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Abstract

Federated Learning (FL) has emerged as a promising paradigm for decentralised machine
learning, allowing multiple clients to collaboratively train models without sharing their private
data. This distributed approach is particularly relevant in domains with stringent data privacy
requirements, such as finance, healthcare, and edge computing. However, despite its advantages,
FL faces three critical challenges: (1) efficient model aggregation, (2) protection against privacy
leakage, and (3) real-world applicability in complex domains. This thesis addresses these
challenges by proposing novel strategies to optimise aggregation mechanisms, enhance its

privacy protection capabilities, and explore its application in financial modelling.

First, we introduce Element-Wise Weights Aggregation for FL (EWWA-FL), a novel
optimisation technique that improves global model convergence by adopting element-wise
adaptive weighting. Traditional FL aggregation methods, such as FedAvg, assign a single
proportion to each local model without considering the varying importance of individual
model parameters. In contrast, EWWA-FL assigns unique proportions to each element within
local model weights, ensuring more precise updates that account for dataset heterogeneity
among clients. Experimental results demonstrate that EWWA-FL significantly improves both
convergence speed and final model accuracy, outperforming FedAvg, FedOpt, and FedCAMS
across multiple benchmark datasets. By incorporating an element-wise approach, EWWA-FL
provides a more adaptive and fine-grained aggregation strategy that enhances FL’s performance

in both Independent and Identically Distributed (IID) and Non-IID settings.

Second, we propose AdaDefence, a privacy-preserving defence mechanism against gradient
leakage attacks in FL. While FL eliminates the need for raw data sharing, recent attacks have
demonstrated that an adversary can reconstruct private training data from shared gradients,
posing a severe privacy risk. To counteract this, AdaDefence introduces a gradient stand-in
approach, wherein local clients replace actual gradients with modified gradients before sending
them to the server. This method prevents attackers from reconstructing private data while

maintaining model utility. AdaDefence effectively defends against state-of-the-art attacks such



as Deep Leakage from Gradients (DLG), Generative Regression Neural Network (GRNN), and
Inverting Gradient (IG) without significantly compromising model accuracy. Our extensive
empirical analysis shows that AdaDefence provides strong privacy guarantees while ensuring
minimal performance degradation, making it a practical and scalable solution for real-world FL.
deployments.

Finally, we explore the real-world application of FL in financial modelling, particularly in
Cross-Stock Trend Integration (CSTI) for enhancing stock price prediction. Traditional financial
models suffer from data fragmentation, where different financial institutions and stock markets
operate in silos, limiting predictive power. To overcome this, we develop a FL-based approach
that enables multiple financial institutions to collaboratively train stock prediction models
without exposing sensitive trading data. This approach leverages cross-stock trend integration,
allowing predictive models to learn patterns from multiple stocks while preserving privacy.
Our experimental results demonstrate that federated cross-stock learning improves predictive
accuracy and model robustness, outperforming conventional single-stock prediction methods.
By enabling secure, multi-institution collaboration, this work highlights the potential of FL in
advancing financial modelling while ensuring regulatory compliance and data confidentiality.

By addressing these fundamental aspects, optimisation and protection, this thesis makes
significant contributions to the field of FL. The proposed methodologies collectively enhance
FL’s efficiency, security, and real-world applicability. Through EWWA-FL, FL models achieve
faster and more reliable convergence. By introducing AdaDefence, FL gains stronger privacy
protections against gradient-based attacks. Finally, by demonstrating FL’s potential in cross-
stock trend integration, this thesis showcases how FL can be deployed in privacy-sensitive
financial applications. These contributions pave the way for more efficient, secure, and scal-
able FL systems, advancing their adoption in a wide range of domains, including healthcare,

autonomous systems, and financial technology.
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Chapter 1

Introduction

1.1 Motivations

Artificial Intelligence (AI) has become a cornerstone of modern computing, driving automation,
intelligent decision-making, and predictive analytics across areas such as healthcare, finance,
autonomous systems, and edge computing. The rapid growth of Al applications has been
enabled by access to large-scale datasets, high-performance computing, and advances in Deep
Learning (DL) architectures. Yet, as these systems increasingly rely on distributed and sensitive
data, concerns about privacy, security, and computational efficiency have grown more pressing.
Federated Learning (FL) [1-6] has emerged as a promising response. It allows multiple parties
(such as mobile devices, hospitals, or financial institutions) to train shared models while keeping
their data local. Unlike traditional centralised Machine Learning (ML), which requires raw
data to be pooled into a single server, FL shares only model updates (gradients or weights).
This not only reduces communication costs but also helps organisations comply with strict
regulations such as the General Data Protection Regulation (GDPR) in Europe and Health
Insurance Portability and Accountability Act (HIPAA) in the United States. Still, deploying
FL in practice is far from straightforward. Real-world systems face three persistent challenges:
(1) aggregating models effectively when client data are highly diverse, (2) protecting against
privacy risks hidden in shared gradients, and (3) showing that federated approaches can work in
demanding domains such as finance. These three challenges form the backbone of this thesis,
which is guided by a single overarching goal, making FL more secure, efficient, and practical
for real-world deployment. To achieve this, the work in this thesis follows three directions.

First, it proposes a fine-grained element-wise aggregation method that adapts to non-IID data
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1. Introduction

and accelerates model convergence. Second, it introduces a defence mechanism that prevents
gradient leakage attacks without the heavy cost of encryption or the accuracy loss seen in
noise-based methods. Third, it demonstrates how FL can be applied to financial modelling
through a federated cross-stock prediction framework, enabling institutions to collaborate while
respecting data confidentiality. Taken together, these contributions connect theory and practice
by improving the efficiency of federated training, strengthen its privacy guarantees, and show
its value in a complex real-world application. The aim is not just to solve isolated problems, but

to move FL closer to being a trustworthy technology that can be deployed with confidence.
Topic 1: Model Aggregation in Heterogeneous Settings

A central limitation in FL is the way local model updates from diverse clients are aggregated.
In practice, data across clients is rarely Independent and Identically Distributed (IID). It
often reflects regional biases, user-specific behaviour, class imbalance, or domain-specific
features. This heterogeneity has a direct impact on global updates. The widely used Federated
Averaging (FedAvg) [1] assumes that all clients contribute equally and applies a single weight to
each local model, regardless of the quality or representativeness of the data. While this simplifies
training, it does not reflect real-world conditions. As a result, global models trained under
uniform weighting frequently converge slowly, generalise poorly across clients, and can become
unstable when client updates diverge significantly. Clients with skewed data distributions or

small datasets may even distort the aggregated model, reducing its robustness and fairness.

To address these issues, researchers have proposed adaptive aggregation methods that assign
different weights to each client based on criteria such as data volume, similarity of distributions,
or update divergence [7-9]. These methods mark an important step forward, but they still
treat the model as a whole that each client’s update is assigned a single scalar weight. This
coarse adjustment overlooks the fact that not all parameters within a model contribute equally
to learning. Parameters tied to well-represented classes or stable features may carry more useful

information, while others may be noisy or biased by local peculiarities.

This raises the core research question of Chapter 3 that can aggregation be improved by
moving beyond model-level weighting to parameter-level weighting, where each parameter
is evaluated individually for its contribution to global learning. Our answer is the proposed
Element-Wise Weights Aggregation Method for FL. (EWWA-FL), which departs from
model-wise weighting schemes. Instead of assigning a single weight per client, it assigns
adaptive weights to each parameter across local models. This fine-grained approach allows

the global update to down-weight parameters distorted by Non-Independent and Identically
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1.1. Motivations

Distributed (non-IID) effects and amplify those that are consistent and reliable across clients.
Hence, EWWA-FL aims to achieve faster convergence, reduced bias, and more stable training

in heterogeneous and privacy-preserving environments.
Topic 2: Defending Gradient Leakage Attacks

FL addresses a fundamental privacy concern by avoiding raw data exchange, since training
occurs locally on client devices and only model updates are shared. While this provides
stronger privacy than centralised ML, it does not make FL immune to attack. In particular,
gradient leakage has emerged as a serious vulnerability. By analysing the gradients sent to the
server, adversaries can reconstruct sensitive inputs with surprising accuracy. Methods such as
Deep Leakage from Gradients (DLG) [10], Improved DLG (iDLG) [11], Inverting Gradient
(IG) [12], Generative Regression Neural Network (GRNN) [13], and Generative Gradient
Leakage (GGL) [14] demonstrate that both images and labels can be faithfully recovered from
shared updates. These findings raise significant concerns in domains such as healthcare and

finance, where any leakage of underlying records may have legal or ethical consequences.

Existing defence strategies attempt to mitigate this risk but fall short in practice. Differential
Privacy (DP) offers formal privacy guarantees by adding noise to the gradients, resulting
in accuracy reduction, especially under tight privacy budgets. Homomorphic Encryption
(HE) protects confidentiality by encrypting updates end-to-end, but its computational and
communication costs are prohibitive for large models and resource-limited edge devices. In

other words, one approach sacrifices utility, while the other sacrifices practicality.

This motivates the research question at the core of chapter 4 that can we design a defence that
conceals sensitive information in gradients without incurring the accuracy loss of noise injection
or the heavy costs of encryption. The proposed answer is AdaDefence, which introduces the
idea of gradients stand-in. Instead of sending raw gradients to the server, each client replaces
them with modified gradients derived through the Adam optimiser’s first-order and second-order
moment estimates. These stand-ins preserve enough learning signal for effective model training
but obscure the direct mapping between gradients and private data. AdaDefence achieves a
stronger balance in the privacy—utility trade-off. It prevents adversaries from reconstructing
inputs while avoiding the performance drop typical of DP and the overhead of HE. The aim is to

make FL both secure and practical for deployment in real-world, privacy-sensitive environments.
Topic 3: Real-World Applicability in Financial Modelling

FL has become a promising paradigm in ML, especially for applications where privacy and

regulatory compliance are paramount. Its decentralised architecture addresses a long-standing

3



1. Introduction

tension in data science, which is how to train accurate, generalisable models without exposing
sensitive or proprietary data. This challenge is particularly acute in domains such as healthcare
and finance, where strict legal frameworks restrict how data can move across institutions or
jurisdictions. Although these sectors rely heavily on data-driven insights for decision-making,
concerns about confidentiality and compliance often prevent them from fully exploiting their

data resources.

In finance, the case for adopting FL is compelling. Banks, investment firms, insurance
companies, and stock exchanges generate enormous volumes of trading records, transaction
histories, and market signals. These datasets contain valuable predictive patterns, but they are
rarely shared due to competitive sensitivities and regulatory oversight. As a result, conventional
ML approaches that rely on centralised aggregation cannot be applied effectively. FL helps
overcome this barrier by enabling institutions to train models collaboratively without moving
raw data, offering new opportunities for fraud detection, cross-institutional forecasting, and

algorithmic trading while preserving compliance and confidentiality.

However, even with FL, most existing approaches in finance still treat each institution’s
data in isolation, limiting the scope of what can be learned. Standard federated models tend to
capture only local patterns, missing the broader market relationships that emerge when signals
from multiple stocks or institutions are considered together. This leads to a precise research
problem that how can federated models move beyond isolated, stock-specific learning to capture
cross-stock dependencies that improve predictive performance. This motivates the development
of Cross-Stock Trend Integration (CSTI). The idea is to integrate trends across different stocks
during the federated training process, so that the global model can learn shared structures in
financial time series while still respecting institutional privacy. CSTI goes beyond standard
FL by allowing predictive models to exploit correlations across assets and markets, which
conventional federated approaches overlook. In the end, CSTI provides two novel insights. First,
privacy-preserving collaboration can uncover richer financial signals than any institution can
achieve alone. Second, incorporating cross-stock information enhances both the accuracy and
robustness of forecasting models. This contribution demonstrates that FL in finance need not be
limited to protecting data silos but can actively generate new knowledge through cross-stock

integration.

4



1.2. Overview and Contributions

1.2 Overview and Contributions

This thesis presents novel methods to adaptive aggregation, gradient protection, and application

of FL in real-world settings. The key contributions of this thesis are as follows:

1.2.1 Optimising Model Aggregation: EWWA-FL

The success of FL relies on an effective model aggregation strategy that can efficiently combine
local model updates from multiple clients into a robust global model. Traditional FL aggregation
methods, such as FedAvg, treat all model parameters uniformly, applying a single proportion
across all local updates without considering the heterogeneity of client data. However, real-world
FL applications often involve non-IID datasets, where clients train on distinct data distributions.
Such heterogeneity causes significant weight divergence, leading to slow convergence, reduced
generalisation, and unstable global model performance. To address these limitations, we
introduce EWWA-FL in Chapter 3, a novel fine-grained aggregation technique that assigns
individual proportions to each model parameter based on its significance in global learning.
Unlike FedAvg, FedOpt, and FedCAMS, which aggregate entire models without distinction,
EWWA-FL dynamically evaluates each parameter’s contribution and adjusts its aggregation
weight accordingly. This adaptive element-wise approach ensures that critical parameters
receive higher aggregation priority, accelerating convergence and enhancing model performance.
Our experimental results demonstrate that EWWA-FL offers substantial improvements in both

IID and non-IID settings, outperforming conventional aggregation methods in terms of:

* Faster convergence: By optimising aggregation weights at a fine-grained level, EWWA-FL

reduces the number of global communication rounds required for model convergence.

* Higher accuracy: The adaptive nature of EWWA-FL ensures that the global model

captures diverse data patterns, improving overall predictive performance.

* Robustness to data heterogeneity: By assigning appropriate weights to local updates,
EWWA-FL effectively mitigates weight divergence, making it well-suited for FL applica-
tions with highly non-IID data distributions.

These advantages make EWWA-FL a practical and scalable solution for real-world FL deploy-
ments, particularly in healthcare, finance, and edge computing, where data heterogeneity is a

major challenge. Below is the publication for this chapter:



1. Introduction

* Hu, Y, Ren, H., Hu, C.,, Deng, J., & Xie, X. (2023, December). An Element-Wise Weights
Aggregation Method for Federated Learning. In 2023 IEEE International Conference on
Data Mining Workshops ICDMW) (pp. 188-196). IEEE.

1.2.2 Gradient Protection: AdaDefence for Gradient Leakage Defence

While FL is designed to protect user privacy by keeping data local, recent research has revealed
that shared model updates (gradients) can still leak sensitive information about the underlying
training data. Gradient leakage attacks, such as DLG, iDLG, GRNN, GGL, and IG, allow
adversaries to reconstruct high-resolution training images and recover class labels directly from
gradient updates. This vulnerability poses a critical threat to privacy-sensitive FL applications,
such as medical diagnostics, facial recognition, and financial modelling. Existing privacy-
preserving techniques, such as DP and HE, attempt to mitigate gradient leakage but suffer from

severe trade-offs:

* DP-based approaches introduce random noise to gradients, but excessive noise can

degrade model accuracy, leading to significant performance loss.

* HE-based encryption methods offer strong security guarantees but incur high compu-
tational overhead, making them impractical for large-scale FL systems with limited

computing resources.

To overcome these challenges, we propose AdaDefence in Chapter 4, a novel gradients stand-in
mechanism that replaces actual gradients with modified versions before they are shared with the
global server. AdaDefence achieves strong privacy protection without introducing excessive

computational costs by:

* Obfuscating private training data: The transformation of gradients prevents attackers from

reconstructing sensitive information while preserving model utility.

* Maintaining high model accuracy: Unlike DP, which injects noise, AdaDefence ensures

that the aggregated gradients retain meaningful learning signals.

* Minimal computational overhead: Compared to HE-based solutions, AdaDefence operates

efficiently without requiring complex encryption schemes.

Our empirical evaluation demonstrates that AdaDefence successfully defends against DLG,

GRNN and IG attacks while achieving better accuracy and lower computational cost than

6



1.2. Overview and Contributions

traditional privacy-preserving techniques. This makes it an effective and practical defence
mechanism for deploying FL in privacy-critical applications. The completed paper for this

chapter can be found:

* Yi, H., Ren, H,, Hu, C., Li, Y, Deng, J., & Xie, X. (2024). Gradients Stand-in for
Defending Deep Leakage in Federated Learning. Computer Vision. IET. Under-reviewing

1.2.3 Applying FL to Financial Modelling: CSTI

The financial sector increasingly relies on ML for tasks such as stock price prediction, risk
assessment, and fraud detection. However, financial institutions are subject to strict regulatory
constraints that prohibit the sharing of proprietary market data. This fragmentation of financial
datasets limits the predictive power of stock models, as they lack access to broader market trends
and correlations across institutions. To address this limitation, we develop a FL-based financial
modelling framework in Chapter 5, enabling multiple financial institutions to collaboratively
train predictive models while preserving data privacy. Our approach, CSTI, allows stock
prediction models to learn from multiple sources without direct data exchange, leveraging FL to

improve financial forecasting accuracy. The key benefits of CSTI include:

* Enhanced predictive accuracy: By integrating cross-stock trends, our approach captures

broader market patterns, outperforming traditional single-stock models.

* Privacy preservation: Financial data remains on local servers, ensuring compliance with

regulatory requirements such as GDPR and HIPAA.

* Scalability and adaptability: Our FL framework can be easily extended to various financial

applications, including portfolio optimisation and algorithmic trading.

Our empirical analysis demonstrates that federated cross-stock learning achieves significantly
higher accuracy than stand-alone stock models while maintaining data confidentiality. This
work highlights the potential of FL in privacy-sensitive financial applications, paving the way
for secure and collaborative ML in the financial industry. The details of the paper from this

chapter is:

* Yi, H, Ren, H., Deng, J., & Xie, X. (2025). From Local Patterns to Global Understanding:
Cross-Stock Trend Integration for Enhanced Predictive Modeling. Ready for submitting.
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1. Introduction

1.2.4 Summary of Contributions

To summarise, this thesis makes the following key contributions:

* Adaptive Aggregation: We propose EWWA-FL, an element-wise aggregation method
that improves global model convergence, robustness, and adaptability to non-IID data

distributions.

* Gradient Protection: We introduce AdaDefence, a novel privacy-preserving approach
that prevents gradient leakage while maintaining model utility, outperforming existing

defences.

* Application: We develop CSTI, a FL-based framework for stock prediction, demonstrating

how FL can be effectively applied in the financial sector.

These contributions advance the field of FL. by enhancing key topics in model aggregation,
gradient protection, and real-world application. By bridging the gap between theoretical
advancements and practical deployments, this research provides a foundation for more efficient,

secure, and scalable FL systems in the future.



Chapter 2

Background

2.1 Introduction

FL has emerged as a decentralised ML paradigm that enables multiple clients to collaboratively
train a shared model while keeping their data local. By transmitting model updates instead
of raw data, FL facilitates privacy-aware collaboration across data silos and is well-suited to
domains such as healthcare, finance, and edge computing. Real-world deployment of FL has
three major topics: a. model aggregation in heterogeneous settings, b. defending gradient
leakage attacks, and c. applicability in regulatory-constrained domains like finance. This chapter
presents the background required to understand these topics and motivates the contributions
of this thesis. Section 2.2 introduces the foundational concepts in ML and DL, highlighting
key architectures such as Convolutional Neural Network (CNN)s used in Chapter 3 & 4, Long
Short-Term Memory (LSTM)s and transformers used in Chapter 5. Section 2.3 provides an
overview of FL, its core mechanisms, and the problem of non-IID data. Section 2.4 examines
gradient leakage attacks that threaten data privacy in FL. Section 2.5 discusses existing defence
mechanisms and their limitations. Together, these sections provide a comprehensive foundation

for the research presented in subsequent chapters.

