated by
the EEO analysis in the next paragraph. Beyond its catalytic activity, Pt is biocompatible and
chemically stable, with strong resistance to oxidation and long-term degradation. Such performance
gains may justify the use of Pt-modified electrodes in targeted applications where treatment efficiency
is required, including (i) polishing steps for textile or specialty chemical effluents to meet stringent
discharge limits, (ii) on-site or decentralised treatment systems where reduced reactor footprint and
shorter treatment times are required, (iii) treatment of low-volume wastewaters containing recalcitrant
organic pollutants, and (iv) water reuse schemes where enhanced oxidation performance is needed to

ensure consistent contaminant removal.

The electric energy per order (EEO) was calculated for both the NiIATOTi and NiATOTIiPt electrodes,
with the results shown in Fig. 9(e). The data reveals that, for voltages below 8V, EEO increased
almost linearly with voltage up to 0.74 and 0.48 kWh/(m?®.order) for NiATOTi and NiATOTiPt,
respectively. Furthermore, at every voltage level, NIATOTi exhibited higher EEO compared to
NiIATOTIPt, suggesting that NIATOTIPt is a more energy-efficient electrode. For instance, at 8V,
NIATOTIPt required 35% less energy than NIATOTI. In all cases, both electrodes in this study
demonstrated EEO values of less than 1 kWh/(md.order), highlighting their potential for advanced
water treatment applications [78]. Based on data related to the electrochemical oxidation of MB by
electrodes made of TiO2-NiO@Sb-SnO, and TiO.@Sb-SnO, reported by Zhang, et al. [30], EEO
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values of 1.37 and 2.58 kWh/(m?.order), which are closer to our results, were calculated. The
incorporation of co-dopant NiO into the electrode structure has also significantly enhanced energy
efficiency [30], consistent with our findings that introducing Pt into the electrode composition
likewise improved the energy efficiency of the electrochemical process. In contrast, other research
studies have reported significantly higher EEO values for their electrochemical processes using
mixed-metal oxide electrodes. For example, Xu, et al. [79] have reported an EEO value of 6.55
kWh/(m?.order) for the synchronous degradation of three non-steroidal anti-inflammatory drugs,
while Zhang, et al. [80] reported EEO values of 29.5 kWh/(m?3.order) for the electrochemical
treatment of a textile wastewater. In their study on EEO for the boron-doped diamond (BDD)
electrode, Lanzarini-Lopes, et al. [81] reported EEO values for the degradation of p-chlorobenzoic
acid ranging from 39.3 to 331.8 kWh/(m®.order). Yang, et al. [82] reported an EEO of 10.22
kWh/(m?.order) for the elimination of Orange G dye using a conventional BDD electrode. By
developing a porous BDD electrode, they were able to significantly reduce the EEO of the dye
degradation to 2.59 kWh/(m?.order) [82]. Electrochemical oxidation of C.I. Acid Blue 92 using a
BDD anode under recirculation flow mode, comparable to the flow mode of our setup, required an
EEO of 55.95 kWh/(m?®.order) [83], significantly higher than the EEO in our study. Although BDD
is widely regarded as the benchmark electrode for electrochemical oxidation because of its
exceptional stability, excellent electrical conductivity, and wide potential window, its practical
application is limited by the high fabrication cost and energy demand [82]. The energy consumption
typically reported for BDD is higher than the values obtained in this study, highlighting the advantage
of our system in terms of energy efficiency while maintaining effective degradation performance.
Nevertheless, considering various types of electrodes, a wide variability over three orders of
magnitude in EEO has been reported for textile dyes, with values ranging from below 1 to >1000
kWh/(m?.order), this study and [80, 82, 83]. This variability can be explained by variability in the
generation of electrochemical oxidants, electrode materials, reactor configuration, or the composition
of the water matrix used [66, 77, 84, 85].