2.2 Machine Learning and Deep Learning

ML and DL are two major subfields of Al that have revolutionised data-driven decision-making
across various domains, including finance, healthcare, and autonomous systems. ML encom-

passes a broad spectrum of algorithms designed to learn patterns from data and make predictions
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without explicit programming [15, 16]. The primary objective of ML is to enable systems to
improve their predictive performance based on experience, rather than relying on hardcoded

rules.

Traditional ML techniques can be broadly categorised into three learning paradigms: su-
pervised learning, unsupervised learning, and reinforcement learning. In supervised learning,
models are trained using labelled datasets, where each input sample is associated with a cor-
responding target output. Popular algorithms in this category include Decision Tree (DT)s,
Support Vector Machine (SVM)s, K-Nearest Neighbour (KNN), and ensemble methods such as
random forests and gradient boosting. These models are widely used for tasks such as classifi-
cation and regression. Unsupervised learning, in contrast, operates on unlabelled data, aiming
to discover hidden patterns or structures without explicit supervision. Clustering algorithms
such as k-means, hierarchical clustering, and density-based spatial clustering are commonly
employed for this purpose. These techniques find applications in market segmentation, anomaly
detection, and recommendation systems. Reinforcement Learning (RL) [17] is another branch
of ML where agents learn optimal actions by interacting with an environment and receiving
feedback in the form of rewards or penalties. RL has shown success in fields such as robotics,
game playing, and financial trading. Despite their effectiveness, traditional ML approaches have
limitations, particularly when dealing with high-dimensional, unstructured data such as images,
audio, and text. These models typically require manual feature engineering, which involves
domain expertise to extract relevant features from raw data. The reliance on handcrafted features

often limits scalability and adaptability to diverse tasks.

To overcome these limitations, DL has emerged as a powerful subset of ML that leverages
Deep Neural Network (DNN)s to automatically extract hierarchical features from raw data. The
hierarchical structure of DNNs enables automatic feature extraction, eliminating the need for
manual feature engineering [18, 19]. DL models consist of multiple layers of interconnected
neurons, where each layer captures increasingly complex representations of the input data. The
adoption of DL has led to significant breakthroughs in various domains. In computer vision,
CNNs have demonstrated state-of-the-art performance in image classification [20,21], object
detection [22], and image segmentation [23]. CNNs leverage spatial hierarchies in images by
applying convolutional filters, allowing them to detect edges, textures, and complex patterns
at different levels of abstraction. In speech recognition, Recurrent Neural Network (RNN)s
and their variants, such as LSTM networks, have enabled accurate speech-to-text transcrip-

tion [24]. By capturing temporal dependencies in audio signals, these models have facilitated
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advancements in virtual assistants, automatic transcription systems, and multilingual speech
processing. Natural Language Processing (NLP) has also witnessed a transformation with the
advent of transformer-based architectures [25], such as Bidirectional Encoder Representations
from Transformers (BERT) [26] and Generative Pre-trained Transformers (GPT) [27]. Unlike
traditional sequence models, transformers utilise self-attention mechanisms to model long-range
dependencies efficiently. These models have significantly improved tasks such as machine

translation, sentiment analysis, text summarisation, and question answering.

While DL offers remarkable advantages in feature learning and performance scalability, it
also presents challenges. Training DNNs requires large-scale labelled datasets and substantial
computational resources. The training process is often computationally expensive, relying on
hardware accelerators such as GPUs and TPUs. Furthermore, DL models are susceptible to
over-fitting, where they memorise training data rather than generalising to unseen samples.
Regularisation techniques, including dropout [20], Batch Normalisation (BN), and weight
decay, are commonly employed to mitigate this issue. Another significant challenge in DL
is interpretability. Unlike traditional ML models, which offer explainability through decision
rules or feature importance scores, DNNs function as black-box models, making it difficult to
understand their internal decision-making processes. This lack of interpretability raises concerns
in critical applications such as healthcare and finance, where model decisions impact human lives
and regulatory compliance. Despite these challenges, ongoing research in DL continues to push
the boundaries of Al-driven automation. Hybrid approaches combining ML and DL are gaining
traction, leveraging the strengths of both paradigms. Techniques such as transfer learning [28]
allow pre-trained DL models to be fine-tuned for specific tasks, reducing data and computational
requirements. Additionally, advancements in FL enable privacy-preserving training of DL
models across distributed devices without exposing raw data, making it a promising solution for

real-world applications in edge computing and personalised Al.

The integration of ML and DL has facilitated transformative progress in various industries.
In finance, predictive analytics powered by DL enhances risk assessment [29], fraud detec-
tion [30], and algorithmic trading [31]. In healthcare, DL-based medical imaging systems aid
in diagnosing diseases such as cancer and diabetic retinopathy [32] with high accuracy. Au-
tonomous systems, including self-driving cars [33] and robotic control [34], benefit from DL’s
ability to process sensor data in real time. As the field of Al continues to evolve, the synergy
between ML and DL is expected to drive further innovation. With increasing accessibility to

large-scale datasets and advancements in hardware acceleration, DL will continue to play a

11



2. Background

crucial role in shaping the future of intelligent systems.

2.2.1 CNN

CNN s have become the standard architecture for image classification and related vision tasks [35,
36]. Their key strength lies in the convolutional layer, which extracts hierarchical spatial features
such as edges, textures, and shapes, enabling models to generalise effectively in complex visual
domains. Pooling layers reduce redundancy and improve robustness, while fully connected
layers and Softmax output layers complete the classification pipeline. In Chapters 3 and 4,
CNNss serve as the backbone for experiments on federated aggregation and privacy defence.
Since both EWWA-FL and AdaDefence are evaluated on image classification benchmarks,
CNNs provide the foundation on which the effects of aggregation and gradient protection can

be observed.

2.2.2 LSTM Network

LSTM networks [37] extend recurrent architectures by incorporating gating mechanisms to
retain long-term dependencies in sequential data. This makes them highly effective for tasks
such as time-series forecasting, speech recognition, and anomaly detection, where the order
of data points matters. In Chapter 5, LSTMs are employed to capture temporal dependencies
in financial time-series data. Their ability to model long-range patterns makes them a natural
choice for stock prediction tasks, and they form part of the baseline models used to evaluate the

effectiveness of cross-stock trend integration.

2.2.3 Transformer and Self-Attention Mechanism

The transformer architecture [25] revolutionised sequence modelling by replacing recurrence
with self-attention, allowing global dependencies to be captured in parallel. Multi-head atten-
tion further enhances contextual representation, while positional encodings provide temporal
ordering. Transformers have since achieved state-of-the-art performance in natural language
processing, speech, and time-series forecasting. In Chapter 5, transformers are applied to
financial time-series forecasting. Their ability to capture long-range dependencies complements
LSTM-based models and highlights how CSTI can integrate cross-stock information within

both recurrent and attention-based sequence frameworks.
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2.3 Federated Learning

FL is a distributed ML paradigm that enables multiple clients to collaboratively train a global
model while keeping their data stored locally. As shown in Figure 2.1, this decentralised
approach contrasts with traditional centralised learning, where all data is transmitted to a central
server for training. By ensuring that raw data remains on the client devices and only model
updates, such as gradients or weights, are shared, FL. enhances data privacy and security, making
it particularly suitable for applications in healthcare, finance, and mobile edge computing. The
architecture of FL aligns with privacy regulations such as the GDPR and HIPAA, which impose
strict guidelines on data sharing and user consent. The standard FL. framework consists of a
central server and multiple participating clients. Each client independently trains a local model
using its private dataset and periodically transmits model updates to the central server. The
server aggregates these updates and refines the global model, which is then sent back to the
clients for further local training. This iterative process continues until the model converges or a

predefined performance threshold is achieved.

Central Server

T

Gradients/Updates ‘ Gradients/Updates ’ Gradients/Updates

Client 1 Client 2 Client 3

Local Dataset ‘ Local Dataset Local Dataset

A ' A A

Figure 2.1: Illustration of the FL Framework. Clients perform local training on their private datasets and
share only model updates with the central server, which aggregates them to form a global model for next
round of local training.

The most widely adopted FL aggregation method is FedAvg, introduced by McMahan
et al. [4]. FedAvg updates the global model parameters by computing a weighted average
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of the local model updates received from participating clients. The weight assigned to each
client’s update is proportional to the number of local training samples, ensuring that clients with
larger datasets have a greater influence on the global model. Mathematically, the global model
parameters 6’ at training round ¢ are updated as follows:

yziﬁy (2.1)

SN '

where N is the total number of clients, n; represents the number of local training samples
for client i, and 6] denotes the model parameters trained on client i at round ¢. During each
communication round, the global model 6’ is distributed to all participating clients, who perform

local updates based on their dataset. Each client updates its local model using Stochastic

Gradient Descent (SGD) or other optimisation algorithms, which can be expressed as:
6/ = 6'—nVLi(6"), 22

where 1 is the learning rate and VL;(0") represents the gradient of the local loss function
computed on client i. The locally updated parameters 9{“ are then sent back to the server,
where FedAvg performs aggregation to obtain the new global model.

One of the fundamental challenges in FL is the presence of non-IID data across clients.
In real-world scenarios, clients often possess datasets with distinct feature distributions, label
distributions, and sample sizes. This heterogeneity can lead to weight divergence, where locally
trained models become significantly different from each other, resulting in poor generalisation
of the global model. The performance degradation caused by non-IID data can be attributed
to several factors. First, when different clients have imbalanced class distributions, the local
models learn biased representations, which can negatively affect the global model’s accuracy.
Second, variations in feature distributions across clients may cause local models to converge to
different optima, making aggregation less effective. Finally, clients with limited computational
resources may perform fewer training iterations, exacerbating the problem of inconsistent model
updates. These issues motivate the need for more fine-grained and adaptive aggregation, which
is addressed in this thesis by EWWA-FL (Chapter 3). By weighting parameters individually
rather than assigning a single scalar per client, EWWA-FL stabilises training and improves
convergence in heterogeneous settings.

Another critical challenge is privacy leakage. Although FL avoids raw data exchange,

gradients themselves have been shown to reveal sensitive information through reconstruction

attacks [10, 12, 13]. To address this, differential privacy (via noise injection) and homomorphic
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encryption have been proposed, but both have a limitation that noise often reduces accuracy,
while encryption introduces prohibitive computational costs. To bridge this gap, this thesis
proposes AdaDefence (Chapter 4), which replaces raw gradients with obfuscated “gradients
stand-in” derived from Adam’s moment estimates. This method conceals private information
while retaining training utility, offering a more practical defence in federated settings.
Communication efficiency and scalability also remain significant hurdles. Frequent ex-
changes of updates between server and clients create high bandwidth demands, especially
in mobile and edge networks. Model compression, quantisation, and sparsification reduce
overhead, but they do not fully exploit the potential of collaborative training in domain-specific
scenarios. In finance, for example, conventional FL approaches treat each institution’s data
silo independently, overlooking correlations across markets and assets. This motivates the
contribution of CSTI (Chapter 5), which integrates cross-stock signals during FL training.
By capturing dependencies across institutions without increasing communication load, CSTI
demonstrates how FL can move from generic benchmarks to real-world financial forecasting.
In summary, while FL enables privacy-preserving collaborative learning, it faces persistent
challenges: convergence under non-IID data, leakage of private information through gradients,
and communication burdens in large-scale, domain-specific applications. The three core contri-
butions of this thesis, including EWWA-FL, AdaDefence, and CSTI, are designed to tackle these

issues, advancing the overarching aim of secure and efficient FL for real-world deployment.

2.4 Gradient Leakage Attacks

FL is designed to enhance data privacy by decentralising model training, ensuring that raw data
remains on local devices. However, despite eliminating the need for direct data sharing, FL.
is not inherently immune to security risks. Model updates, particularly gradients exchanged
between clients and the central server, can inadvertently reveal private training data. Attackers
can exploit these shared gradients to reconstruct sensitive input samples, leading to privacy
violations. One of the most significant threats in this domain is gradient leakage, where
adversaries use mathematical optimisation techniques to infer the original training data from the
gradients transmitted during the FL process [10-14]. Gradient leakage occurs because gradients
encode information about the training data that generated them. During back-propagation, the
computed gradients reflect the loss function’s sensitivity with respect to the model’s parameters.
These gradients are directly influenced by the input data and its corresponding labels. If an

attacker gains access to the gradients, it becomes possible to reverse-engineer the original input
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data by solving an inverse problem that minimises the difference between the computed and
observed gradients.

DLG [10] is one of the most well-known attacks that successfully reconstructs input data
from shared gradients. In this method, an attacker initiates the reconstruction process by
generating a random noise vector as a substitute for the original data. This noise vector is
iteratively optimised using gradient descent to minimise the difference between the observed
gradients from the original training data and the gradients computed from the generated noise.

Mathematically, this optimisation process can be expressed as follows:

)= argf{({iyn IVoL(fo(x),y) — VoL(fo(x:),y)|I*, (2.3)

where X and y are the reconstructed input and label, x; and y; represent the original training
sample and label, fy(x) denotes the model’s output, and L is the loss function. The optimisation
seeks to iteratively refine X and y so that the computed gradients align closely with the original
gradients. Once this alignment is achieved, the reconstructed data is often visually and seman-
tically indistinguishable from the original training data. The success of DLG and its variants
depends on the type of data and model architecture. Image data, for instance, is particularly vul-
nerable since the structured nature of images allows efficient gradient matching. High-resolution
images can be reconstructed with striking accuracy, exposing personally identifiable information
in medical imaging or biometric applications. Text data in NLP models is also susceptible,
where token embeddings and gradient updates can be exploited to infer words and sentence
structures. Other gradient inversion techniques extend the capabilities of DLG by improving
stability and accuracy. IG [12] introduces a similarity measure based on cosine distance instead
of Euclidean distance to improve reconstruction robustness. This modification ensures that
gradients are matched based on directional similarity rather than magnitude alone, making the
attack more resilient to variations in gradient scaling. In another approach, GRNN [13] enhances
gradient leakage attacks by incorporating a generative model that learns an optimal mapping
between gradients and original inputs. This approach enables more efficient data recovery, even
when only partial gradients are available.

Gradient leakage attacks are particularly concerning in FL due to the distributed nature of
the training process. Since different clients train on distinct datasets, an adversary controlling
the central server can analyse incoming gradient updates to infer statistical properties of each
client’s private data. This type of attack is more severe when applied iteratively across multiple
training rounds, as cumulative gradient analysis can reveal more information about local

datasets. Attackers may also combine gradient leakage with model inversion attacks, where
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reconstructed gradients are fed into another neural network trained to refine and enhance the
reconstructed data. The implications of gradient leakage extend beyond individual privacy
violations. In sectors such as healthcare, finance, and legal analytics, where FL is employed
to enable collaborative learning without compromising sensitive records, data reconstruction
poses a significant ethical and legal concern. Personal health records, financial transactions,
and confidential legal documents could be inferred from gradient updates, violating regulatory
standards. The continuous evolution of gradient leakage attacks highlights the need for ongoing
research into privacy-preserving FL. mechanisms. Future advancements may include adversarial
training strategies where models are explicitly trained to be resilient against reconstruction
attacks. Combining multiple defence mechanisms, such as DP with gradient masking, may also
provide stronger protection without excessive computational costs. Although FL represents
a significant advancement in privacy-aware ML, the threat posed by gradient leakage attacks
underscores the necessity of implementing robust security protocols. By addressing these
vulnerabilities, FL can be effectively deployed in sensitive domains without compromising data

confidentiality.

2.5 Gradient Leakage Defence Mechanisms

FL has been proposed as a privacy-preserving ML paradigm; however, gradient leakage at-
tacks pose a significant threat by allowing adversaries to reconstruct private training data
from shared model updates. To mitigate these risks, various privacy-enhancing techniques
have been developed, including cryptographic methods, statistical obfuscation approaches, and
representation-space defences. The effectiveness of these defence mechanisms is often evalu-
ated through generative gradient leakage audits that test the resilience of FL systems against

adversarial reconstruction attempts.

2.5.1 Traditional Methods

Secure Multi-Party Computation (MPC) is a cryptographic protocol that enables multiple clients
to jointly compute a function over their private inputs without revealing them. In FL, MPC
allows clients to encrypt their gradients before transmitting them to the central server, ensuring

that the model aggregation process does not expose sensitive information. The aggregated
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gradient G is computed without any client directly revealing their local gradient g;:

N
G=) g (2.4)
i=1

This is achieved by leveraging additive secret sharing, where each client splits its gradient
into multiple encrypted shares and distributes them among other clients. The reconstruction
of G is performed in an encrypted domain, ensuring privacy. Despite its strong security
guarantees, MPC introduces significant computational and communication overhead due to
repeated cryptographic operations, making it less practical for large-scale FL systems with
resource-constrained devices.

DP introduces controlled noise into gradients to prevent an attacker from inferring the
presence or absence of specific data points in a training set. A mechanism M satisfies e-DP if

for any two datasets D and D’ that differ by one element:
< (2.5)

for all subsets S in the output space. In FL, DP is applied by perturbing model updates with

Gaussian noise:

§=g+.4(0,06%), 2.6)

where .4 (0, 62) is Gaussian noise with variance 6 calibrated to the privacy budget £. While
DP effectively mitigates gradient leakage, it often degrades model accuracy, particularly when
high noise levels are required to ensure privacy. Techniques such as adaptive noise scaling and
moment accounting are employed to balance privacy and model utility.