The production of reactive species such as hydroxyl radicals or active chlorine directly affects
degradation kinetics [86], thereby reducing EEO by accelerating pollutant removal. Electrode
materials are crucially important, as their catalytic activity, stability, and oxygen evolution
overpotential determine current efficiency and thus energy demand. As demonstrated so far, BDD
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electrodes usually achieve faster degradation but at higher energy costs compared to mixed-metal
oxides or doped composites. Water composition, particularly ionic strength, pH, and the presence of
natural organic matter or inorganic scavengers, can either promote oxidant formation (e.g., via
chloride or sulphate activation) or consume reactive species, thereby influencing degradation
efficiency and the corresponding EEO values [86-88]. In addition, reactor configuration strongly
influences the energy consumption of electrochemical degradation of pollutants. Flow-through and
continuous-flow reactors generally achieve lower energy per order (EEO) than batch systems due to
enhanced mass transport and improved pollutant-electrode contact. Optimised cell design, such as
reduced inter-electrode distance and improved hydrodynamics, further minimises energy
consumption by lowering ohmic losses, enhancing current efficiency, and reducing mass transfer
limitations of the contaminants toward the electrode surface [11, 88]. While our electrode and reactor
configuration (i.e. flow through mode) demonstrate considerable energy savings, further testing with
more complex, real-world wastewaters is necessary to fully evaluate the efficiency of the system.
Nevertheless, the results of this study are promising, suggesting that NIATOTIPt electrode has great

potential for textile dye degradation applications.

3.6.3 Effect of pH

pH plays an important role in the electrochemical degradation of contaminants because it influences,
at a minimum, contaminant speciation and the availability of reactive oxidants such as *OH, HOCI,
and OCI [85]. Thus, the effect of pH on the performance of NiATOTIiPt was evaluated. The pH-
dependent experiments in Fig. 10 show that NiIATOTIPt electrode was active across the pH range
investigated (pH 5 to 9.5), but the degradation rate of MB slightly varied as the pH was changed. In
all cases, C/Co decreased monotonically with time and fell to ~0.1 after 60 min, indicating significant
decolourisation under mildly acidic, neutral and alkaline conditions. The curve at pH 5 consistently
lied below the others, demonstrating that slightly acidic conditions lead to faster MB removal. This
trend is further supported by the variation in the pseudo-first-order rate constant, expressed as k/kps,
shown in the inset of Fig. 10. The change of C/Co versus time at pH 7 is only marginally slower and
almost overlaps that at pH 8.5, suggesting that near-neutral to mildly alkaline conditions do not
strongly reduce performance. In contrast, at pH 9.5, C/Co-values are slightly higher at 30 to 60 min,
with noticeably reduced rate constant (inset of Fig. 10), showing that strongly alkaline solutions

reduce the degradation rate. A similar behaviour was reported for an electro oxidation system using
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particle electrodes, where MB removal was significantly reduced at pH 11[1]. Alaoui, et al. [89] also
reported that MB degradation by Pt/MnO- electrode decreased as the pH was increased to 10. At
higher pH, the onset potential for oxygen evolution shifts to lower values, promoting oxygen
evolution at the anode surface and consequently hindering the diffusion of organic species toward the
electrode [89], reducing contaminant degradation. In our study, the pseudo-first-order rate constants
quantify this trend, as k/kpns increases from 0.75 at pH 9.5 to ~0.90 at pH 7-8.5 and reaches a
maximum of 1 at pH 5, i.e. the process at pH 5 is ~25 % faster than at pH 9.5. Hassan and Jamal [90]
reported that, in chloride media, the indirect oxidation of MB on Pt exhibits a rate constant that
increases linearly as pH decreases below 7. Likewise, Vahid and Khataee [83] observed slower
degradation of acid blue 92 under alkaline conditions, with the rate constant at pH 8.5 reduced by

approximately 15% compared with that at pH 6.

The effect of pH on the EEO was also examined in our study. At pH 7, the EEO decreased by
approximately 30% relative to pH 5, yet remained about 20% higher at pH 9.5 than the value at pH
5. This behaviour aligns with the findings of Vahid and Khataee [83], who reported that EEO values
(normalised to that at pH 6) increased by about 80% at pH 3.5 and by 15% and 20% at pH 8.5 and
11, respectively. These results clearly demonstrate that pH has a major impact not only on reaction
kinetics but also on the overall energy demand of the process. Importantly, higher reaction rate
constants do not necessarily translate into lower energy consumption, as pH can intensify competing
side reactions such as oxygen evolution, or impact contaminant-electrode interactions and mass

transfer [91]. Therefore, when energy performance is critical, careful optimisation of pH is essential.