HE is a cryptographic technique that allows mathematical operations to be performed on
encrypted data without requiring decryption. This property makes HE particularly useful in
FL, where gradients can be encrypted before being transmitted to the central server. The server

aggregates encrypted gradients using the additive homomorphic property:
E(G)=E(81) +E(g2) +---+E(gn)- 2.7)

After aggregation, the decrypted result provides the same outcome as performing computations
on unencrypted data. Fully HE [38] offers the strongest security guarantees, but its computational
overhead makes it impractical for real-time FL. To mitigate this, Leveled HE [39] and Partially

HE [40] have been explored, reducing computational complexity while maintaining privacy.
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2.5.2 Advanced Defence Mechanisms

Recent studies have demonstrated that traditional privacy defences can still be vulnerable under
certain conditions. The paper [14] introduced an auditing framework that applies generative
adversarial models to reconstruct training data from shared gradients. This auditing approach
quantitatively evaluates the robustness of privacy-preserving mechanisms by simulating real-
world attacks. The study found that while DP and MPC provide strong privacy guarantees in
theory, they may still leak meaningful information when gradients contain residual structural
dependencies. As a result, the auditing process underscores the necessity of continuous eval-
uation and adaptation of privacy-preserving techniques. One of the main limitations of DP is
its trade-off between privacy and model accuracy. The paper [41] proposed a novel approach
that perturbs gradients in a manner that preserves their contribution to model updates while
obfuscating sensitive training information. This method introduces perturbations based on an
optimisation framework that aligns noise vectors with gradient directions, ensuring minimal
accuracy loss:

g=g+a-P(g), (2.8)

where P (g) represents the projection of g onto a randomly generated noise subspace, and « is
a scaling factor. By ensuring that the noise remains orthogonal to the primary gradient direction,
this method achieves privacy protection without sacrificing training performance. Soteria [42]
introduced a novel perspective on protecting FL. models by securing representation spaces
rather than solely relying on obfuscating gradients. The core idea behind Soteria is to modify
the intermediate feature representations within the neural network, ensuring that information
leakage is minimised at a deeper level. By constraining the representational capacity of neural
networks through adversarial regularisation, Soteria prevents adversaries from reconstructing
meaningful input features while preserving model performance. The defence mechanism works

by optimising a loss function that enforces representation obfuscation:
Lsoteria = Ltask + A«Lprivacya (29)

where Ly, represents the standard training loss, Lyrvacy measures the similarity between
intermediate representations of different inputs, and A is a weighting factor that balances
utility and privacy. By operating at the representation level, Soteria offers a complementary
approach to existing gradient-based defences. This method effectively prevents privacy leakage
by ensuring that even if an adversary successfully recovers model gradients, the reconstructed

representations remain uninformative.
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Gradient leakage attacks pose a significant challenge in FL, necessitating robust and efficient
privacy-preserving mechanisms. MPC and HE provide strong cryptographic protections but
suffer from high computational costs. DP offers statistical guarantees but introduces accu-
racy degradation. Advanced defence mechanisms, such as accuracy-lossless perturbation and
representation-space protection, provide new ways to mitigate privacy risks while maintaining
model utility. The emergence of generative gradient leakage auditing highlights the need for
continuous evaluation and refinement of privacy defences in FL. Future research directions will
focus on optimising the trade-offs between privacy, efficiency, and model performance, ensuring

that FL can be securely deployed in real-world applications.

2.6 Conclusion

This chapter has reviewed the foundations of FL, its roots in ML and DL, and the main
challenges that currently limit its widespread adoption. While FL enables collaborative training
without sharing raw data, several research gaps remain unresolved.

First, the effectiveness of model aggregation under non-IID data is still a major barrier.
Existing methods such as FedAvg and its adaptive variants mitigate client heterogeneity only
at the model level, which often results in slow convergence and biased updates. This gap
motivates Chapter 3, which introduces element-wise adaptive aggregation to achieve finer-
grained weighting across parameters.

Second, although decentralisation reduces direct exposure of private data, gradient leakage
attacks demonstrate that sensitive information can still be reconstructed from shared updates.
Current defences, including noise injection or encryption, trade off either accuracy or efficiency.
This motivates Chapter 4, which proposes a lightweight gradients stand-in approach that conceals
private information while preserving training utility.

Finally, most applications of FL focus on generic benchmarks and overlook sector-specific
requirements. In finance, for example, existing FL methods fail to exploit interdependencies
across stocks and institutions, limiting predictive performance. This motivates Chapter 5,
which presents a cross-stock trend integration framework to show how FL can both preserve
confidentiality and deliver novel predictive insights in a real-world setting.

In summary, the remaining chapters of this thesis build directly on the gaps highlighted
here. By advancing adaptive aggregation (Chapter 3), privacy defence (Chapter 4), and financial
applications (Chapter 5), the thesis aims to move FL closer to secure, efficient, and practical

deployment in real-world environments.
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Chapter 3

Element-Wise Weights Aggregation for

Federated Learning

In this chapter, we focus on topic 1 in FL, which is model aggregation in heterogeneous
settings. A central challenge in FL is the effective aggregation of local model weights from
disparate and potentially unbalanced participating clients. Existing methods often treat each
client indiscriminately, applying a single proportion to the entire local model. However, it is
empirically advantageous for each weight to be assigned a specific proportion. This chapter
introduces an innovative EWWA-FL aimed at optimising learning performance and accelerating
convergence speed. Unlike traditional FL approaches, EWWA-FL aggregates local weights to
the global model at the level of individual elements, thereby allowing each participating client
to make element-wise contributions to the learning process. By taking into account the unique
dataset characteristics of each client, EWWA-FL enhances the robustness of the global model
to different datasets while also achieving rapid convergence. The method is flexible enough to
employ various weighting strategies. Through comprehensive experiments, we demonstrate the
advanced capabilities of EWWA-FL, showing significant improvements in both accuracy and

convergence speed across a range of backbones and benchmarks.

3.1 Introduction

As the digital world continues to expand at an unprecedented rate, the world is inundated with a
massive amount of data, distributed across various devices, sensors, and platforms. With the

growing adoption of ML algorithms, the demand for efficient, secure, and decentralised learning
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processes has become increasingly critical. FL [1-4] has emerged as a promising solution to
address these challenges. It enables the deployment of learning algorithms on decentralised data
sources while safeguarding data privacy. FL focuses on training ML models across a multitude
of dispersed devices or clients, each holding their own local datasets, eliminating the need
for data exchange. This approach effectively addresses privacy and security concerns, as it
obviates the need to transfer potentially sensitive data to a centralised location. However, a key
challenge in FL lies in the aggregation of model weights. The process of combining model
weights from multiple, disparate clients is inherently complex due to the heterogeneous nature
of their data distributions [43—45]. In an FL network, each client utilises its local data to train
an independent model. Consequently, these local models may capture different data patterns,
posing a challenge to the creation of a well-generalised global model. Various strategies, such
as FedAvg, have been developed to mitigate these issues. Nonetheless, devising an efficient and

robust aggregation mechanism remains a significant challenge in the field of FL.

There has been a surge in recent research focused on adaptive weight aggregation. Reddi et
al. [46] proposed a method called FedOpt. They provide a theoretical analysis of the model’s
convergence on heterogeneous data for non-convex optimisation problems, as well as the
relationship between dataset heterogeneity and communication efficiency. Three specific opti-
misation methods, termed FedAdam, FedAdagrad, and FedYogi, are employed by the authors.
These methods modify the global update rule of FedAvg from one-step SGD to one-step adap-
tive gradient optimisation. Conversely, the work presented in [47] aims to address the challenge
of high communication cost in FL. The authors propose a novel communication-efficient adap-
tive FL. method called FedCAMS and also provide a theoretical analysis to guarantee model
convergence. They first improve upon FedAdam by incorporating AMSGrad [48] with max
stabilisation. Both FedOpt and FedCAMS aggregate local updates and obtain an averaged
gradient, upon which global model aggregation is conducted. In other words, both methods
treat each client equally when generating the global updates. However, the underlying philoso-
phy of adaptive optimisation generally favours treating each individual weight independently.
While FedOpt and FedCAMS both use adaptive techniques for global model aggregation, their
averaging processes do not account for the varied contributions of local models trained on
different datasets. This is noteworthy because different datasets result in different levels of

convergence [7,49].

In the work of Federated Boosting (FedBoosting) [49], the authors proposed an adaptive
gradient aggregation method based on the boosting algorithm. They discovered that the gen-
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Local Models Aggregation Proportions Global Model

(a) Existing Methods - Model-wise Homogeneous Aggregation

Local Models Aggregation Proportion Matrices Global Model

(b) Ours - Element-wise Adaptive Aggregation

Figure 3.1: Illustration for our proposed EWWA-FL. (a) shows traditional aggregation, where each
client contributes a single scalar weight to the global model, treating all parameters equally. (b) presents
EWWA-FL’s aggregation proportion matrix, which assigns distinct weights to individual parameters,
enabling element-wise integration of local models. This fine-grained weighting better captures client-
specific data characteristics, improving robustness to heterogeneity and enhancing convergence and
generalization on non-IID data.

eralisation ability of the global model on non-IID data is unsatisfactory due to the presence
of weight divergence, particularly when employing the FedAvg strategy. Consequently, each
client participating in the training receives a unique aggregation percentage. Similarly, Wu et
al. [7] found that in FL, the path that minimises the local objective does not necessarily align
with the path of global minimisation. This implies that each client’s contribution to global
aggregation will differ. Based on this observation, Wu et al. proposed Federated Adaptive
Weighting (FedAdp), a method that measures the contributions of participating clients based
on the correlation between local and global gradients. All of the above studies have one thing
in common that they treat all model parameters equally when aggregating the global model.
Specifically, both FedOpt and FedCAMS perform a simple averaging of local model weights
prior to subsequent computations. Although FedBoosting and FedAdp assign different propor-

tions to each local model, they still allocate the same proportion to each parameter within these
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models. This approach may not be the most intuitive or efficient way to handle local models.

Key to the FL process is the merging of model weights from different clients, which is
inherently intricate and poses several challenges. The main reason for this complexity is the
heterogeneity of the data distribution of the participating entities, cause each client’s local
dataset has different statistical properties. For example, one client’s dataset may contain
one or more specific classes, while another client does not. This heterogeneity can result in
non-IID data, which poses a significant challenge in aggregating local updates in a way that is
representative and conducive to global model performance and generalisation. To mitigate the
effects of different data distributions and to ensure robust model aggregation, many sophisticated
algorithms and techniques are proposed [1,7,46,49]. Building a balanced and harmonious model
requires not only rigorous mathematical or algorithmic knowledge, but also a comprehensive
understanding of the differences and nuances inherent in the data landscape of different clients.
Based on the findings from Wu et al. [7], we would like to expand the idea to a more grained
level that the elements in each local model have their personalised path to minimise the local
objective. It is conceivable that each client should have a different weight, and likewise, each
parameter within the local model should also have a unique weight. In the context of convex
optimisation for learning, the goal is to update the model’s weights to achieve convergence. A
model comprises various parameters, the values of which fluctuate depending on the feature
space of the local dataset. Within the framework of FL, individual local models, trained on
distinct datasets, display unique patterns and directions of convergence. Hence, the same
parameter across these local models may have vastly different values and may not align closely
with each other. Additionally, each parameter may follow a unique trend and orientation toward
convergence. As a result, using a uniform proportion to aggregate all parameters into a global
model may not be the most suitable approach. Based on this understanding, we introduce
EWWA-FL, which assigns a different aggregation proportion to each parameter in the local
model. As shown in Figure 3.1, we proposed an aggregation proportion matrix generated by
Adam algorithm. Each entry in this matrix assigns a distinct weight to each parameter in the
local models, enabling the global model to integrate information at an element-wise level. This
finer granularity allows the aggregation process to adapt to client-specific data characteristics,
effectively mitigating the adverse effects of client heterogeneity. By capturing parameter-level
variations rather than collapsing them into a single proportion, EWWA-FL enhances both
convergence stability and generalization across non-IID data. Experimental results show that

our method outperforms FedAvg, FedCAMS, and FedOpt across various neural networks,
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benchmark datasets, and experimental settings. The contributions of this chapter are fourfold:

* We introduce a new perspective on element-wise weight combination for FL. This
approach assigns a specific proportion to each parameter in the local model, aiming
to improve aggregation. Experimental results confirm the novelty of our proposed
EWWA-FL.

* A comprehensive evaluation is conducted. We test the model’s generalisation ability
using various neural networks on different benchmark datasets, employing both IID and

non-IID strategies.

» The adaptive element-wise aggregation paradigm demonstrates faster convergence com-

pared to other recent works.

* We disclose the implementation details of the proposed algorithm to ensure its repro-

ducibility.

The chapter is organised as follows. Section 3.2 reviews previous studies related to adaptive
weight aggregation in FL. Preliminaries on vanilla FL. and the Adam optimisation algorithm are
then discussed. Our proposed approach is elaborated upon in Section 3.3. Section 3.4 provides
insights into the experiments, offers in-depth discussions, and suggests potential mitigation

methods. Finally, concluding remarks are presented in Section 3.5.

3.2 Related Work

A fundamental challenge in FL is the efficient aggregation of model weights from diverse and
potentially non-IID data sources to produce a globally consistent model. Adaptive weight aggre-
gation addresses this challenge by assigning different proportions to local model weights based
on their quality or relevance, as opposed to treating them equally. This approach recognises the
inherent heterogeneity present in real-world FL environments. It optimises the performance of
the global model by leveraging the more informative weights from local models and potentially
mitigates the negative impact of less reliable participants.

In the work [46], the authors provide a comprehensive discussion on adaptive weight
aggregation for FL and propose a flexible framework called FedOpt. This framework is capable
of incorporating multiple optimisation algorithms. The authors specialise FedOpt into FedAdam,

FedAdagrad, and FedYogi by employing three example optimisation algorithms: Adam [50],
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Adagrad [51], and YOGI [52]. This approach closely parallels the FedAvg process, diverging
only in the final stage of weight aggregation. After obtaining the averaged local gradients,
denoted as g, the first-order momentum matrices m are computed for FedAdam, Fed Adagrad,
and FedYogi, as detailed in (3.1). However, the computation of the second-order variance
matrices v varies depending on the algorithm. Specifically, FedAdam employs (3.2), while
FedAdagrad and FedYogi utilise (3.3) and (3.4), respectively, to derive their second-order

matrices.

my = Bimy—1+ (1 —B1)&- 3.1
vy = Bovro1 + (1 - Bo)é; (3.2)
my=m,_1+§; (3.3)
vr=Bave1+ (1= Ba)- &7 - sign(ve1 — &7) (3.4)

where, r is the training round, f8; and f3, are two momentum parameters, sign() is the symbolic

functions. In the end, all those three methods employ Eq.3.5 for weights aggregation.

my
O, = Op_ - 3.5
L v+ € (3-5)
where, 1), is the adaptive learning rate, calculated by:
1 _ r
no=n ¥ B (3.6)

1-Bf

where 7 denotes the initial learning rate, while B and 3} represent the r-th powers of the
parameters ; and f3,, respectively. The authors provide a theoretical analysis to demonstrate
the superiority of the proposed FedOpt in comparison to other methods. The primary distinction
between FedOpt and our proposed method, EWWA-FL, lies in the location of the optimisation
algorithm. Specifically, FedOpt employs the optimisation algorithm after averaging the local
models, whereas EWWA-FL performs the optimisation after each local training. As a result,
FedOpt treats each client equally and assigns the same aggregation proportion to each local
model through averaging. In contrast, our method treats each parameter in every local model
differently. Building upon FedOpt, Wang et al. [47] introduced FedCAMS with the objective of
reducing communication costs. The optimisation algorithm in FedCAMS occupies the same
position as in FedOpt, thereby ensuring that all local weights are aggregated equally.

Unlike FedOpt and FedCAMS, FedBoosting [49] and FedAdp [7] assign different propor-

tions to each local model to perform adaptive weight aggregation. FedBoosting computes the
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aggregation proportion based on the results of local training 7;' and cross-validation Vi The
authors first sum all the validation results for a local model across all other local model validation
datasets. Then, they calculate the weight of this sum of validation results. Finally, a Softmax
function is applied to derive the final proportion for each local model. Equations.3.7, 3.8, and

3.9 provide the local weight aggregation proportion p'. for the i-th local model in training round

r:
. NN
pgl) = softmax(softmax(Tr(l)) : Z Vr(”)) (3.7)
J#i
(o, exp(1")
softmax(T") = w0 (3.8)
Yo exp(T")
Vr(Ll) Vr(172> Vr(l.])
- Vr(271> Vr(zvz) . Vr(z.])
yen— | (3.9)
Vr(i’l) Vr(iﬂz) e Vr<l~.])

On the other hand, FedAdp focuses on the angle of convergence between the updated local
weight and the global weight. In particular, they quantify the contribution of each client in each

round of global observations according to the angle 6':

. G. gl
ol = arccos(%) (3.10)
G- 11g1]
where G is the global gradient, < - > is the inner product operation and || - || denotes the L2

normalisation. To suppress instability caused by instantaneous angular randomness, the angle

6! is then averaged over previous training rounds 7:

50 _ 6" it r=1
' =190 4190 it r>

r Jr—
The authors then designed a non-linear mapping function that quantifies each client’s contri-
bution based on angular information. Inspired by the Sigmoid function, they use a variant of
Gompertz function [53]:

1
exp(exp(a(1—9)))

where « is a hyper-parameter. The final proportions for each local model are calculated by

F(0)=a(l-

) 3.11)

giving each client’s contribution value into the Softmax function.
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In comparison to FedOpt and FedCAMS, although FedBoosting and FedAdp provide
different aggregation proportions for local clients, their aggregation proportions are still at the
model level. In contrast, our proposed EWWA-FL makes progress in this regard by providing
a more fine-grained, element-wise aggregation level. This feature enhances the adaptability
and convergence of the global model, especially considering that the local models come from

different datasets.

3.3 Methodology

In this section, we first present a preliminary discussion on FedAvg, as it is the most commonly
used method in FL applications. Subsequently, we briefly explain the Adam optimisation
algorithm, highlighting that Adam provides an adaptive learning rate for each parameter, in
contrast to the SGD algorithm. Finally, we introduce the EWWA-FL algorithm, which enables

element-wise global weight aggregation in FL.

3.3.1 FedAvg

It is the most basic method behind all the recent proposed FL methods. Assuming we have
many clients % and their local datasets 2. The task is formulated as .# with weights @. So the

local gradient g is:

g = Wleng(y(xU%w),y(ﬂ);w et (3.12)
i J

Where ||d|| denotes the number of samples, x and y are the samples and their relevant labels in

the i-th local dataset d;. The server gathers all the local gradients and conduct the averaging

process to generate the next round of global model w,. We assume that ||d;|| = ||dk||; Vd;,d, € 2.
1 ¢

O = 01— ) 8 (3.13)
i=1

The FedAvg algorithm [1] aims to create a unified model by averaging gradients from
various local clients. While this method is effective for centralizing distributed learning, it
is not without shortcomings. Specifically, inherent differences in data distributions among
clients lead to diverse convergence directions for local model weights. This diversity arises
from the incoherent feature spaces of the data, posing challenges for FedAvg. When local

datasets differ significantly in their data distributions, this can induce a considerable bias in
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local model weights. Consequently, the simplistic averaging mechanism employed by FedAvg
may not yield optimal results, particularly in the presence of significant data biases or extreme
outliers. recognising these limitations, we have started exploring more nuanced aggregation
strategies, such as weighted averages or other adaptive mechanisms. These approaches gauge
the contribution of each local model based on factors like data distribution or its relevance to
the overall learning objective [54-56]. Employing these refined techniques produces a global
model that is both resilient and accurate, skilfully navigating the complexities of differing data

distributions and overcoming some limitations inherent to traditional FedAvg methods.

3.3.2 Element-Wise Aggregation for FL.

Prior to detail our proposed method, we would like to briefly introduce the Adam algorithm [50]
firstly. It is a SGD optimisation method based on the momentum idea. Before each iteration, the
first-order and second-order moments of the gradient are computed and the sliding average is
computed to update the current parameters. This idea combines the ability of the Adagrad [51]
algorithm to handle sparse data with the properties of the RMSProp [57] algorithm to deal with
non-smooth data. Finally, it achieves very good test performance on both traditional convex
optimisation problems and DL optimisation problems. More details of Adam is shown in

Algorithm 1.