Figure 10

3.6.4 Effect of circulation flow rate

Figure 11

The impact of circulation flow rate on the degradation efficiency of methylene blue was assessed at

a constant voltage of 5 V in a closed-loop mode for all electrodes. As shown in Fig. 11(a), the pseudo-

first-order rate constant initially increased with the flow rate, peaking at approximately 123 mL/min
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for Ti and NiATOTIPt, and at 148 mL/min for NiATOTi before decreasing as the flow rate further
increased. Although charge transfer is typically the rate-limiting step in electrochemical processes,
mass transfer is likely to dominate the reaction rates under the relatively high voltages used in the
electrochemical cell of our study [92]. As the flow rate increased from 44 mL/min to 123 mL/min,
the Reynolds number (Re) also rose from about 150 to 450, indicating enhanced mass transfer [93].
This increase in Re likely contributed to the observed rise in the rate constant, as mass transfer governs
the supply of reactants and the removal of products at the active sites, thus directly influencing
catalytic performance [94]. Consistent with this, Wang, et al. [95] demonstrated that increasing flow
rates improved mass transfer and, in turn, the performance of a desalination electrochemical flow
battery. However, as Fig. 11(a) illustrates, further increasing the flow rate beyond about 123 mL/min
for Ti and NiATOTIPt and 148 mL/min for NiATOTi led to a decrease in the degradation rate
constant. At high flow rates, flow channelling was observed to become significant, leading to dead
zones and incomplete contact between the electrode and the liquid. This resulted in a reduced effective
surface area of the electrode and, consequently, a decline in the observed rate constant. Excluding the
flow rates that caused channelling, power was measured, and the EEO values as a function of flow
rate for both the NiATOTi and NIATOTIPt electrodes are presented in Fig. 11(b). The figure
demonstrates that as the flow rate increased, which enhances mass transfer, the EEO values decreased,
indicating that the energy demand of the electrochemical process was reduced. This finding aligns
with results from other studies [94, 95] and further reinforces our conclusion that mass transfer

influences the electrochemical process.

3.6.5 Electrode reusability

Electrode stability is a significant factor in electrochemical systems, as it determines the durability
and reusability of the catalytic surface. Reductions in catalytic performance after multiple uses of
electrodes have been widely reported and are often linked to mechanical damage, crack formation
during repeated use, passivation of the metal substrate, coating detachment, or gradual depletion of
the active layer [5, 77]. Highly oxidising radical species may also induce partial oxidation of
transition-metal nanoparticles [96] and the accumulation of degradation by-products on the
nanostructured surface can progressively hinder the mass transfer of contaminants and reactive
oxidants, contributing to the loss of activity [97]. To mitigate electrode deactivation, several strategies

have been proposed, including TiN doping, glucose addition, and the fabrication of denser surface
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architectures, which collectively strengthen the coating, suppress crack development, slow catalytic
layer dissolution, and delay substrate passivation, thereby enhancing electrode stability [5, 67, 98,
99]. In our study, stability was assessed by repeatedly reusing the NiATOTIPt electrode for the
degradation of fresh MB solutions over multiple operational cycles. The study demonstrated a slight
decline in catalytic activity across four consecutive cycles as shown in Fig. S2 (Supplementary
Information). The concentration profiles show that MB degradation efficiency declines slightly with
each successive cycle. In the first run, the electrode reduces MB from about 9.8 mg/L to 0.75 mg/L
within 60 minutes. By the fourth run, however, the final concentration after 60 minutes was closer to
1.5 mg/L, indicating a modest loss in catalytic activity. Notably, after completing these four cycles
and storing the electrode in DI water, a second set of four-cycle tests was performed again.
Surprisingly, the electrode achieved degradation rates nearly identical to those observed in the initial
set of cycling tests, indicating that its catalytic efficiency was effectively restored and that the slight
performance loss observed in the first cycling test was not permanent. The average pseudo-first-order
rate constant from the first set of cycling tests was only about 8% higher than the average pseudo-
first-order rate constant obtained in the second set of cycling tests. The restoration of catalytic
efficiency is likely due to the removal of surface-adsorbed intermediates or reaction byproducts
during storage in DI water. During repeated degradation cycles, organic residues or oxidised species
can accumulate on the electrode surface, partially blocking active sites and slowing electron-transfer
processes. Immersion in DI water facilitates desorption or dissolution of these species, effectively
regenerating the active surface of the NIATOTIPt electrode. As a result, the electrode regains its
original reactivity, leading to the recovery of degradation rates comparable to those observed in the
initial cycles. Potential loss of catalytic metals was assessed by analysing the treated solutions for
dissolved metal species using an Agilent MP-AES following the electrochemical stability
experiments. No electrode-derived metals were detected within the analytical detection limit (~0.5
ug/L), indicating negligible leaching. This result suggests good coating adhesion under the applied
operating conditions, supporting the conclusion that no significant material loss or coating
detachment occurred during the cycling tests. Nevertheless, it should be noted that over extended
operational periods, there remains the potential for antimony and platinum leaching. In particular,
antimony release is of concern due to its associated toxicity and the relatively low drinking water
guideline value of 5 pug Sb/L [100], highlighting the importance of long-term stability assessments
for practical applications, especially when treated water is intended for potable use or discharge into
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sensitive environmental receptors. Thus, it can be inferred that NiIATOTIPt did not experience
mechanical degradation or passivation during repeated use, and that a simple cleaning step between