Algorithm 1: Adam
Require: initial learning rate o
Require: exponential decay rates f31, 3 € [0, 1]
Require: maximum iteration number /
1: initial weights @y
initial 1¥-order moment vector mg < 0
initial 2"“-order moment vector vy < 0
for each iteration i = 1,2,3, ...,/ do
8i+ Vo Z (% (wi—1)) w» getgradients at iteration i
m; < B1-mi—1+(1—P1)-g » update biased 1*'-order moment estimate
Vi< Br-viii+(1—PB2)-(gi®gi) » update biased 2"“-order moment estimate
My Ibe » compute biased-corrected 1*'-order moment estimate
Vi
1-B;
W — W1 — ﬁ -m;  » update weights

D R A A o

Vi » compute biased-corrected 2"-order moment estimate

_
=4

: end for
: return @y

[ —
N =

29



3. Element-Wise Weights Aggregation for Federated Learning

Local Gradients

Local Models Local Gradients Global Model

ICIients

Softmax

Local Contribution I Server

Figure 3.2: Diagram of EWWA-FL. The left part is the client that performs the local training. The right
side is the server calculating the local contributions and aggregating a new global model based on the
local contributions and gradients. All calculations on the server end are done on an element-by-element
basis.

All of the above works [1,7,46,47,49] either average the local models or assign dynamic
proportions to the entire local model for global model aggregation. The learning process for
DL model can be viewed as a convex optimisation problem where the weights in the model
are trained to reach a minimum point. The basic components of the model are a number of
parameters whose values can vary greatly with the different feature spaces of different local
datasets. In the FL scenario, local models trained on different local datasets obtain different
degrees and directions of convergence. In these local models, the values of the same parameters
may be completely different or even not close to each other, leading to convergence heterogeneity
in the local models. Therefore, giving one proportion for all the parameters in the local model is
not the best way to aggregate the global model. From another perspective, in contrast to SGD,
the adaptive learning methods calculate the learning rate from the point of view of the elements.
That is to say, in common model training scenarios, Adam provides an element-wise adaptive
learning rate. We would like to follow Adam’s idea and introduce element-level adaptive
aggregation to FL. As shown in Figure 3.2, the left part is the client that performs the local
training. The right side is the server, which calculates the local contributions and aggregates
a new global model based on the local contributions and gradients. All computations on the
server end are performed on an element-by-element basis. Specifically, Algorithm 2 is the
pseudo-code of our proposed EWWA-FL. In the first round of global training, the global weights
wy, first-order moment vectors mg and second-order moment vectors vy are initialised. Then,
the server end assigns weights to each local model for local training. Once the local training is

complete, The server collects the gradients of all local models to update the biased first-order
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moments and second-order moments m, and v, and compute the unbiased estimates 7z, and
Vr. Then obtain the contribution b, of the local model to the new global model. Finally, the
aggregation proportion for each local model is computed using Softmax. All the computations
related to the first-order moment, second-order moment, local contribution and final aggregation
proportion are element-wise, which means each parameter in each local model will receive a
specific aggregation proportion in each round, rather than one proportion for all parameters in

the local model.

Algorithm 2: EWWA-FL
Require: initial local learning rate o
Require: exponential decay rates f31, 3, € [0, 1]
Require: global training round R
1: initial weights @y
2: initial 1*"-order moment vector mg < 0
3: initial 2"?-order moment vector vo < 0
4: for eachround r=1,2,...,Rdo

5 for each client ¢ € C do
6 g9« Vo2l (F(w1))
7: m  Bromy_y+(1—-B1)-g"
8 W Byv 4+ (1= B)- (8 @8 )
9 ) m
r 1;)131'
10: Pl s
11: ) a5
W) te

12:  end for “

. (c) exp(by”) .
132 ppl T o) ;VeeC
4 G YC p. gl
15: end for

3.4 Experiments

In this section, we first describe the settings of all experiments. Then, we introduce the backbone
neural networks and the datasets for benchmark evaluation. After that, we present multiple sets
of experiments to access the performance of our proposed EWWA-FL against other state-of-the-

art methods.
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3.4.1 Settings, Backbones and Datasets

We utilised the PyTorch framework [58] to implement all neural network models. For anyone
interested in replicating our results, the source code is open to the public and can be accessed
here!. For our proposed EWWA-FL method, the global aggregation learning rate for Adam,
Adagrad, and Yogi was set at 1.0 based on the FedOpt reference [46]. We chose the two momen-
tum parameters of 0.9 and 0.999. Local training was conducted using the SGD optimisation
algorithm, accompanied by a consistent learning rate of 0.01 and a momentum of 0.9. The
local batch size was set at 64. The ILSVRC2012 dataset was given a training round number of
100, while the other datasets were subjected to 500 rounds. The code we used to reproduce the
FedOpt and FedCAMS results was taken from FedOpt’s official GitHub repository?.

The neural networks of choice include LeNet [59], ResNet-18, ResNet-20, ResNet-32, and
ResNet-34 [21]. LeNet is comprised of three convolutional layers with each succeeded by a
Sigmoid activation function. The output layer is a fully-connected layer. Its input dimension
stands at 32 %32 3. On the other hand, ResNet-18 and ResNet-34 are derivatives from PyTorch’s
official offerings, having an input dimension of 224 224 % 3. As for ResNet-20 and ResNet-323,
the developers are tailored specifically for the CIFAR-10 and CIFAR-100 datasets [60]. The
input size for them is 32 %32 % 3.

Specifically, we employed the MNIST dataset [61] for LeNet. The CIFAR-10 and CIFAR-
100 datasets underwent experimentation using ResNet-18, ResNet-20, ResNet-32, and ResNet-34.
It is worth noting that for ResNet-18 and ResNet-34, the sample dimensions were upsampling to
224 %224 %3. The ILSVRC2012 dataset [62] was exclusively tested using ResNet-18 and ResNet-
34. The datasets were partitioned in a 9 : 1 ratio for training and testing. Subsequently, the
training data is distributed to three local clients, following either an IID or non-IID distribution.
The test samples are retained on the server end to assess the performance of the current round of

the global model.

3.4.2 Accuracy on IID data

Table 3.1 presents a comprehensive comparison of top-1 classification accuracies for various
FL methods, employing different backbone neural networks, and tested on multiple benchmark

datasets where clients are assumed to have an IID distribution. The table employs colour-coding

'https://github.com/Rand2AI/EWWA-FL
2https://github.com/yujiaw98/FedCAMS
3h‘c‘cps ://github.com/akamaster/pytorch_resnet_cifarlo
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Table 3.1: Top-1 classification accuracy (%) across different methods, backbone neural networks and
benchmark datasets with IID distribution on local clients. “C-10", “C-100" and “IC-12” stand for
CIFAR-10, CIFAR-100 and ILSVRC2012, respectively. FedAMS is derived from FedCAMS and has no
efficient communication settings. The red ones are the highest accuracy and the blue ones are the next

highest. Crossed symbols indicate experimental failure, i.e. no global model converged in five trials.

Model LeNet | ResNet-20 | ResNet-32 ResNet-18 ResNet-34
(32%32)| (32%32) (32%32) (224%224) (224%224)
Dataset MNIST|C-10 C-100/C-10 C-100{C-10 C-100IC-12|C-10 C-1001C-12
FedAvg 98.14 191.20 58.58(91.37 61.9189.50 68.59 65.50|89.27 68.30 67.91
FedAMS 98.77 |186.57 54.58(87.21 54.23|91.59 66.07 x |[91.91 6541 x
FedCAMS X [76.77 41.65|84.7 41.77|191.35 66.62 x [91.44 66.41 x
Adam x [73.5922.31(74.84 x |78.07 x x 18171 x X
FedOpt Adagrad|] x [64.63 x |67.36 X X X X X X X
YOGI X 16593 x [71.90 x |73.88 x x [71.8 x X
Adam | 98.00 |89.73 64.14(90.17 65.63(90.77 70.98 65.64|91.23 70.15 68.23
Ours Adagrad| 97.99 [89.74 64.16|90.17 65.84(91.17 70.34 65.64|91.13 69.77 68.33
YOGI | 98.00 [89.43 64.10(90.10 65.38|90.88 70.78 65.54|91.13 70.34 68.27

to highlight significant results; values highlighted in red indicate the highest performance for

each dataset, while those in blue signify the second highest performance.

Performance on Large-Class Datasets: One of the most noteworthy observations is that
our proposed EWWA-FL algorithm exhibits exceptional performance on datasets that have
a large number of classes. Specifically, it outshines the competition on the CIFAR-100 and
ILSVRC2012 datasets, both of which have a large number of classes, 100 and 1000 respectively.
For instance, when employing the ResNet-20 architecture on the CIFAR-100 dataset, our
EWWA-FL model, when optimised using the Adagrad optimiser, achieved an accuracy of
64.16%. This is considerably better than the next best performing method, FedAvg, which
achieved an accuracy of 58.58%. The 9.53% margin reflects how element-wise weighting is
able to suppress noisy parameter updates from clients with skewed class distributions, thereby
reducing variance in class-specific parameters and producing a more stable global model.
Similarly, when using ResNet-32 as the backbone architecture on CIFAR-100, EWWA-FL
notched an accuracy of 65.84%, surpassing FedAvg’s 61.91% by a margin of 6.35%. Although
the performance gain is smaller than that observed with ResNet-20, the results still highlight
that per-parameter adaptation consistently outperforms uniform averaging, especially in non-I1ID
settings where client updates diverge. On the larger-scale ILSVRC2012 dataset, EWWA-FL

continues to show an advantage. With the ResNet-18 architecture it reached an accuracy
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of 65.64%, and with ResNet-34 it achieved 68.33%. Both are the highest among the tested
methods for their respective architectures. Here the gains are more modest, which can be
attributed to the broader class coverage in ILSVRC2012 that reduces the severity of update
divergence. Nevertheless, the consistent improvement demonstrates that EWWA-FL'’s finer-
grained aggregation is beneficial across scales. In contrast, methods such as FedOpt and FedAvg
rely on model-wise or uniform weighting, which amplifies the effect of divergent updates when
data are non-IID. This explains their unstable convergence patterns compared to EWWA-FL,
which adaptively balances contributions at the parameter level. In the end, in large-class and
large-scale datasets such as ILSVRC2012, client updates tend to diverge significantly due to
highly imbalanced and complex distributions. Model-wise methods like FedAvg cannot resolve
these discrepancies, whereas EWWA-FL’s parameter-level adaptation selectively emphasises

stable and representative parameters across clients, leading to a more robust global model.

Competitive Results on Smaller-Class Datasets: Although EWWA-FL does not achieve the
absolute highest accuracy on datasets like MNIST and CIFAR-10, the results show that the
algorithm is highly competitive. For the MNIST dataset, when using the LeNet architecture,
the highest accuracy was achieved by FedAMS with 98.77%. However, EWWA-FL followed
closely with an accuracy of 98.00%, a difference of only 0.79%. This small gap can be
explained by the relatively homogeneous and simple nature of MNIST: when client updates are
already well aligned due to low data complexity, the benefit of element-wise weighting is less
pronounced. On the CIFAR-10 dataset, the performance gaps are also narrow. For instance,
the differences in accuracy rates when comparing EWWA-FL to the best-performing methods
are 1.63%, 1.33%, 0.46%, and 0.75% for architectures ResNet-20, ResNet-32, ResNet-18, and
ResNet-34, respectively. These modest gaps highlight that in lower-class, balanced datasets such
as CIFAR-10, most aggregation methods perform relatively well since update divergence is
limited. Even so, EWWA-FL consistently stays within a very small margin of the best results,
which demonstrates that its per-parameter weighting strategy does not introduce instability and
remains effective across architectures. Overall, the results on MNIST and CIFAR-10 confirm
that EWWA-FL remains robust and competitive in simpler or more balanced settings, while
its advantages become more substantial on challenging datasets with high class diversity or
stronger non-IID effects (as seen on CIFAR-100 and ILSVRC2012).

In conclusion, our proposed EWWA-FL method exhibits convincing performance, especially
in challenging scenarios involving large classes of datasets. Although it is not necessarily the

absolute best in all cases, it maintains a competitive edge in various benchmarks.
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Compared with FedOpt, that is also capable of employing various global aggregation
optimisation algorithms, our proposed EWWA-FL significantly outperforms in terms of stability
and convergence. In our experiments, the average standard variance for EWWA-FL was
remarkably low, at only 0.1094%. Additionally, the minimum and maximum variances were
confined to a tight range, specifically between 0.0047% and 0.2673%, respectively. This
indicates that EWWA-FL produces highly consistent performance across scenarios. The stability
of this algorithm stems from its element-wise weighting. By adjusting contributions at the
parameter level, it effectively downweights noisy or divergent updates from clients with skewed
data. This prevents these updates from disproportionately influencing the global model. In
contrast, FedOpt exhibited much higher variability. Its average standard variance was 3.5200%,
more than thirty times higher than that of EWWA-FL, with minimum and maximum variances
of 2.0950% and 4.9550%, respectively. This instability arises because FedOpt applies uniform
or model-wise adjustments that amplify noisy updates under non-IID conditions. Without
fine-grained control, local divergences accumulate and cause fluctuations in global performance.
These findings demonstrate that EWWA-FL’s parameter-level adaptation not only improves
accuracy but also ensures smoother and more reliable convergence, particularly in heterogeneous
federated environments. It is worth noting that FedOpt encountered significant issues during
our testing phase. Despite conducting at least five separate attempts, none of the FedOpt
trials converged as expected. This suggests that FedOpt may have fundamental limitations
when it comes to achieving reliable convergence. We trialled code from the official FedCAMS
GitHub repository as well as our own deployed code. Similarly, FedAMS and FedCAMS
demonstrated a lack of robustness in our experiments. Specifically, FedAMS failed to converge
on the ILSVRC2012 dataset, while FedCAMS failed on both the MNIST and ILSVRC2012
datasets. These failures further underscore the superiority of EWWA-FL in achieving stable and

consistent results across various benchmark datasets.

3.4.3 Accuracy on non-IID data

The circumstance on non-IID data exhibits distinct challenges compared to those on 1ID data.
In my experiments, non-IID partitions were generated by allocating disjoint sets of classes
to different clients. As the results presented in Table 3.2, our proposed EWWA-FL model
consistently outperformed other methods across various benchmarks, including MNIST and
CIFAR-10 datasets. For these experiments, We employed Adam as the global optimisation
algorithm for both FedOpt and EWWA-FL for a fair comparison. Focusing on the MNIST
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Table 3.2: Percentage (%) of top-1 classification accuracy across methods, backbone neural networks,
and benchmark datasets in non-IID conditions on local clients. The values highlighted in red demonstrate
the highest performance. The global aggregation optimization algorithm for FedOpt and EWWA-FL is

Adam.

Model LeNet | ResNet-20 | ResNet-32 ResNet-18 ResNet-34
(32%32)| (32%32) (32%32) (224%224) (224%224)
Dataset |MNIST|C-10 C-100|C-10 C-100|C-10 C-100 IC-12|C-10 C-100 IC-12
FedAvg | 96.30 |72.57 55.49(75.76 57.11|82.55 66.26 50.68|82.64 65.02 46.13
FedAMS | 96.78 |54.78 37.3354.46 39.71|55.71 33.71 29.26|44.13 32.12 24.09
FedCAMS| x |4776 x |46.47 26.87|40.03 25.57 x [41.27 2427 X
FedOpt x 161.16 x |46.75 X X X X X X X
Ours 96.88 |76.04 56.07 [78.50 57.56|83.86 66.74 51.67|84.36 65.97 52.50

dataset, EWWA-FL achieved an accuracy of 96.88%. This figure is marginally but importantly
higher by 0.1033% when compared to the 96.78% reported for FedAMS. Although the margin
is small, it reflects the relative simplicity and homogeneity of MNIST, where most aggregation
methods perform well. Even so, the fact that EWWA-FL still edges ahead demonstrates that
per-parameter weighting can fine-tune updates in a way that avoids the minor biases introduced
by non-IID splits. On the CIFAR-10 dataset, when using ResNet-20, EWWA-FL significantly
outperformed its closest competitor, FedAvg, by achieving an accuracy of 76.04%. This was
a notable 4.7816% improvement over FedAvg’s 72.57%. The larger gain here stems from the
greater heterogeneity in CIFAR-10 compared to MNIST, that class imbalance and diverse feature
distributions across clients cause uniform averaging in FedAvg to amplify divergent updates.
By contrast, EWWA-FL’s element-wise aggregation down-weights inconsistent parameters
and stabilises convergence, yielding higher overall accuracy. The performance gains extended
to more challenging datasets as well. For example, on the ILSVRC2012 dataset, EWWA-FL
reached an accuracy of 52.50%, which was 13.8088% higher than the 46.13% managed by
FedAvg. This substantial improvement highlights the scalability of EWWA-FL. Together, these
results suggest that EWWA-FL is not only competitive on simpler datasets but also provides
clear advantages in more complex and heterogeneous environments, where its fine-grained
aggregation mechanism mitigates divergence more effectively than model-wise approaches.
In the course of our experimental evaluation, it became evident that certain algorithms like
FedAMS, FedCAMS, and FedOpt encountered significant difficulties in reaching convergence.
This was consistent with their performance on IID data. Specifically, FedAMS and FedCAMS

yielded unsatisfactory results in numerous tests, such as achieving only 37.33% accuracy using
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ResNet-20 on the CIFAR-100 dataset and 40.03% accuracy using ResNet-18 on the CIFAR-
10 dataset. Moreover, FedAMS scored as low as 24.09% when tested using ResNet-34 on
the ILSVRC2012 dataset. Similarly, FedOpt struggled in several experiments, underscoring
the limitations of current global optimisation techniques when dealing with non-IID data
distributions. As elaborated in Section 3.3, the model divergence owing to the heterogeneity
of local feature spaces is substantial when only a single aggregation proportion is provided
for the entire local model. Given that each parameter in the local model can have its own
unique direction and level of convergence, the one-size-fits-all approach falls short. In contrast,
an element-wise global model aggregation strategy, as implemented in EWWA-FL, offers the
adaptability and flexibility needed to facilitate better convergence across a range of neural

networks and benchmark datasets.

3.4.4 Convergence Speed

Convergence speed is a critical metric in evaluating the effectiveness of adaptive aggregation
strategies in FL. Figure 3.3 presents the visualisation of the average training loss across all
local clients, illustrating how quickly each method converges over 500 global aggregation
rounds. The subfigures in the left column correspond to IID data settings across different model
architectures and datasets, while those in the right column reflect experiments under non-1ID
conditions. As observed, our proposed EWWA-FL consistently achieves faster convergence
compared to FedCAMS and FedOpt across all scenarios. In the IID setting, both EWWA-FL
and FedCAMS demonstrate rapid loss reduction, particularly when using shallower models
like ResNet-18, as shown in Figure 3.3(a) and 3.3(c). However, the advantage of EWWA-FL
becomes more pronounced when using deeper models such as ResNet-32 (Figure 3.3(e)).
This indicates that parameter-wise weighting is able to exploit the additional representational
capacity of large models more effectively than scalar, model-wise schemes. On large-class
datasets such as CIFAR-100, this fine-grained weighting reduces variance among class-specific
parameters, allowing the global model to learn more balanced representations and improving
convergence speed relative to FedCAMS. By contrast, FedOpt exhibits unstable convergence
and significantly higher loss throughout, indicated by the green curves. To facilitate visual
comparison, the loss values from FedOpt have been normalised to the [0, 1] range. Despite
this adjustment, its convergence remains poor and inconsistent, often stagnating or fluctuating
instead of improving over time. This instability arises because FedOpt applies uniform updates

across parameters, which amplifies the effect of noisy or divergent gradients. Under the non-1ID
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Figure 3.3: Visualization of the average training loss across all local clients is shown. The horizontal axis
represents the number of global aggregation rounds, while the vertical axis indicates the average loss for
the current round. The blue line represents our proposed EWWA-FL, the orange line is from FedCAMS,
and the green line represents FedOpt.