cycles is sufficient to restore the electrode to its original efficiency.

3.6.6 Treatment of simulated methylene blue synthetic textile wastewater

The electrochemical cell was evaluated for the treatment of a simulated methylene blue synthetic
textile wastewater (MB_STWW), with the composition detailed in Table S1. This matrix was
designed to reflect the practical relevance of anodic oxidation under realistic conditions, incorporating
a complex, salt-rich, and organic-loaded environment typical of textile effluents. For comparison, a
methylene blue solution prepared in deionized water (MB_DI) was also tested as a control to
benchmark system performance against that obtained with MB_STWW. This comparison was
particularly important given that the electrode had been extensively used prior to these experiments,
allowing potential matrix effects to be distinguished from electrode aging effects. According to Fig.
12, both matrices (MB_STWW and MB_DI) followed pseudo-first-order kinetics for MB
degradation, consistent with the previous results and common observations in oxidative degradation
processes in which the oxidant concentration is effectively constant or proportional to the applied
current [11]. The pseudo-first-order rate constant obtained for MB_STWW was 64% higher than that
for MB_DI. Over a 60-minute treatment period, the concentration ratio C/Co decreased from 1.0 to
approximately 0.01 for MB_STWW, compared to about 0.1 for the MB_DI solution (Fig. 12). The
apparent faster decay in the simulated textile matrix is attributed to the higher ionic strength from the
supporting electrolytes that promote higher cell currents and corresponding higher electrogenerated
hydroxyl radicals or mediated oxidant flux at the anode surface [101]. Additionally, the presence of
chloride and other anions under anodic conditions is associated with the production of active chlorine
species that accelerate colour removal [72]. The accompanying effect is a higher pseudo-first-order

rate constant for the dye disappearance.

Notwithstanding the faster dye degradation kinetics in the MB_STWW matrix, the energetic
requirements of treatment, as estimated by the EEO of MB degradation was few orders of magnitude
higher for MB_STWW than for MB_DI control. For MB_STWW, the average EEO was about 8.4
kWh/(m?.order), whereas for MB_DI, the average EEO was 0.17 kWh/(m?®.order). Although the EEO
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for MB_STWW is substantially higher than that obtained for MB_DI, the absolute value remains
within a practically acceptable range for advanced oxidation processes. Reported benchmarks
indicate that EEO values below 10 kwh/(m?®.order) are generally considered energetically feasible
for water and wastewater treatment applications, particularly for complex matrices containing salts
and organic matter [78]. This increase in energy demand for MB_STWW can be attributed to the
higher ionic strength and organic load of the simulated textile wastewater, which promote the
formation of secondary oxidants and competitive reactions with species such as humic acid and
polyvinyl alcohol that reduce the fraction of applied current available for direct dye oxidation.
Overall, the EEO value achieved by the NIATOTIPt electrode for the treatment of the MB synthetic
wastewater (8.4 kWh/(m?3.order)) remains lower than many values reported for boron-doped diamond
(BDD) electrodes, which are often regarded as the benchmark for electrochemical oxidation. For
example, EEO values of 10.22 kWh/(m?3.order) for Orange G dye [82], 55.95 kWh/(m?.order) for C.1.
Acid Blue 92 [83], and 39.3-331.8 kWh/(m?3.order) for p-chlorobenzoic acid [81] have been reported
using BDD anodes.

Total organic carbon (TOC) measurements indicated limited mineralisation in both water matrices,
with approximately 8% removal achieved. In the MB_STWW system, TOC decreased from 272.7
mg/L to 251.4 mg/L after 60 minutes of treatment, while in the MB_DI solution, TOC was reduced
from 30.1 mg/L to 27.9 mg/L over the same reaction period. The extent of TOC removal, despite a
near-complete MB decolouration, indicates that the electro-oxidation predominantly affected
chromophore destruction and fragmentation rather than complete mineralisation to carbon dioxide
and water. This pattern is common in electrochemical AOPs treating complex aqueous matrices;
colour and parent compound disappearance can be fast, while complete mineralisation is substantially

slower because of low molecular weight intermediates and other fractions [102, 103].

Figure 12

25



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786

3.7 Pathways of MB degradation by NIATOTIPt electrode

The degradation of methylene blue (MB) was conducted with an initial concentration of 100 ug/L,
while maintaining the following conditions: a voltage of 10V, a circulation flow rate of 88.5 mL/min,
and a solution volume of 125 mL in a closed-loop system. Fig. 13(a) depicts the molecular structure
of MB, excluding its chloride ion, which is solvated by water once the dye is dissolved in solution.
This structure was optimised using DFT analysis in Gaussian. The mass-to-charge ratio (m/z) of MB
excluding Cl is 284, corresponding to the molecular ion [M*], as observed in our study and
corroborated by previous research [104, 105]. Fig. 13(g) (MB, m/z 284) illustrates the progression of
the electrochemical degradation of MB over time, showing a consistent decrease in MB
concentration. However, after approximately 15 minutes, the concentration plateaued at around 20
Ma/L, representing an 80% removal (Fig. 13(g) (MB, m/z 284)). This suggests that the electrochemical
degradation of MB did not proceed beyond this point. While the initial decline in concentration before
the plateau aligns with trends observed for higher initial MB concentrations, the plateau was not
detected using the UV/vis spectrophotometer. This discrepancy is likely due to the higher limit of
detection (LOD) of the UV/vis spectrophotometer (approximately 100 pg/L) compared to the mass
spectrometer, which has a lower LOD of about 30 ng/L. The observed plateau in Fig. 13(g) (MB, m/z
284) may be attributed to competition reactions involving by-products formed during MB oxidation,
or it could indicate inhibition of the electrochemical process at low MB concentrations.

To elucidate the electrochemical degradation pathway of methylene blue (MB) using the NiIATOTiPt
electrode, LC-MS/MS analysis (Agilent 1260 Infinity Il with Ultivo triple quadrupole) and DFT
calculations were performed. The degradation of the MB molecule by the NIATOTIPt electrode is
primarily attributed to hydroxyl radical attack, as previously demonstrated in this study. To identify
the most reactive sites for radical attack on the MB molecule, Fukui functions (f°) were employed.
Fig. 13(f) illustrates a plausible mechanism for the electrochemical degradation of MB by the
NiATOTIPt electrode suggested according to the following discussion while Fig. 13(g) illustrates the
changes in normalised peak area of each by-product, represented by its m/z value. In Fig. 13(g), the
normalised peak area is defined as the ratio of the peak area of a given m/z to the peak area of MB
(m/z 284) at time t = 0, multiplied by 100. Fig. 13(a-e) presents the molecular structure of MB along
with its HOMO and LUMO orbitals, as well as the f function map and indices. The HOMO and
LUMO orbitals indicate the regions where a molecule is most likely to lose or gain electrons,
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respectively. The HOMO map of MB (Fig. 13(c)) highlights regions of high electron density, where
the likelihood of electron participation in the oxidation reaction is greatest. In oxidation reactions,
electron transfer typically occurs from the HOMO of the organic molecule to the LUMO of the
oxidant [106, 107]. The f° function map identifies the sites most likely to undergo radical attack. Fig.
13(e) presents a descending order of the f° indices, suggesting that C16, C19, C20, and C17 in the
MB molecule are the most susceptible to hydroxyl radical reactions, followed by C1, C13, C3, and
Cl1.