38



3.5. Conclusion

setting (Figures 3.3(b), 3.3(d), and 3.3(f)), EWWA-FL maintains its advantage, converging faster
and more smoothly than FedCAMS. Notably, FedCAMS experiences a considerable degradation
in convergence when using ResNet-18 on both CIFAR-10 and CIFAR-100, highlighting its
sensitivity to data heterogeneity. However, when using ResNet-32 on the CIFAR-10 dataset,
FedCAMS regains some stability and achieves competitive convergence speed, which may
be attributed to the increased parameter capacity of deeper models. Importantly, EWWA-FL
benefits in this setting from its element-wise Softmax weighting, which systematically down-
weights parameters associated with noisy or divergent updates. This leads to smoother training
dynamics and avoids the oscillations seen in model-wise schemes. Interestingly, FedOpt fails to
converge entirely in several non-1ID experiments, as indicated by the absence of green lines in
Figures 3.3(b), 3.3(c), and 3.3(d). As noted in Section 3.4.2, this failure further demonstrates the
limitations of FedOpt in handling heterogeneous data distributions. Overall, these results provide
strong empirical support for the efficacy of our EWWA-FL framework. Its adaptive element-
wise aggregation mechanism not only accelerates convergence under ideal IID conditions but
also ensures robustness in more realistic non-IID environments. By mitigating class-specific
variance and suppressing noisy updates, EWWA-FL achieves faster and smoother convergence

than competing methods across a variety of architectures and datasets.

3.5 Conclusion

In this chapter, we presented EWWA-FL, an adaptive element-wise global weights aggregation
method for FL. Unlike traditional aggregation schemes, EWWA-FL assigns individual weights
to each model parameter, enabling more fine-grained and data-aware updates. Extensive
empirical evaluations across multiple datasets and neural network architectures demonstrate
that EWWA-FL consistently achieves faster convergence and improved performance compared
to baseline methods such as FedAvg, FedOpt, and FedCAMS. A brief theoretical analysis
grounded in the principles of the Adam optimisation algorithm further supports the design
rationale of our approach. The implementation of EWWA-FL is made publicly available to

facilitate reproducibility and further research.
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Chapter 4

Gradient Leakage Defence in

Federated Learning

In the previous chapter, we addressed one of the central barriers in FL, that is how to achieve
effective aggregation under heterogeneous, non-IID client data. By introducing element-wise
weighting, EWWA-FL demonstrated that finer-grained aggregation can significantly improve
convergence and stability compared to model-wise schemes. While this advances the efficiency
of FL, improving aggregation alone does not guarantee secure deployment. A second and
equally pressing challenge lies in privacy protection. Even though raw data never leaves
the client devices, recent studies have shown that shared gradients can still be exploited to
reconstruct sensitive training data. This vulnerability, known as gradient leakage, undermines
the assumption that FL is inherently private and raises serious concerns for applications in
healthcare, finance, and other sensitive domains. In this chapter, we turn to this problem
and introduce AdaDefence, a novel defence mechanism designed to counter gradient leakage
attacks while maintaining model performance. Instead of transmitting raw gradients to the server,
AdaDefence generates and shares gradient stand-in, which act as substitutes during aggregation.
These stand-in are derived from Adam’s optimisation moments, enabling obfuscation of private

information while preserving the signal needed for efficient global training.

The remainder of this chapter is structured as follows. We begin with an overview of gradient
leakage attacks and existing defences, motivating the need for a lightweight alternative. We
then present the design of AdaDefence, supported by theoretical justification for why gradients
stand-in disrupt inversion attacks. Finally, we evaluate AdaDefence on benchmark datasets,

showing that it can preserve accuracy while significantly reducing the success of state-of-the-art
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leakage attacks. Through this, we position AdaDefence as a practical and effective step towards

secure FL.

4.1 Introduction

The rapid advancements in DNNs have significantly influenced various DL applications, driving
progress across multiple domains. These advancements are largely fuelled by the availability
of extensive training datasets. However, the increasing volume of data generation in recent
years includes a substantial amount of sensitive personal information, which raises critical
privacy concerns and legal restrictions on data sharing. The introduction of the GDPR in
Europe has reinforced the need for stringent data protection measures, ensuring the integrity
and security of personal data while regulating its exchange. As a result, leveraging such datasets
for DL model training must align with strict legal and ethical standards. This has led to a
growing emphasis on developing techniques that enable the utilization of large-scale data while
maintaining compliance with privacy regulations. Addressing these challenges is crucial for
advancing DL applications in a secure and legally compliant manner.

For this purpose, FL [1-4] is employed as a decentralised model training framework where
the central server accumulates local gradients from clients without requiring the exchange of
local data. This approach ensures that data remains at its source, ostensibly preserving privacy
because only gradient information is shared. Traditionally, these gradients have been assumed
secure for sharing, making FL a prime application in privacy-sensitive scenarios. Nonetheless,
recent studies have exposed vulnerabilities within this gradient-sharing framework. L. Zhu,
Z. Liu and S. Han [10] introduced DLG, a technique for reconstructing the original training
data by iteratively optimising randomly initialised input images and labels to match the shared
gradients, rather than updating the model parameters directly. However, the performance
of DLG is limited by factors such as the training batch size and the resolution of images,
which can lead to instability in data recovery. To address these instabilities, J. Geiping, H.
Bauermeister, H. Droge and M. Moeller [12] proposed 1G, which utilises a magnitude-invariant
cosine similarity as the loss function to enhance the stability of training data reconstruction.
This method has proven effective in recovering high-resolution images (224 x 224 pixels) from
gradients of large training batches (up to 100 samples). Further refining the approach, iDLG by
B. Zhao, K.R. Mopuri and H. Bilen [11] simplifies the label recovery process within DLG by
analytically deriving the ground-truth labels from the gradients of the loss function relative to

the Softmax layer outputs, thus improving the precision of the reconstructed data. Expanding on
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generative methods, H. Ren, J. Deng and X. Xie [13] developed GRNN, which integrates two
generative model branches: one, a Generative Adversarial Network (GAN)-based branch for
creating synthetic training images, and another, a fully-connected layer designed to generate
corresponding labels. This model facilitates the alignment of real and synthetic gradients to
reveal the training data effectively. Recently, Z. Li, J. Zhang, L. Liu and J. Liu [14] introduced
GGL, a novel method that also utilises a pre-trained GAN to generate fake data. This approach
leverages the iDLG concept to deduce true labels and adjusts the GAN input sequence based on
the gradient matching, thereby producing fake images that closely resemble the original training
images. The paper [63] introduces a novel attack method named Gradient Leakage Attack
Using Sampling (GLAUS) which targets Unbiased Gradient Sampling-based (UGS) secure
aggregation methods in FL. These UGS, e.g. MinMax Sampling (MMS) [64], methods are
designed to enhance security by using unbiased random transformations and gradient sampling
to prevent direct access to the real gradients during model training, thereby obscuring private
client data. These developments underscore the ongoing need to enhance the security measures
in FL systems against sophisticated attacks that seek to exploit gradient information, thus
compromising the privacy of sensitive data. The continuous evolution of defensive techniques is

crucial to safeguarding data integrity in federated environments.

These issues prompted us to evaluate the reliability of the FL system. Concerns
about gradient leakage have triggered various defence strategies, such as gradient pertur-
bation [10, 13,41, 42, 65], data obfuscation or sanitization [66—70], along with other tech-
niques [49,71-74]. Nonetheless, these methods generally involve compromises between privacy
protection and computational efficiency, often requiring substantial computational resources
due to the complexities of encryption technologies. The study in [75] delves into the factors
in an FL system that could influence gradient leakage, such as batch size, image resolution,
the type of activation function used, and the number of local iterations prior to the exchange
of gradients. Various studies corroborate these findings; for instance, the DLG method in-
dicates that activation functions need to be bi-differentiable. IG techniques can reconstruct
images with resolutions up to 224 x 224, whereas GRNN are compatible with batch sizes of
256 and image resolutions of 256 % 256, also assessing how the frequency of local iterations
might impact privacy leakage. Moreover, recent advancements by D. Scheliga, P. Méder and
M. Seeland [76] introduced an innovative model extension, named Privacy Enhancing Mod-
ule (PRECODE), designed specifically to enhance privacy safeguards against potential leakages
in FL systems. This adaptability highlights the evolving trend of FL security measures that
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seek to enhance the balance between performance and privacy without imposing excessive

computational requirements.

In traditional model training strategies, various optimisation algorithms can alter the low-
level representations of gradients while preserving their high-level representations. For instance,
unlike SGD which utilises raw gradients for model updates [77], Adam [50] adjusts gradient
values using adaptive estimates based on first-order and second-order moments. This chapter
introduces an alternative approach by employing gradients stand-in for global gradient aggrega-
tion, aimed at preventing the transmission of private information to the parameter server. After
an epoch of local training, the local gradients are modified through the Adam optimisation
algorithm, which utilises adaptive estimates of lower-order moments. Critical information,
such as first-order and second-order moments, is retained locally, thereby rendering it impos-
sible for an adversary to execute the forward-backward procedure without access to this data.
Consequently, reconstructing local training data from the shared gradients becomes infeasible
within the FL framework. The gradients stand-in calculated in this manner not only mitigate
the risk of gradient leakage but also preserve model performance. Additionally, the simplicity
and computational efficiency of the method, make it particularly attractive. The versatility of
the approach is evident as it does not impose constraints on the model architecture, the local
training optimisation strategy, the dataset, or the FL aggregation technique. Comprehensive
evaluations on various benchmark networks and datasets have demonstrated that our method,
termed AdaDefence, effectively addresses the identified privacy concerns. The implementation
of AdaDefence is available on GitHub'.

The structure of this chapter is organised as follows: Section 4.2 reviews related work
on gradient leakage attacks along with existing defence mechanisms. Section 4.3 details the
proposed method for defending against gradient leakage. Experimental results are presented
in Section 4.4, where we compare the efficacy of our proposed AdaDefence with state-of-the-
art attack methods. Finally, Section 4.5 concludes the chapter and outlines future research

directions.

'https://github.com/Rand2AI/AdaDefence
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4.2. Related Work

4.2 Related Work

4.2.1 Attack Methods

Gradient leakage attacks pose a significant threat to privacy in both centralised and collaborative
DL systems by potentially exposing private training data through leaked gradients. Such attacks
are particularly prevalent in centralised systems, often through membership inference attacks as
discussed by [78-83].

The work [10] was pioneer in examining data reconstruction from leaked gradients within
collaborative systems, an effort furthered by [12] which introduced an optimisation-based
method to enhance the stability of such attacks. They utilised magnitude-invariant cosine simi-
larity measurements for the loss function and demonstrated that incorporating prior knowledge
could significantly augment the efficiency of gradient leakage attacks. Expanding on these
findings, the work [84] argued that gradient information alone might not suffice for revealing
private data, thus they proposed the use of a pre-trained model, GIAS, to facilitate data exposure.
In [85], the authors found that in image classification tasks, ground-truth labels could be easily
discerned from the gradients of the last fully-connected layer, and that BN statistics markedly

enhance the success of gradient leakage attacks by disclosing high-resolution private images.

Alternative approaches involve generative models, as explored in [86], which employed a
GAN-based method for data recovery that replicates the training data distribution. Similarly,
the work [87] developed mGAN-AI, a multitask discriminator-enhanced GAN, to reconstruct
private information from gradients. GRNN, introduced [13], is capable of reconstructing high-
resolution images and their labels, effectively handling large batch sizes. Likewise, in the work
of GGL [14], a GAN with pre-trained and fixed weights was used. GGL differs in its use of
the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) as the optimiser, reducing
variability in the generated data, which, while not exact replicas, closely resemble the true
data. This characteristic significantly enhances GGL’s robustness, allowing it to counteract
various defensive strategies including gradient noising, clipping, and compression. This series
of developments highlights the dynamic and evolving nature of combating gradient leakage

attacks in DL.

GLAUS [63] demonstrates a significant vulnerability in UGS methods by showing that
they can still be susceptible to gradient leakage attacks. This is done by reconstructing private
data points with considerable accuracy despite the supposed robust security measures of UGS.

GLAUS circumvents the safeguards by approximating the gradient using leaked indices and
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signs from the UGS’s crafted random transformations. It effectively reduces the security of
UGS frameworks to that of basic FL models without additional protections. It is capable of
adaptively inferring the gradient without needing the exact gradient, utilizing an approximate
gradient reconstructed through several steps. These include narrowing the gradient search range,
estimating the magnitude of each gradient value, and revising the gradient signs. This method
showcases that even when real gradients are not directly accessible, sensitive data can still be
reconstructed, posing a serious security risk.

As shown in Table 4.1, gradient leakage attacks differ in how they exploit gradients but
share a common vulnerability. They rely on access to raw, unmodified gradients containing
directional and magnitude information. In this chapter we focus in detail on IG, GRNN, and
GLAUS, since these represent state-of-the-art attacks that threaten practical FL deployments.
AdaDefence is specifically designed to mitigate these by replacing raw gradients with stand-in

derived from Adam’s moment estimates, thereby concealing the very information these attacks

require.

Table 4.1: Summary of representative gradient leakage attacks and their limitations.

Attack Mechanism Limitation

DLG [10] Recovers inputs by optimising ran- Requires many optimisation steps
domly initialised data until their gra- and often produces noisy reconstruc-
dients match the shared gradients. tions on complex datasets.

iDLG [11] Simplifies DLG by analytically in- Works mainly for simple models;
ferring labels from gradients before accuracy decreases with deeper net-
optimisation. works; batch size has to be 1.

1G [12] Uses cosine similarity between ob- Sensitive to gradient obfuscation;
served and candidate gradients to fails when precise magnitude infor-
guide image inversion. mation is hidden.

GRNN [13] Employs a generative neural net- The reconstruction process for train-
work to reconstruct inputs directly ing the generative model is slow.
from gradients.

GLAUS [14] Audits gradient leakage risks by Specifically tailored to attack UGS

aligning gradient-space representa-
tions.

secure aggregation methods

4.2.2 Defence Methods

Numerous strategies [83] have been developed to safeguard private data against potential

leakage via gradient sharing in FL. Techniques such as gradient perturbation, data obfuscation
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or sanitization, DP, HE, and MPC have been employed to protect both the private training data
and the publicly shared gradients [72].

The work in [10] assessed the efficacy of Gaussian and Laplacian noise types in protecting
data, discovering that the magnitude of the noise’s distribution variance is crucial, with a
variance threshold above 102 effectively mitigating leakage attacks at the cost of significant
performance degradation. The work [70] introduced a data perturbation method that maintains
model performance while securing the privacy of training data. This approach transforms the
input data matrix into a new feature space through a multidimensional transformation, applying
variable scales of transformation to ensure adequate perturbation. However, this technique
depends on a centralised server for generating global perturbation parameters and may distort the
structural information in image-based datasets. The method proposed in [74] implemented DP to
introduce noise into each client’s training dataset using a per-example-based DP method, termed
Fed-CDP. They proposed a dynamic decay method for noise injection to enhance defence against
gradient leakage and improve inference performance. Despite its effectiveness in preventing
data reconstruction from gradients, this method significantly reduces inference accuracy and

incurs high computational costs due to the per-sample application of DP.

Both PRECODE [76] and FedKL [88] aim to prevent input information from propagating
through the model during gradient computation. PRECODE achieves this by incorporating a
probabilistic encoder-decoder module ahead of the output layer, which normalises the feature
representations and significantly hinders input data leakage through gradients. This process
involves encoding the input features into a sequence, normalising based on calculated mean and
standard deviation values, and then decoding into a latent representation that feeds into the output
layer. While effective, the additional computational overhead from the two fully-connected
layers required by PRECODE limits its applicability to shallow DNNs due to high computational
costs. In contrast, FedKL. method introduces a key-lock module that manages the weight
parameters with a hyper-parameter controlling the input dimension and an output dimension
optimised for specific architectures; 16 for ResNet-20 and ResNet-32 on CIFAR-10 and CIFAR-
100, and 64 for ResNet-18 and ResNet-34 on the ILSVRC2012 dataset. This configuration
not only secures the gradients against leakage but also maintains manageable computational
demands, making it feasible for more complex DNNs. Both FedKL. and PRECODE require
architectural modifications: FedKL introduces a key-lock mechanism at the batch normalisation
layer, while PRECODE adds an encoder—decoder module ahead of the output layer. These

changes bring extra computational cost and limit the applicability of the defence to certain
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network types. AdaDefence, by contrast, does not alter the model structure or rely on encryption.
Instead, it simply replaces raw gradients with Adam-based gradients stand-in, which already
contain sufficient learning signals for aggregation but conceal the information that leakage
attacks exploit.

Unlike existing methods, our proposed AdaDefence incorporates the Adam optimisation
algorithm as an integrated component to enhance privacy protection in FL. Instead of transmit-
ting raw gradients, AdaDefence transforms the original local gradients into a gradients stand-in,
which is subsequently used for global aggregation. This stand-in retains the high-level latent
representations of the original gradients, ensuring that model performance remains largely
unaffected during each aggregation round. Moreover, the computation of the gradients stand-in,
along with the retention of both first-order and second-order moment estimates at the local
client level, prevents adversaries from reconstructing private training data. Since the crucial
optimisation parameters remain inaccessible to potential attackers, gradient leakage becomes
infeasible. This approach not only strengthens privacy safeguards within FL environments but

also preserves the integrity and efficiency of the overall learning process.

4.3 Methodology

In the initial subsection, we provide an overview of how gradient leakage can expose private
training data. Subsequently, we performed a mathematical analysis to demonstrate the efficacy
of our proposed gradients stand-in in defending leakage attacks. This analysis explains how the
gradients stand-in protects sensitive information while maintaining model performance. Finally,

we present a comprehensive introduction to the proposed AdaDefence method.

4.3.1 Gradient Leakage

In the context of ML, particularly in neural network training, the gradient represents the
direction of the steepest increase in the loss or cost function. To minimise the loss function and
optimise model parameters, the training process follows the opposite direction of the gradient,
i.e. gradient descent. This iterative optimisation technique adjusts model parameters step by

step, progressively reducing the loss function to achieve convergence.

Definition 1 Gradient: Consider a function f : R" — R™, which maps a vector x in n-
dimensional space to a vector y in m-dimensional space, defined by f(x) =y where x € R" and

y € R™. The gradient of f with respect to x is represented by the Jacobian matrix as follows:
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This matrix consists of partial derivatives where the element in the i-th row and j-th column, gf_ ,
J

represents the partial derivative of the i-th component of y with respect to the j-th component of

X.

The Chain Rule is a rule in calculus that describes the derivative of a composite function.
In simple terms, if a variable z depends on y, and y depends on x, then z, indirectly through y,
depends on x, and the chain rule helps in finding the derivative of z with respect to x. If z = f(y)

and y = g(x), then:

dz _dz dy

dx dy dx
Many recent studies have highlighted the vulnerability of gradient data to leakage attacks.
In their research, the work [12] demonstrated that for fully-connected layers, the gradients of
the loss with respect to the outputs can reveal information about the input data. By employing
the Chain Rule, it is possible to reconstruct the inputs of a fully-connected layer using only its
gradients, independent of the gradients from other layers. Expanding on this, in FedKL [88],
the authors explored this vulnerability in convolutional and BN layers across typical supervised
learning tasks. They provided a detailed analysis of how gradients carry training data, which can
be exploited by an attacker to reconstruct this data. Their results confirmed a strong correlation
between the gradients and the input training data across linear and non-linear neural networks,
including CNN and BN layers. Ultimately, they concluded that in image classification tasks, the
gradients from the fully-connected, convolutional, and BN layers contain ample information
about the input data and the true labels. This richness of information enables an attacker to

reconstruct both the inputs and labels by regressing the gradients. We can conclude that:

Proposition 1 In image classification tasks, the gradients from the fully connected, convolu-
tional and BN layers contain a great deal of information about the input data and the actual
labels. These details allow an attacker to approximate these gradients and effectively reconstruct

the corresponding inputs and labels.
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4.3.2 Theoretical Analysis on Gradients Stand-in

Model Performance: In this part, we explore the influence of using gradients stand-in on model
performance, and provide justification for employing them during global aggregation in a FL
context. A gradients stand-in is a surrogate update vector computed locally on each client to
replace the raw gradient during communication with the server. In this work, the stand-in is
derived from Adam’s optimisation process. Instead of transmitting the raw gradient g, the
client transmits g;, computed by the first-order moment m, and second-order moment v;, which
form the gradients stand-in used for aggregation. Unlike raw gradients, which carry direct
directional and magnitude information that adversaries can invert to reconstruct training data,
moment-based stand-ins obscure this information. The exponential averaging in Adam smooths
out client-specific noise and conceals fine-grained patterns tied to individual data samples. As a
result, stand-ins preserve the learning signal necessary for convergence but remove the sharp
features that leakage attack methods rely on. To motivate this design, we begin by reviewing the
Adam [50] optimisation algorithm, a method of SGD that incorporates momentum concepts.
Each iteration in Adam involves computing the first-order and second-order moments of the
gradients, followed by calculating their exponential moving averages to update the model
parameters. This approach merges the strengths of the Adagrad [51] algorithm, which excels
in handling sparse data, with those of the RMSProp [57] algorithm, designed to manage non-
smooth data effectively. Collectively, these features enable Adam to deliver robust performance
across a wide range of optimisation problems, from classical convex formulations to complex

DL tasks. Further details on the Adam algorithm are presented in Algorithm 3.

In the local training phase of FL, we concentrate on the aggregated gradients from each
training round rather than the gradients from individual iterations. Specifically, the local
gradients that are transmitted to the global server represent the cumulative sum of all gradients
produced during the local training iterations. Common FL aggregation methods, such as
FedAvg [1], FedAdp [7], and FedOpt [46], employ these cumulative local gradients for global
model updates. This approach effectively outlines the model’s convergence path and direction
within an FL framework. Moreover, studies such as Adam [50] optimisation algorithm has
demonstrated superior convergence properties compared to traditional SGD, underscoring its
widespread adoption in the DL domain. Based on these insights, we propose a novel method
of representing local gradients using the Adam algorithm to enhance privacy and maintain
model efficacy in FL. Experimental outcomes discussed in Section 4.4 confirm the viability

of using these modified gradients for global aggregation, thereby supporting the integrity and
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Algorithm 3: Adam optimisation Algorithm

Require: Initial learning rate o

Require: Exponential decay rates for moment estimates f3;, 8, € [0, 1]

Require: Small constant for numerical stability €

Require: Maximum number of iterations /

initialise weights wy

initialise the first-order moment vector mgy <— 0

initialise the second-order moment vector vy <— 0

initialise the time-step ¢ <— 0

fort=1to/ldo
g+ VoL (1) w»Get gradients w.r.t. stochastic objective at time-step ¢
my < Br-m_1+(1—P1)-g »Update biased first-order moment estimate
v+ B2-vi1+(1—PB2)-g> »Update biased second-order moment estimate

A m;

My < 1 » Compute bias-corrected first-order moment estimate
1

R AN AN > e

_
e

vy lf—’ﬁ, » Compute bias-corrected second-order moment estimate
2
iy

V0ite

—_
—

(l)f — 60,71 — -
12: end for
13: return @; »Output the optimised parameters

» Update parameters

performance of the FL. model.

Leakage defence: In the FedKL [88], it was demonstrated that private training data leakage
through gradients sent to a global server is a significant concern. The authors of FedKL
introduced a novel approach involving a key-lock pair to generate shift and scale parameters
in the BN layer, which are typically trainable within the model. Crucially, in FedKL, these
generated parameters are retained on the local clients. The primary aim of FedKL is to sever
the transmission of private training data via gradients, thereby safeguarding against potential
leakage by malicious servers. This method involves modifications to the network architecture,
including additional layers that are responsible for generating the shift and scale parameters.
While these changes have minimal impact on model performance, they significantly reduce the
system’s efficiency due to the increased computational overhead. In this chapter, we adhere to
the principle of preventing the propagation of private training data through gradients. However,
unlike FedKL, we achieve this without altering the network architecture or adding extra training
layers, thus avoiding additional computational burdens. The proposed approach maintains

system efficiency while still protecting against data leakage.

Claim 1 The gradients stand-in transmitted to the global server no longer contains information

from which details of the private training data can be inferred.
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Proof. Assuming g, is the local gradients in the r-th training round and g, is the gradients

stand-in for global gradients aggregation. By applying the Adam in Algorithm 3, we have:

my = Blmrfl + (1 - Bl)gr
ve=Bov, 1+ (1- ﬁZ)g%

N my
n, =

r 1—Blr
~ Vr
V, =

r l_ﬁzr

n m
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o e

4.1)
4.2)
(4.3)

4.4)

4.5)

where B; and 3, are set to 0.9 and 0.999, separately; the values in g are initialised to all zeros;

g €RP m, cRP v, e RP i, € RP, $, € RP and g, € RP, D is the dimension of the parameter

space, m, is the biased first-order moment estimate in the r-th training round, v, is the biased

second-order moments estimate, 71, is the bias-corrected first-order moment estimate and v, is

the bias-corrected second-order moment estimate. The derivative of the gradients stand-in, g,,

w.r.t. the original local gradients, g,, can be expressed as:
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8gr <
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“.7

(4.8)

4.9

(4.10)
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Calculating ;- (+/9, +€):

N
g _2\/€ dgr

_ 1 . 2(1—PBa)gr
N
(1-B2)gr
=—= 4.12)
Vor(1=B3)
Then, differentiating &, w.r.t. g,:
1= 5 _ o U=Ber

dgr B (\/\Tr + € )2
Substitute 771, and ¥, in (4.13) referring to (4.1), (4.2), (4.3) and (4.4). To simplify the equation.
We define:

v=Vh,

_ 2
— \/Ber—ll—i__(iSr BZ)gr (414)
2
Then, the equation would be:
95, (1= BV +e) — (HPRmor gl s
dgr (1=BN)(V +¢)? '

Given 3; = 0.9, B> = 0.999 and € is a very small value that can be ignored, considering both

large or small r, we approximate:
(V+e)~ag, (4.16)

where o is a non-zero scaling variant. In the end, we have:

A

agr _ _ﬁlmr—l l
dgr a(l-BJ) &

In (4.17), the parameters a and (1 — f3;) are non-zero values, while m,_; is exclusively

4.17)

preserved within the confines of local clients. This specific configuration ensures that the
original local gradients, g,, are safeguarded against deep leakage from gradients by potential
malicious attackers. Consequently, the proposed gradients stand-in, g,, effectively obstructs
any attempts to deduce or reconstruct private training data from the local gradients. This
safeguarding mechanism enhances the security of the data during the FL training process,

providing a robust defence against potential data privacy breaches. ]
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28,
Proof of the Approximation: In the context of simplifying the derivative Je.

whether V can be approximated by ag,, we need to analyse the terms carefully.

Claim 2 For large values of r, the model has undergone sufficient training to approach conver-

gence. At this stage, V can be closely approximated by ag,, which simplifies the expression for

the derivative gg r

Proof. Given the value 3, = 0.999, evaluate the assumption that V =~ ag,, where:

By + (1= Bo)g;
V‘\/ =P

Given the value of 3,, examine this approximation more critically. We first evaluate f3}. For

larger r, B; becomes quite small because 3, = 0.999 is very close to 1. The decay term 1 — 3}

is crucial to understanding V’s behaviour. To compute 1 — 35, say r = 1000 for example:
ﬁ 1000 (0 999) 1000

This can be computed as:
1000 £1000[n(0.999)

Referring to Taylor expansion /n(1 — x) ~ —x for small x, we have:

1n(0.999) ~ —0.001
100011(0.999) ~

Hence,
B ~ e~ % 0.3679

Given the computation above, we have:

\/ﬁzvr 1+ (1—B2)g?
0.6321

Assuming v, ~ g2 for simplicity (which can be the case as gradients do not change dramatically
over large iterations), then:

0.999¢2 +0.001g2 \/ g2 g
V& r L= N ~ 1.258g,
\/ 0.6321 0.6321 ~ 0.795 &

With 8, = 0.999, the term V is approximate 1.258g, when assuming v, | ~ g2 at larger . So
in this case, @ ~ 1.258 n
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Claim 3 Given the condition of small r, the model does not converge effectively. Under this

circumstance, the variable V can be accurately approximated by ag,.

Proof. With the values ; = 0.9 and 3, = 0.999 and considering small r, such as r =1 or r =2,
we explore how V behaves. This scenario is typical at the beginning of the training, where initial
values for moving averages m and vq are set to zero, and the initial gradient g¢ is randomly
initialised.

Calculation for r = 1:

my = Bimo+ (1 —Bi1)go = 0.1go
vi = Bavo+ (1 — B2)gs = 0.001g3

N mj

mp = =80
1- B

~ Vi 2

V= ——7 =80
1- B,

V:\/ﬁ:\/?:go

Calculation for r = 2, assume g; =~ g (for simplicity, assuming the gradient does not change

too much):

my = Bimy+ (1 —Bi)g1 =0.19g0
vy = Bvi + (1 — B2) gt = 0.002¢;

~ mp
m; =-—"—"—5~80
2
I—Bi
1% 2 ~ g
2 = 2N 0
1—-B5

VZ\/g%\/gjzgo

With the values B; = 0.9 and 3, = 0.999, the term V is approximate g, when assuming

g1 =~ go at the beginning of the training (small r). So in this case, o ~ 1. ]

Derivation Process: Now, we are going to provide specific derivation process of (4.17). Given
that (V +€) =~ ag, and considering € to be negligible for simplification, we will further simplify

the derivative of g, w.r.t. g,:
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MV MV

According to the quotient rule (¥)" = , we have:
v

~ Blmr—1+(1_ﬁl>gr

m, =

1-Bf
a’/’A'lr o l_ﬁl
9gr 1 _Blr
Hence,
a5, (5 (agy) — (Pt Pen) (g
agr (agr)z
a(1-B)gr—a(Bimr—1+(1-Pi)gr)
_ 1-B7
a o’g?

OC(l _Bl)gr - O‘ﬁlmrfl - O‘(l - ﬁl)gr
o?gi(1—pBy)
_ﬁlmrfl

agi(1—-B)

4.3.3 AdaDefence in FL

Federated Learning: The foundational method underpinning recent FL techniques assumes
the presence of multiple clients, represented as €, each possessing their own local datasets 2.
The learning task is defined by a model .# with parameters @. The local gradient g; for each

client i is computed as follows:

1

IIdHV“’Zgy s w),y)) vies, (4.18)

8i =

where ||d|| denotes the number of samples, used here to normalise the gradients by the size of

the dataset d;. In this formula, x/) and y/) are the input features and corresponding labels of
the j-th example in the i-th local dataset.

After computing the local gradients, the server aggregates these gradients and performs an

averaging process to update the global model parameters w,. This process is mathematically

represented as:

| 1%

G Zl (4.19)

@y = Wr—1 —

where |%’| denotes the total number of clients. It is assumed that all local datasets are of equal
size, i.e., ||d;|| = ||dk|| for any d;,dy € Z. This assumption simplifies the model updating process

by maintaining uniform influence for each client’s gradient.
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Figure 4.1: Illustration of AdaDefence in FL

AdaDefence: emphasising the innovative nature of AdaDefence is essential, as it integrates
seamlessly into existing frameworks without altering the fundamental architecture of the model
or the FL strategy it supports. AdaDefence is designed to act as an unobtrusive extension,
focusing on the manipulation of local gradients. This process involves the creation of gradients
stand-in that is used in the global aggregation phase. In a standard FL setup, the global model is
initially crafted on a central server and then distributed to various clients. These clients perform
secure local training and then send their local gradients stand-in back to the server. At the server,
these gradients stand-in are aggregated to update and refine the global model. This cycle of local
training and global updating repeats, with the server coordinating the aggregation of gradients to
produce each new iteration of the global model. During this process, the server remains oblivious
to all clients’ first-order and second-order moments information. This omission is intentional
and essential for security. This structure ensures that gradients stand-in cannot be exploited to
reconstruct private, local training data. By maintaining this separation, AdaDefence strengthens
the FL system against potential data reconstruction attacks. Consequently, in every round of
local training that follows, each client adjusts its model based on the updated global model
distributed by the server, thus advancing the collective learning process without compromising

on privacy or security. See Figure 4.1 for an illustration of AdaDefence in FL.

4.3.4 Theoretical Justification of Gradients Stand-in

The central idea behind AdaDefence is that by transmitting Adam’s moment estimates rather
than raw gradients, clients prevent adversaries from recovering private data. Gradient leakage

attacks rely on precise information about the direction and magnitude of raw gradients to solve
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an inverse problem that reconstructing the input that produced them. In contrast, the gradients
stand-in replaces raw gradients with their bias-corrected first-order and second-order moments,

respectively. This transformation has three privacy-preserving effects:

* Obfuscation of magnitude: The exponential moving average smooths gradients across

timesteps, concealing the sharp per-sample variations that leakage attacks exploit.

* Loss of direct directionality: Moment estimates aggregate gradient history rather than
exposing the exact directional vector at each iteration. This prevents attacks such as IG or

GRNN from aligning candidate inputs with the observed gradient direction.

* Preservation of learning signal: Although the raw gradient is hidden, the aggregated
moment estimates still capture enough optimisation information for effective global

training.

In summary, by keeping only Adam’s moment estimates on each client, the updates sent to
the server no longer carry the information required for gradient inversion. Without access to
the precise gradient vector, an adversary cannot solve the inverse mapping from gradient space
back to input space. This explains why AdaDefence is effective against a wide range of leakage

attacks, a claim that is formally supported by the derivative proofs provided.

4.4 Experiments

In this section, we begin by describing the datasets and metrics used for benchmark evaluation.
We then detail a series of experiments designed to evaluate the performance of DNNs across
two aspects. The first set of experiments investigates the impact of using the proposed gradients
stand-in on the prediction accuracy. The second set assesses the effectiveness of this approach in
defending against state-of-the-art gradient leakage attacks, specifically those involving GRNN,
IG and GLAUS.

4.4.1 Benchmarks and Metrics

In our study, we conducted experiments using four well-known public datasets: MNIST [61],
CIFAR-10 [60], CIFAR-100 [60], and ILSVRC2012 [62]. To assess the quality of images
generated by our method, we employed four evaluation metrics: Mean Square Error (MSE), Peak
Signal-to-Noise Ratio (PSNR), Learned Perceptual Image Patch Similarity (LPIPS) [89], and

58



4.4. Experiments

Structure Similarity Index Measure (SSIM) [90]. To optimise the conditions for gradient leakage

attacks and effectively evaluate the defence capabilities, we set the batch size to one. This

configuration allows for a direct comparison between the reconstructed image and the original

image. The MSE metric quantifies the pixel-wise L2 norm difference between the reconstructed

image X and the original image X, defined as MSE (X, X) = ||X — X||>. PSNR, another criterion
2552

)-

for image quality assessment, is calculated using the formula PSNR(X,X) = 10-1g( MSE(XE)
where a higher PSNR value indicates a higher similarity between the two images. For perceptual

similarity, we utilised the LPIPS metric, which measures the similarity between two image
patches using pre-trained networks such as VGGNet [91] and AlexNet [20]. This metric aligns
with human visual perception, where a lower LPIPS score indicates greater perceptual similarity
between the compared images. The SSIM index evaluates the change in image structure, where
a higher SSIM value suggests less distortion and thus a better quality of the reconstructed image.
All neural network models were implemented using the PyTorch framework [58], ensuring

robust and efficient computation.

4.4.2 Model Performance

Table 4.2: Testing accuracy (%) of models trained under various configurations. The highest accuracy
achieved is highlighted in red, while the second highest is denoted in blue. Here, “C-10" and “C-100"
refer to CIFAR-10 and CIFAR-100 datasets, respectively. “AD" stands for the AdaDefense module. The
accuracy figures listed in the “Reference” row are sourced from corresponding papers.

Model LeNet | ResNet-20 | ResNet-32 | ResNet-18 | ResNet-34 | VGG-16
(32%32)| (32%32) (32%32) | (224%224) | (224*224) | (224%224)
Dataset MNIST|C-10 C-100{C-10 C-100{C-10 C-100/C-10 C-100|{C-10 C-100
Centralized | 98.09 [91.63 67.59|92.34 70.35(91.62 72.15(92.20 73.21|89.13 63.23
FedAvg 98.14 |91.20 58.58(91.37 61.91(89.50 68.5989.27 68.30(88.13 61.91
FedAvg w/ AD| 97.80 |89.15 61.81(90.20 63.64 [89.29 68.76|89.38 68.38|87.13 58.32
Reference 99.05 |91.25 _ 9249 i ) ) ) ] ]
[92] | [21] [21]

To comprehensively assess the impact of gradients stand-in on model performance, we
designed and evaluated three training paradigms: centralised training, standard federated
training using the FedAvg algorithm, and federated training with the proposed AdaDefence
mechanism, where stand-in gradients are used in place of true gradients during aggregation.
For our experiments, we selected six widely used DNN architectures, LeNet [92], ResNet-20,
ResNet-32, ResNet-18, ResNet-34 [21], and VGGNet-16 [91], across three benchmark datasets:
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MNIST, CIFAR-10, and CIFAR-100. These datasets vary in resolution, ranging from 32 x 32 to
224 x 224 pixels, and differ in complexity, with CIFAR-100 representing a more challenging
classification task due to its larger number of classes. Across all experimental configurations,
we trained a total of thirty-three models under eleven distinct settings, ensuring a robust and
fair comparison between the different training approaches. The full results are summarised in
Table 4.2, where we report the testing accuracy (%) of each model and highlight the highest and
second-highest values for clarity. This extensive evaluation allows us to quantify the relative
performance of traditional centralised training, standard FL, and our gradients stand-in approach
under diverse model and data conditions. As expected, centralised training consistently yields
the highest accuracy across most settings, benefiting from direct access to the entire training
dataset. For example, the LeNet model trained on MNIST achieves 99.05% accuracy, reported
in paper [92], while ResNet-32 achieves 92.49% on CIFAR-10, reflecting the strong predictive
capability of centralised setups. However, a noticeable drop in accuracy is observed when
moving from CIFAR-10 to CIFAR-100 for all models, confirming that the increased class
granularity in CIFAR-100 makes the task more complex. Models such as ResNet-34 and VGG-
16, which are deeper in architecture, also exhibit this drop, though they maintain relatively

strong performance, with accuracies of 73.21% and 63.23% on CIFAR-100, respectively.