Figure 13

The attack of hydroxyl radicals (*OH) on C16 (or C19, C20, and C17) leads to N-demethylation of
the -CHs group attached to the nitrogen atom in the methylene blue (MB) molecule. The N-
demethylation pathway at C16 is shown in Scheme 1 of Fig. 13(f), resulting in the formation of
product P1 (m/z 270). Further demethylation produces products P2 & P2’ (m/z 256), P3 (m/z 242),
and P4 (m/z 228). The cleavage of a methyl group substituent from amine groups via radical oxidation
has also been observed in other studies [108-110]. Demethylation of P1 occurs at N15 and/or N18,
resulting in two isomers, P2 and P2°. To determine which isomer predominates, we calculated the
Fukui function f° for P1. The results show that the Fukui indices for C16 (0.0166), C17 (0.0164), and
C19 (0.0162) are comparable (Fig. S3, Supplementary Information) suggesting a similar probability
for *OH attack on these carbons. This is further confirmed by the calculation of electronic energies
and HOMO-LUMO energy gaps, and Gibbs free energy for both isomers. All quantities yielded
similar results (Table S3, Supplementary Information) indicting that P2 and P2’ are likely formed in

equivalent proportions.

The relative abundance of P1, (P2 + P2’), P3, and P4 over time is shown in Fig. 13(g). The data
reveal an initial increase in product formation, peaking at around 10 minutes, followed by a gradual
decline and stabilisation at a plateau starting at around 15 minutes. This plateau is most pronounced

for P1 and P2 + P2’, indicating the cessation of oxidation reactions leading to these products, likely
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due to competitive reactions. The relative abundance data show that P1 was produced in the highest
yield, followed by P2 + P2’, and then P3 and P4 (Fig. 13(g)). Other studies on MB oxidation have
also identified the formation of P1, P2, and P3, commonly known as Azure B, Azure A, and Azure
C, respectively [105, 111].

According to the Fukui function analysis, carbons C1 and C13 are also susceptible to *OH attack,
leading to the formation of product P5 (m/z 72) identified as N,N-dimethyl(oxo)methaniminium
(Scheme 3, Fig. 13(f)). A transformation product with m/z 72 was also reported by Li et al. (2021)
[50] at the end of MB degradation, following oxidative ring opening. However, they proposed a
structure of butanal, which differs from P5 in our study. According to our results shown in Fig. 13(g),
the relative abundance of P5 increases rapidly early in the reaction, suggesting that it results from an
early attack of the MB molecule to form N,N-dimethyl(oxo)methaniminium ion. P5 appears to be
stable, with its concentration steadily increasing throughout the electrochemical oxidation process.
However, its rate of formation slows down after about 10 minutes, indicating that while the formation

of P5 continued, the degradation of MB may have slowed due to competing reactions.

Other products identified include P6 (m/z 316), which likely results from the addition of two hydroxyl
groups to MB at carbons C3 and C11, and P7 (m/z 268), (Fig. 13(g)), resulting from N-demethylation
and hydrogen abstraction from the N-methyl group. However, the relative abundances of these
compounds were too low to be significant (Fig. 13(g)). Overall, the combination of mass spectrometry
and molecular simulations provided valuable insights into the distinct degradation pathways of

methylene blue suggested in Fig. 13.

To further illustrate the proposed degradation mechanism and establish a quantitative structure-
activity relationship (SAR), we correlated the experimentally observed degradation rate constants of
the products with their calculated Fukui indices. The site-specific susceptibility to radical attack for
products P1, P2, and P3 was quantified using condensed Fukui radical indices (f°) derived from DFT
calculations. For each product, the maximum radical susceptibility index (f%max) was selected as a
molecular descriptor and compared with the experimentally determined pseudo-first-order
degradation rate constants (kobs). These kobs Values were obtained from the degradation stage of each

product, which commenced at 10, 10, and 5 minutes for P1, P2, and P3, respectively (Fig. 13(g)). As
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shown in Fig. 13(h), a strong positive correlation (R?>=0.991) was observed between Kops and rmax.
This finding indicates that radical attack at the most f%-active atomic site (i.e., the site with the highest
% value) plays a dominant role in governing the electrochemical degradation kinetics. These results
support a SAR in which hydroxyl radicals preferentially attack these high- f© sites, leading to faster
degradation rates [112].