Under the FedAvg framework, model performance remains competitive despite the lack of
access to centralised data. In many cases, the accuracy achieved by FedAvg approaches that of
the centralised baseline. For instance, LeNet on MNIST achieves 98.14%, only slightly below
the centralised result. Additionally, FedAvg secures four out of eleven second-highest testing
accuracies, demonstrating that it retains strong predictive performance under decentralised
conditions. This result reinforces the practicality of FL for scenarios where data sharing is
restricted. Interestingly, integrating the AdaDefence module, which replaces true gradients with
stand-in gradients during aggregation, does not significantly degrade model accuracy. On the
contrary, our experiments indicate that the use of stand-in gradients can preserve and, in some
instances, improve predictive performance. For example, ResNet-20 trained on CIFAR-100
using AdaDefence achieves 61.81% accuracy, outperforming the standard FedAvg baseline by
5.51%. This suggests that AdaDefence not only provides a layer of privacy protection against
gradient leakage attacks but also contributes to more stable training under data heterogeneity.
Furthermore, five out of eleven second-highest accuracies were obtained using AdaDefence,
validating its robustness across different architectures and datasets. In summary, the results

presented in Table 4.2 show that while centralised training still offers the best performance
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overall, both FedAvg and AdaDefence deliver competitive results under privacy-preserving
federated settings. Notably, the gradients stand-in mechanism used in AdaDefence enables
secure model training without sacrificing model utility, offering a practical balance between

privacy and performance in FL environments.

4.4.3 Defence Performance

In evaluating the robustness of defence mechanisms against gradient leakage attacks, our study
incorporated four advanced attack methodologies. These included GRNN [13], IG [12] and
GLAUS [63]. For the datasets MNIST, CIFAR-10, and CIFAR-100, experiments were conducted
using a batch size of one and an image resolution of 32 x 32. However, for the ILSVRC2012
dataset, a higher resolution of 256 %256 was selected rather than the usual 224 % 224. This
adjustment was necessary because GRNN can only process image resolutions that are powers
of two. To accommodate this requirement, images of lower resolutions were upscaled through
linear interpolation to match the required dimensions. This approach ensures that the integrity
and comparability of the results across different datasets and resolution settings are maintained.

In Table 4.3, we present qualitative results that demonstrate the comparative effectiveness of
various defence mechanisms against targeted leakage attacks. These defences include GRNN
and IG, which have been implemented across different backbone networks and benchmark
datasets. The table provides a clear view of how each defence strategy performs, allowing for
an assessment of their efficacy in a controlled environment.

As discussed in the paper [13], DLG is inadequate in several experimental scenarios, leading
us to exclude its results from our analysis. Instead, we focused on GRNN, which has proven
more effective. Our proposed AdaDefence that efficiently safeguards against the leakage of
true images during gradient-based reconstruction processes. In our experiments using GRNN
with a ResNet-18 model at an image resolution of 256 * 256, the reconstructed images retained
only minimal and non-identifiable details from the original images. This indicates a significant
protection against the exposure of private data. For other architectures, such as LeNet and ResNet-
20, the results were even more promising, with the reconstructed images being completely
unrecognisable and distorted. On the other hand, the GRNN is capable of revealing true labels
from gradients. Consequently, we have included these labels in Table 4.3 for comprehensive
analysis. It is evident from our observations that when models are trained using our AdaDefence
module, no correct labels are inferred from gradients. This further indicates the effectiveness of

AdaDefence in enhancing model security against gradient-based label inference attacks.
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Table 4.3: Comparison of image reconstruction using GRNN and IG without and with AdaDefense.

Model LeNet ResNet-20 ResNet-18
(32%32) (32*%32) (256*256)
Dataset |MNIST C-10 C-100 |MNIST C-10 C-100 |C-10 C-100 ILSVRC

Truegng:.

four truck keyboard| five frog cattle |bird sunflower tench

s B SR ¥ BB N @ M

four  truck keyboard five frog cattle bird sunflower tench

Ed K

zero  ship bowl four horse mushroom| dog oak tree soccer ball

)T : =]
w B B O 3

airplane willow | zero horse rose |truck beaver jay

e 3.
IGw/ollﬂﬁlll
ai-’k B4 | B R R BB

w/

Furthermore, we compared the reconstruction capabilities of IG with those of GRNN. The
findings confirmed that GRNN outperforms IG in safeguarding private training data across all
tested configurations. Overall, our AdaDefence consistently demonstrated robust protection of
private training information from gradient-based reconstructions in our experiments.

In the recent publication on the method GLAUS, it is noted that the official code supports
only a specially designed architecture, MNIST-CNN, for use with the MNIST dataset. Attempts
to adapt this method for other neural networks and datasets were unsuccessful. Consequently,
the results presented in Table 4.5 are based solely on experiments conducted using the original,
unmodified official code. This table highlights certain inherent shortcomings of GLAUS, even
in the absence of our defence method. These limitations are generally considered acceptable,
given that GLAUS is specifically tailored to attack UGS secure aggregation methods within the
FL framework. Notably, when our AdaDefence module is integrated into the system, GLAUS

is rendered ineffective in all trials concerning image reconstruction and label inference.
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Table 4.5: Image reconstruction for GLAUS without and with AdaDefense.

Mol NIST-CVY
Dataset MNIST
§elilal7(s
eight four nine seven five
GLAUS | W/
w/

4.4.4 Quantitative Analysis

To conduct a quantitative assessment of our proposed AdaDefence module in comparison
to existing state-of-the-art methods for mitigating gradient leakage, we utilised four distinct
evaluation metrics: MSE for pixel-level error, PSNR for overall image fidelity, LPIPS with both
VGGNet and AlexNet for perceptual similarity, and SSIM for structural similarity. The evaluation
results, as detailed in Table 4.4, were derived from comparisons between generated images and
their respective original images. Our analysis consistently revealed that images produced by
models incorporating the AdaDefence module exhibited significantly lower degrees of similarity
when compared to those from models lacking this feature. This outcome demonstrates the
efficacy of the AdaDefence module in providing robust defence against gradient leakage attacks.

To enhance the clarity of our analysis on the defensive capabilities of AdaDefence, we have
concentrated our examination primarily on GRNN. This focus is driven by our observations that
GRNN exhibits a significantly stronger attack capability compared to IG. Through this targeted

analysis, we aim to demonstrate more effectively the robustness of AdaDefence against more
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potent threats. Starting with MSE, we see that in every case, the introduction of AdaDefence
results in a dramatic increase in MSE, which implies a higher error rate between generated
and true images when the defence is active. For instance, the MSE for the LeNer model on the
MNIST dataset jumps from 0.65 without AdaDefence to 173.44 with AdaDefence, representing
an astonishing increase of approximately 26,600%. This trend of increased error rates with
AdaDefence is consistent across all models and datasets, highlighting a significant protection
of using AdaDefence in terms of gradients leakage. Conversely, the impact on PSNR, which
measures image quality (higher is better), shows a general decline when AdaDefence is applied.
For example, PSNR for the ResNet-18 model on the ILSVRC dataset decreases from 37.31 to
30.41, a decrease of about 18.5%. LPIPS, evaluated using both VGGNet and AlexNet, measures
perceptual similarity (lower is better). All the results from GRNN perform significantly worse
when the AdaDefence module is adapted into the model. Lastly, the SSIM metric, which
evaluates the structural similarity between the generated and true images, mostly shows a
decline with AdaDefence. For the ResNet-18 model on the CIFAR-10 dataset, SSIM decreases
significantly from 0.955 to 0.151, about a 84.18% reduction. This supports the view that
AdaDefence can protect against specific vulnerabilities.

Across all benchmark datasets and reconstruction attacks, the results show that AdaDefence
significantly weakens an adversary’s ability to recover input data. Compared with undefended
baselines, we observe dramatic increases in MSE, confirming that pixel-level reconstruction
error rises sharply under our defence. At the same time, PSNR values drop by approximately
25% to 40%, reflecting a substantial decline in overall image fidelity. Perceptual metrics show
similar trends: LPIPS scores increase by a large margin, indicating greater perceptual dissim-
ilarity between the reconstructed and true images, while SSIM values decrease consistently,
demonstrating a loss of structural similarity. Taken together, these metrics confirm that gradients
stand-in prevent accurate data reconstruction, forcing attackers to produce outputs that are
noisy, visually degraded, and structurally inconsistent, while the global model still maintains its

learning performance.

4.5 Conclusion

In this chapter, we introduce, AdaDefence, a novel defence mechanism against gradient leakage
tailored for the FL framework. The gist of AdaDefence is to use Adam to generate local
gradients stand-in for global aggregation, which effectively prevents the leakage of input data

information through the local gradients. We provide a theoretical demonstration of how the
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gradients stand-in secures input data within the gradients and further validate its effectiveness
through extensive experimentation with various advanced gradient leakage techniques.

Our results, both quantitative and qualitative, indicate that integrating the proposed method
into the model precludes the possibility of reconstructing input images from the publicly shared
gradients. For GRNN, the attack relies on learning a mapping between raw gradients and
the original images through a generative model. Because AdaDefence replaces raw gradients
with stand-in that retain only the moment estimates, the fine-grained directional information
needed by GRNN is no longer available, so reconstruction fails. For IG, the attack depends
on cosine similarity between observed gradients and candidate gradients to iteratively refine
the reconstructed image. Since the stand-in does not preserve exact magnitudes or directions,
the cosine similarity objective cannot be satisfied, and IG fails to converge. For GLAUS, the
method exploits unbiased gradients sampling to approximate real gradients and then reconstruct
private data from these approximations. With AdaDefence, only stand-in is shared, so the
unbiased sampling assumption is broken, making GLAUS ineffective in all cases. Furthermore,
we evaluate the impact of the defence plug-in on the model’s classification accuracy, ensuring
that the defence mechanism does not detract from the model’s performance. We are excited to
make the implementation of AdaDefence available for further research and application.

In summary, the core contribution of this chapter is the introduction of AdaDefence, a
defence mechanism that secures FL by replacing raw gradients with Adam-based gradients
stand-in. This approach conceals sensitive information from leakage attacks while preserving
model utility and convergence efficiency, offering a lightweight alternative to noise-injection or
encryption-based methods. As a natural next step, future work will investigate layer-wise vulner-
ability, examining how different layers contribute to potential information leakage. Extending
this analysis to heterogeneous client settings will further test the resilience of AdaDefence and

guide the design of even more robust privacy-preserving strategies in FL.
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Chapter 5

Cross-Stock Trend Integration for
Enhanced Predictive Modelling in

Federated Learning

In this chapter, we focus on the third topic in FL, namely its real-world applicability in finan-
cial modelling. Stock price prediction is a critical area of financial forecasting, traditionally
approached by training models on the historical price data of individual stocks. While such
single-stock models can capture local dynamics, they fail to exploit correlations across stocks
that may provide richer predictive signals. This limitation narrows their ability to model broader
market behaviour. The method proposed here, CSTI, addresses this challenge by merging local
patterns into a global representation that captures dependencies across assets. Our strategy is
inspired by FL, which enables decentralised training while preserving privacy. In CSTI, models
are first trained on individual stock data and then integrated into a unified global model, which
is subsequently fine-tuned to maintain local relevance. This allows parallel training of stock-
specific models, efficient use of computational resources, and the aggregation of global insights
without requiring data sharing. Importantly, CSTI builds on the FL techniques developed in
the previous chapters. Chapter 3 showed how adaptive, element-wise aggregation can stabilise
global models under heterogeneous data distributions. This principle carries over to CSTI,
where aggregation across different stocks faces similar heterogeneity. Chapter 4 introduced
AdaDefence to counter gradient leakage attacks, a concern that is particularly acute in finance,
where transaction data are highly sensitive and tightly regulated. By drawing on these advances,

CSTI demonstrates how federated aggregation and privacy protection can be combined in a
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practical financial forecasting application. We conducted extensive experiments to evaluate
CSTI, showing that it outperforms benchmark models and improves the predictive capability of
state-of-the-art methods. These results highlight the efficacy of CSTI in advancing stock price
prediction and illustrate how the broader techniques of secure and efficient FL developed in this

thesis can be applied in a domain where both performance and confidentiality are paramount.

5.1 Introduction

Stock price prediction has long been a cornerstone of financial research, with its origins rooted
in attempts to model and forecast market behaviour for informed decision-making. Early efforts
in stock price prediction were dominated by statistical models, such as Autoregressive Integrated
Moving Average (ARIMA) [93-95] and exponential smoothing [96,97] methods, which relied
on historical price data to identify patterns and trends. These models were effective within their
time but were limited by their linear assumptions and inability to capture the complexities of
financial markets.

The advent of computational advancements and the rise of ML brought a paradigm shift
to stock price prediction. Techniques such as SVM [98], DT [99], and ensemble methods like
Random Forest (RF) [100] gained popularity for their ability to model non-linear relationships
in financial data. With the availability of large datasets and increased computational power,
DL approaches, including RNN [101], LSTM [37], Gated Recurrent Unit (GRU) [102], and
Transformer [25], emerged as dominant methods. These models excelled at capturing temporal
dependencies and intricate patterns, significantly improving prediction accuracy. Despite
these advancements, most traditional ML and DL approaches focus on training models using
individual stock data, often neglecting the inter-dependencies between stocks. Based on these
traditional approaches, many novel methods are proposed aiming to achieve higher accuracy
of prediction, such as, FilterNet [103], FreTS [104], DLinear [105], TimesNet [106] and
PatchTST [107]. FilterNet is tailored for time series forecasting, emphasising the extraction of
informative temporal patterns through learnable frequency filters. By selectively amplifying
or attenuating specific components of time series signals, FilterNet effectively captures both
high-frequency and low-frequency information. This design addresses challenges such as
vulnerability to high-frequency noise and inefficiencies in full-spectrum utilization, which
are common in Transformer-based models. FreTS introduces a novel approach by applying
Multi-Layered Perceptron (MLP) in the frequency domain. This method involves transforming

time-domain signals into their frequency-domain representations using the Discrete Fourier
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Transform (DFT). FreTS then employs redesigned MLP to learn the real and imaginary
parts of these frequency components, capturing global dependencies and concentrating on
key frequency components with compact signal energy. Operating on both inter-series and
intra-series scales, FreTS effectively learns channel-wise and time-wise dependencies. DLinear
is a simple and fast model for long-horizon forecasting that utilises linear layers for trend and
seasonality components, offering competitive accuracy with reduced complexity. TimesNet
is a CNN-based model that transforms time series data into 2D tensors using the Fast Fourier
Transform (FFT), enabling the application of visual backbones like inception to capture temporal
patterns effectively. PatchTST is a Transformer-based model that employs a patch-based
technique inspired by computer vision, achieving state-of-the-art prediction results in long-term
time series forecasting. While those approaches have produced good results, this single-stock
perspective can cause the model to miss broader market trends or cross-stock relationships that
can provide valuable predictive insights. Researchers have begun exploring collaborative and
integrative strategies to address these limitations [108]. For example, K. J. Koa et al. [109]
introduced a model that combines deep hierarchical variational auto-encoders with diffusion
probabilistic techniques to predict stock prices over multiple steps, addressing the inherent
stochastic nature of stock data; Z. Pei et al. [110] proposed a method that leverages time
series decomposition and multi-scale CNNs to predict stock prices using Open, High, Low,
Close, and Trading volume data from multiple stocks; Y. Dong and Y. Hao [111] presented a
DNN framework that dynamically assigns weights to multidimensional features from various
stocks, capturing the impact of each feature on stock prices; W. Liu et al. [112] introduced a
method that calculates multiple factors, including Alphal58 and OCHLVC (Open, Close, High,
Low, Volume, and Change) data, to predict stock prices using a GAN [113] combined with
TrellisNet [114].

In recent years, the fusion of financial domain knowledge with sophisticated computational
techniques has opened new avenues for stock price prediction. The incorporation of external
data sources, such as news sentiment [115], macroeconomic indicators [116], and social media
trends [117], alongside advancements in model architectures, continues to push the boundaries
of what is possible in financial forecasting. As markets grow increasingly complex and in-
terconnected, methods that transcend traditional single-stock modelling and embrace holistic,
cross-stock approaches represent a promising direction for future research. The essence of FL.
lies in merging local models to create a global model that captures the latent feature space of

each local dataset without compromising the privacy or exposing the details of any individual
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Figure 5.1: Illustration of CSTI

dataset. This concept inspired our approach, as we recognised that the trends of different stocks
could be similarly merged to form a unified global understanding. Stock price movements, de-
spite their unique characteristics, often share underlying latent patterns. By leveraging this idea,
we aim to enhance prediction performance by integrating these shared patterns into a cohesive
global model. In this chapter, we propose a novel training strategy designed to transform local
patterns derived from individual stocks into a cohesive global understanding, thereby enhancing
predictive modelling through the CSTI. Specifically, our approach involves training individual
models on the historical price data of different stocks and then merging these models iteratively
during training. This iterative merging process allows the global model to progressively capture
shared patterns and relationships among stocks, fostering a comprehensive understanding of
cross-stock price dynamics. Once the global model achieves a sufficient level of convergence, we
fine-tune it on the data of each individual stock to adapt and optimise its predictions for specific
stocks. As shown in Figure 5.1, this two-phase training strategy not only preserves the unique
characteristics of each stock but also leverages the broader market relationships that enhance
prediction accuracy. By integrating cross-stock trends into the learning process, our method
addresses the limitations of traditional single-stock training and offers a robust framework for
improving stock price prediction models. Our strategy inherently supports parallel training,
allowing individual stock models to be trained simultaneously, which significantly improves
computational efficiency and scalability. We have conducted comprehensive experiments on
famous benchmark dataset, FNSPID, and evaluated our approach using multiple state-of-the-art
models to validate its effectiveness. The results illustrate that our proposed training strategy
significantly enhances overall performance, outperforming traditional single-stock training

methods and existing benchmark models. By integrating cross-stock trends, our method not
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only improves prediction accuracy but also demonstrates robustness across different market

conditions and datasets.

5.2 Related Work

5.2.1 Federated Learning

Personal data protection and privacy-preserving issues have garnered significant attention
from researchers [118-120]. Traditional ML approaches, which typically require centralised
data for model training, are becoming increasingly challenging to implement due to stringent
restrictions on data sharing. As a result, decentralised data-training approaches have emerged
as a more attractive alternative, offering notable advantages in privacy preservation and data
security. FL [1,2] was introduced as a solution to these concerns, enabling individual data
providers to collaboratively train a shared global model without the need for centralised data
aggregation. [1] proposed a practical decentralised training method for DNNs based on
averaging aggregation. Their experimental evaluations, conducted on a variety of datasets and
architectures, demonstrated the robustness and effectiveness of FL in addressing privacy and

security challenges.