4. Conclusions

In summary, all electrodes studied (Ti, NiIATOTi, and NiATOTIiPt) generated hydroxyl radicals,
albeit at different rates, leading to dye degradation rates proportional to hydroxyl radical production
rates. Characterisation of the electrodes confirmed the coating of the titanium mesh with catalysts,
though the uniformity of the coating was notably better for NIATOTiPt compared with NiATOTi due
to the addition of Pt. Overall, NiIATOTIPt outperformed the other electrodes in terms of hydroxyl
radical production, degradation rates, and energy efficiency for the oxidation of methylene blue. The
degradation rate constant, k, of NIATOTIiPt was 2.6 and 1.3 times higher than NIATOTi and Ti at
5V, and 7.5 and 3.3 times higher at 10 V, respectively. The degradation rates were found to increase
as the circulation flow rate increased indicating that mass transfer could be a limiting factor of the
process. However, higher flow rates caused flow channelling, reducing the overall efficiency of the
electrochemical cell. Repeated use of the NIATOTIPt electrode did not result in any significant loss
of performance. When applied to the treatment of simulated synthetic textile wastewater, the electrode
exhibited higher degradation Kinetics than those observed for MB in deionised water, albeit at the
expense of increased electrical energy consumption (EEO). Although ozone production was found
negligible, LC-MS/MS analysis confirmed that hydroxyl radicals were primarily responsible for dye
degradation. The study also demonstrated that Fukui functions and density functional theory (DFT)
provide valuable insights into the degradation pathway of methylene blue by hydroxyl radicals. In
particular, the maximum Fukui function f° value showed a strong linear correlation with the
experimental pseudo-first-order product degradation rate constants, indicating that compounds with
higher local f° are degraded faster. Overall, this study highlights the effectiveness of anodic oxidation
for the removal of contaminants in water. To support its practical implementation, upscaling the
process and evaluating its performance under real industrial conditions are critical next steps, as they
will help assess the technology's robustness, cost-effectiveness, and adaptability to complex
contaminant profiles typically found in industrial and municipal effluents.
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Fig. 1: Experimental set-up for electrochemical degradation of methylene blue
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Fig. 2: XRD patterns of (a) Ti; (b) NiIATOTi; and (c) NiIATOTIPt electrodes
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Fig. 3: SEM (a) and EDS (b) of Ti (1); NIATOTi (2); and NiATOTiPt (3) electrodes
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Fig. 8: UV/Vis spectra of MB degradation using the three electrodes (a) Ti, (b) NIATOTI, (c)
NIATOTIPt; (d) C/Co vs time fitting with a pseudo-first-order model; (e) pseudo-first order rate

constant; (f) relationship between pseudo-first order rate constant, k, and hydroxyl radical generation
rate (Ron) (Co= 10 mg/L, Voltage =5V, flow rate= 88.5 mL/min).
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Fig. 9: Effect of voltage on MB degradation using (a) Ti (b) NIATOTi (c) NIATOTIPt electrodes;
(d) effect of voltage on pseudo-first-order rate constants; (e) effect of voltage on Electrical Energy

per Order (Co = 10 mg/L, flow rate = 88.5 mL/min)
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Fig. 10: Effect of pH on the performance of NiIATOTIiPt (Co = 10 mg/L, flow rate = 88.5 mL/min,
V =5V).
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Fig. 11: Effect of circulation flow rate on (a) pseudo-first-order rate constants and (b) Electrical

Energy per Order - flows causing channeling are excluded (Co = 10 mg/L, voltage =5 V)
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Fig. 12: Effect of water matrix on temporal variation of dye concentration ratio (C/C)
(electrode = NiATOTiPt, Co = 10 mg/L, flow rate = 88.5 mL/min, V'=5V).
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(a) Chemical structure of MB
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Fig. 13: (a) Chemical structure of MB; (b) Fukui function, f°, map; (c, d) HOMO and LUMO orbitals
of MB; (e) largest first 8 f° indices for MB; (f) possible mechanism of N-demethylation and
degradation pathways of MB by NiATOTIPt electrode; (g) change of products’ relative abundance
versus time (Co = 100 pg/L; voltage = 10 V, circulation flow rate = 89 mL/min, NiATOTIPt
electrode) [x-axis: time in minutes; y-axis: peak area of the corresponding m/z ratio to the peak area
of MB at t = 0 min]; (h) structure-activity relationship between first-order-rate constant and
maximum radical susceptibility Fukui index (fmax).
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