5.2.2 Stock Trend Prediction

Traditionally, statistical approaches have been developed for time series forecasting, focusing
on both the time and frequency domains. In recent years, DL methods have gained popularity
in this field, owing to their ability to capture non-linear and complex relationships. These
techniques leverage architectures such as RNN, LSTM, GRU and CNN to model dependencies
within either the time or frequency domain. Furthermore, Transformer-based forecasting models
have emerged as a powerful alternative, utilizing attention mechanisms to effectively model
long-range dependencies.

FilterNet is designed to enhance time series forecasting by leveraging learnable frequency

filters. It can be expressed as:
=7 Y7 2)- Hilter)

where .Z is Fourier Transform, .# ! is inverse Fourier Transform and Hiler 18 learnable
frequency filter. It addresses challenges such as vulnerability to high-frequency signals and

inefficiencies in full-spectrum utilization, which are common in Transformer-based models.
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FilterNet introduces two types of learnable filters: plain shaping filter (PaiFilter) and contextual
shaping filter (TexFilter). The first one adopts a universal frequency kernel .73, for signal
filtering and temporal modelling. .7#5,; is a random initialised learnable weight. The PaiFilter
processes the input time series to selectively pass or attenuate certain frequency components,

effectively capturing essential temporal patterns.
¥ = F NF(Z) Hpa)

The second examines filtered frequencies in terms of their compatibility with input signals
for dependency learning. It adapts to the specific context of the input data, allowing for more

nuanced modelling of temporal dependencies.
2 =F NF(2) K1 F(2)))

where 77,y is a neural network acts as data-dependent frequency filter. FilterNet can approxi-
mate the linear and attention mappings widely adopted in time series literature. It effectively
handles high-frequency noises and utilises the entire frequency spectrum beneficial for fore-
casting. Extensive experiments on eight time series forecasting benchmarks have demonstrated
FilterNet’s superior performance in both effectiveness and efficiency compared with state-of-
the-art methods.

FreTS applies MLP in the frequency domain and involves transforming time-domain signals

into their frequency-domain representations using the DFT:
T—1 ,
2 (f) =) x(1)- 2!
t=0

where x(¢) is the time-series data, e~2/%/? is an exponential function that decomposes the signal
into its frequency components. FreTS then employs redesigned MLP to learn the real (Re(Z"))
and imaginary (Im(.Z")) parts of these frequency components, capturing global dependencies

and focusing on key frequency components with compact signal energy:
Z(f) = MLP(Re(Z)) + j-MLP(Im(Z"))

Operating on both inter-series and intra-series scales, FreTS effectively learns channel-wise
and time-wise dependencies. Experiments on 13 real-world benchmarks, encompassing both
short-term and long-term forecasting tasks, have shown that FreTS consistently outperforms

many existing methods.

72



5.2. Related Work

DLinear is a time series forecasting model designed to address the challenges of modelling
both long-term trends and short-term seasonality in temporal data. It emphasises the importance
of decomposing time series data into two components: trend and seasonal, and then apply-
ing linear modelling to each component separately for enhanced forecasting accuracy. The

decomposition can be expressed as:

X(l) = Xtrend (t) + Xseansonal (t)

where x(¢) is the original time series, X;..,q(¢) captures the long-term trends, and Xseansonai (1)
represents the short-term periodic fluctuations. For the trend component, a simple linear model
is used to approximate the general upward or downward trajectory over time. The linear trend is

modelled as:

Xtrend (t> = Wyrend 't + btrend

where wy,.,q 1s the weight (slope) capturing the direction and magnitude of the trend, and b;,,q
is the bias term. For the seasonal component, periodic patterns are captured using a Fourier
decomposition approach, which breaks the time series into sinusoidal components. The seasonal

component can be modelled as:

2wkt 2wkt
7; )+ by - sin( 7r

)

where K is the number of harmonics (frequency components), 7" is the period of the seasonality

K
Xseansonal (t) = Z (ak : COS(
k=1

(e.g., daily, weekly, etc.), and ay, by are learnable coefficients representing the amplitude of the
cosine and sine waves, respectively. This decomposition allows the model to adapt to various
periodic patterns in the data. One of DLinear’s key strengths is its simplicity and focus on linear
relationships, which makes it computationally efficient compared to more complex DL models.
By separating the linear components explicitly, DLinear avoids the over-fitting risks often
associated with large neural networks while retaining the ability to capture essential temporal
patterns. Additionally, the model can be trained in parallel for each component, enhancing
scalability.

TimesNet is an advanced model for time series forecasting that innovatively transforms
1D time series data into 2D tensors, enabling it to capture both intra-period and inter-period
variations effectively. This approach is particularly beneficial for modelling complex temporal
patterns, including periodicity and irregular trends. The transformation involves reshaping the

time series data x(7) into a 2D tensor X based on a given period P, defined as:

X[i,jl=x(@t+i-P+j)
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where i indexes the inter-period variations (across different cycles of the period P), and j
captures intra-period variations (within a single cycle). This reshaping allows the model to
treat periodic dependencies as spatial patterns, which can be efficiently processed using 2D
convolution operations. The core building block of TimesNet is the TimesBlock, which employs
parameter-efficient 2D convolutions to model temporal variations. For a given tensor input X ,

the TimesBlock applies a series of 2D convolution layers:
F = o (Conv2D(X,W)+D)

where W and b are the learnable weights and biases of the convolution kernel, and ¢ represents
an activation function such as Rectified Linear Unit (ReLU). The convolution operation captures
local temporal dependencies by aggregating information across neighbouring intra-period and
inter-period variations. To adaptively discover multi-periodicity in time series data, TimesNet in-
corporates an inception-like architecture within the TimesBlock, enabling it to process multiple
kernel sizes simultaneously. This allows the model to extract features at different temporal reso-
lutions. For instance, convolutions with larger kernels capture long-term dependencies, while
smaller kernels focus on short-term variations. Additionally, TimesNet includes a periodicity
discovery mechanism to identify the most relevant period P for each dataset. This mechanism
involves analysing the autocorrelation of the time series and selecting the period with the highest
periodicity score, ensuring that the reshaped tensor optimally represents temporal variations.
The output of TimesNet is aggregated using global pooling and fed into a fully connected layer
for prediction. The model is trained using a loss function, such as MSE.

PatchTST is a Transformer-based architecture specifically designed for time series forecast-
ing. It introduces the concept of dividing time series data into non-overlapping patches, treating
these patches as analogous to words in NLP tasks. This patching mechanism helps capture both
local and global temporal dependencies efficiently. Let x € R7 *¢ represent a multivariate time
series with 7" time steps and d features. PatchTST segments x into N = % patches of size p,
such that each patch F; is defined as P; = {x;,,X;,,,--,%;,, , - These patches are then linearly

embedded into a feature space using a learnable embedding matrix W,:
Zi=PF-W,+ be

where W, € RP*% maps each patch into a d.-dimensional feature space, and b, is a bias term.

The patches are then passed through a Transformer encoder, where the self-attention mechanism
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plays a pivotal role. The attention mechanism operates as:

. oK'
Attention(Q, K, V) = Softmax %
Vdj

where Q = ZW,, K = ZW,, and V = ZW,. Here, W,,W,, W, € R%*dk are learnable projection
matrices for queries, keys, and values, respectively, and d; is the dimensionality of the key vec-
tors. The scaled dot-product attention computes the relationship between all patches, allowing
the model to capture both short-term and long-term dependencies across the time series. To
enhance the model’s ability to focus on temporal patterns, positional encodings E are added
to the patch embeddings Z, ensuring that the Transformer is aware of the order of patches:
7 = Z+ E. The Transformer encoder processes these embeddings through multiple layers of
Multi-Head Self-Attention (MHSA) and Feed-Forward Network (FFN). Each encoder block

can be expressed as:

7' = LayerNorm(Z + MHSA(Z))
7" = LayerNorm(Z' 4+ FFN(Z'))

The final output Z” is flattened and passed through a regression head for forecasting. PatchTST’s
design, particularly the use of patching and Transformers, enables it to model both local temporal
structures within patches and global dependencies across patches effectively.

While the aforementioned methods address various aspects of time series forecasting, in-
cluding frequency-domain analysis (FilterNet, FreTS), linear modelling (DLinear), 2D variation
modelling (TimesNet), and patch-based Transformer architectures (PatchTST), our approach
sets itself apart by focusing on the integration of cross-stock patterns to enhance stock price
prediction. To the best of my knowledge, there are no existing FL. methods that target cross-stock
integration for financial forecasting. Prior work [121, 122] on stock prediction largely trains
single-asset models or centralised multi-asset models. FL papers [123—125] in finance mainly
focus on privacy-preserving training across institutions without modelling cross-asset depen-
dencies. The work in [123] proposes a FL. framework for multiple traditional ML algorithms,
expanding the utility of FL from DL to traditional ML. [124] proposed a new method, named
Federated Learning Enhanced Multi-Layer Perceptron Long Short-Term Memory (Fed-MLP-
LSTM). They combined MLP with LSTM, which the former part acts as feature extraction
and the later is for sequence modelling. The authors of the work [125] designed F-LSTM to
tackle the dispersion problem that usually occurs in data sources like cryptocurrency. Drawing

inspiration from FL principles, our method merges local models trained on individual stocks into
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Figure 5.2: The overview architecture of our proposed CSTI.

a unified global model, effectively capturing inter-dependencies among different stocks without
the need for centralised data aggregation. This approach enables the model to uncover shared
patterns across stocks, potentially improving predictive performance in stock price forecasting.
Moreover, our proposed strategy is highly versatile and can be seamlessly deployed on top of
all the aforementioned models. By doing so, our method complements and enhances existing
approaches, enabling them to learn cross-stock patterns and overcome their current limitations.
This synergy has the potential to unlock even greater performance in stock price prediction

tasks.

5.3 Methodology

In this chapter, we propose a novel training strategy, CSTI, which enhances stock price prediction
by leveraging shared patterns and interdependencies among stocks. As shown in Figure 5.2,
unlike traditional single-stock forecasting methods that rely solely on individual stock data, CSTI
extracts local patterns from each stock and integrates them into a unified global understanding,
enabling a more holistic representation of market dynamics. The proposed framework consists of
three key phases: individual training, global model merging, and fine-tuning, each contributing
to the development of a robust, generalisable model for stock prediction. A pseudocode is

provided in Algorithm 4.
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Algorithm 4: CSTI Framework

Input: Stock datasets { Xy, yk}fz1 , number of stocks K, training epochs E, global
learning rate 1), adaptation coefficient ¢, regularization weight A
Output: Fine-tuned models {f;(-;6])}X_, for each stock
Phase 1: Individual Training
forall stock Sy, where k =1 to K in parallel do
Initialize model fi(-; 6k)
Update 6 by minimizing:
Ge=+ X (fe(Xers 06) — yir)?
end
Phase 2: Global Model Merging
forall stock S; do
‘ Compute weight wy
end
Aggregate global model: 6, = %Zszl Wi 6k
fore=110 FE do
‘ Refine 6, by repeating Phase 1 & 2.
end
Phase 3: Fine-Tuning for Stock-Specific Adaptation
forall stock Sy, in parallel do
Initialize 6; < 6,
fore=11t E do
Update 6, by minimizing:
L= 7L (he(Xas 6) = yia)* + A6k — 62
end
Save 6]

o N AN R W N =

NN [ T T v T
N»—tg\am\la\mhunuc

end
return Fine-tuned models {fi(-; 6])}&_,

[SI
W

5.3.1 Individual Training

The first phase of the CSTI framework focuses on training individual models for each stock
using historical stock price data. Each stock, denoted as Sy, is represented by its time-series
dataset X, € RT*? where T represents the length of the time horizon and d denotes the number
of extracted features for each time step. The goal of this phase is to enable each stock-specific
model to learn its own price patterns, volatilities, and dependencies on various market indicators.
To train a local model f;(+; 6;) for stock Sk, we define an objective function that optimises the

model parameters 6; to minimise the discrepancy between the predicted stock prices and their
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actual observed values. The training process is based on the following loss function:

1 T
L= 7 Y (X300 300), (5.1)

=1
where £ represents the stock price prediction loss function, X, denotes the feature set at time ¢,

and y, , represents the actual stock price at time ¢. The loss function is typically designed as the

MSE to penalise large deviations in predictions:

O fi(Xkss 00),vks) = (fe (X3 8) — yia ) (5.2)

To ensure robustness, each local model is trained using a combination of historical market
indicators, technical indicators, and external financial variables. The feature set X, may
include open price, close price, trading volume, moving averages, volatility measures, and
macroeconomic indicators. Feature engineering techniques, such as time-series normalisation,
log transformation, and seasonal adjustment, are applied to preprocess the data, ensuring stability
in learning patterns. A key advantage of this phase is that training is conducted in parallel for
all stocks, allowing for efficient scalability. Given a set of K stocks, their respective models
{ fk}szl are trained simultaneously on independent computing units, significantly reducing the

computational overhead:

Z. (5.3)

M=

¥ =

k=1

Parallel training enables the framework to handle a vast number of stocks without compromising
computational efficiency. It also allows for the incorporation of multiple asset types, including
equities, commodities, and exchange-traded funds, making the system flexible for large-scale
financial modelling. Each local model learns stock-specific dependencies, capturing intrinsic
price movement trends, cyclical patterns, and market anomalies. By training independently, the
models are optimised to their respective stock behaviours, avoiding cross-stock contamination
during initial training. This ensures that local training preserves fine-grained stock-specific
insights before transitioning to the global model merging phase, where broader inter-stock

relationships are integrated.

5.3.2 Global Model Merging

In the second phase, the locally trained models are iteratively merged to create a global model

f2(+;6;). This merging process integrates the parameter spaces {6 }X_; of individual stock
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models, forming a generalised representation of cross-stock trends. Unlike single-stock models
that learn in isolation, this global model captures inter-stock dependencies, enabling a more
robust and holistic understanding of market-wide movements. To achieve this, the global model

parameters 6, are computed using a weighted aggregation of the locally trained models:

1 K
0= Lwibe (5.4)

where wy, is a weighting factor assigned to stock Sy based on predefined metrics such as stock
volatility, market capitalization, or historical prediction accuracy. This weighted aggregation
ensures that more reliable and stable stocks contribute more significantly to the global model,
while highly volatile or less predictive stocks have a reduced impact. The adaptive weighting
mechanism prevents dominant stocks from disproportionately influencing the model and ensures
that under-represented stocks retain relevance. The integration of local models into a global
model enables the detection of market-wide patterns that extend beyond individual stock
movements. By aggregating trends from multiple stocks, the global model learns shared patterns
such as correlated price fluctuations, responses to macroeconomic indicators, and sectoral
dependencies. These cross-stock relationships improve predictive robustness, particularly in
highly dynamic market conditions where isolated stock models may struggle to generalise.
One of the challenges in global model merging is ensuring that the aggregation process
does not overly smooth individual stock characteristics, which may lead to loss of stock-specific
signals. To mitigate this, we employ an iterative refinement process where the merged global
model is evaluated after each aggregation step to monitor performance convergence. The
merging continues until the global model stabilises, ensuring that it retains both cross-stock
insights and essential stock-specific variations. In our experiments, we initially applied equal
weights to all individual models, assuming uniform importance across stocks. This baseline
approach demonstrated stable performance; however, further refinements can be introduced
by dynamically adjusting wy using market-specific criteria. For instance, a volatility-aware
weighting scheme assigns lower weights to highly volatile stocks to prevent extreme fluctuations

from distorting the global model:

_ 1
- ort¢€’

Wi (5.5)

where o}, represents the standard deviation of stock S; over the training period, and € is a small

constant to prevent division by zero. Another approach is accuracy-based weighting, where
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stocks with historically higher predictive accuracy are given greater weight in the aggregation:

Wi = ZEIIAI-’ (5.6)
where Ay is the past performance metric of stock S, such as its MSE or Mean Absolute
Percentage Error (MAPE) in prior predictions. Beyond improving model accuracy, the global
model merging process enhances the stability of stock price predictions. Since individual stocks
often experience periods of high volatility, sectoral shocks, or external economic impacts, a
well-merged global model leverages the diversification effect to mitigate the impact of such
anomalies. The iterative refinement ensures that the model does not become overly biased
toward a subset of stocks while maintaining an accurate and generalised understanding of
financial market behaviour. To further optimise the merging process, future work could explore
alternative aggregation strategies, such as clustering-based grouping of stocks before aggregation.
By grouping stocks with similar behavioural patterns, aggregation could be performed at an
intermediate level before constructing the final global model, preserving sector-specific trends
while still capturing market-wide insights. By integrating insights across multiple stocks and
refining the aggregation process through adaptive weighting, the global model effectively
enhances predictive power compared to traditional single-stock forecasting. The resulting model
not only improves overall accuracy but also adapts dynamically to evolving financial conditions,

making it a robust framework for large-scale financial forecasting applications.

5.3.3 Fine-Tuning for Stock-Specific Adaptation

Once the global model achieves sufficient convergence, the final phase involves fine-tuning the
global model on individual stock data to ensure that stock-specific characteristics are preserved
while leveraging the broader knowledge embedded in the global model. Although the global
model provides a generalised understanding of market-wide trends, each stock exhibits unique
behavioural patterns that may not be fully captured in a purely aggregated model. Fine-tuning
addresses this limitation by reintroducing stock-specific learning while maintaining the benefits
of cross-stock knowledge integration. The fine-tuning process begins by re-initialising the
parameters of each local model 6 using the global model parameters 0,. This re-initialisation
allows the local models to start from an optimised baseline rather than learning from scratch,
significantly improving training efficiency and accelerating convergence. The stock-specific

adaptation is then performed through further optimisation on the individual stock dataset,
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refining the parameters to minimise the stock-level prediction loss:

1
O = argmin - ¥ €(fe(Xks: 60),yer)- (5.7)
e

where /£ represents the loss function, Xy, is the feature vector for stock Sy at time step #, and yy;
is the corresponding ground truth stock price. The fine-tuning process ensures that the model
maintains the insights gained from the global model while adapting to the idiosyncratic features
of each stock, preventing excessive bias toward overall market behaviour.

A critical challenge in this phase is achieving the optimal balance between global gen-
eralisation and stock-specific adaptation. If the fine-tuning step is too aggressive, the model
may over-fit to individual stock data, losing the generalisation benefits gained from the global
model. Conversely, if the fine-tuning is too minimal, the model may fail to capture the distinct
price movement patterns of each stock. To address this, we introduce an adaptive learning rate
strategy that controls the extent of fine-tuning. Specifically, we initialise the learning rate 7 for

each stock Sy using a scaled version of the global learning rate 1,:

M=, (5.8)

where « is a tuning coefficient that determines the adaptation strength. A lower o ensures a
smoother transition from the global model, preserving shared market trends, whereas a higher
o allows greater flexibility for local adaptation. Another important aspect of fine-tuning is the
regularization of model parameters to prevent divergence from the global model while still
allowing necessary stock-specific refinements. We incorporate an L, regularization term that

penalises excessive deviation from 6,:

1 T
B = 5 Y X0 v0) + A8 — O, (5.9)
=1

where A is a regularization coefficient that controls the trade-off between maintaining the global
model structure and adapting to stock-specific features. This constraint ensures that while
fine-tuning personalises the model for individual stocks, the learned parameters remain aligned
with the global market representation, thus avoiding drastic deviations that could lead to over-
fitting. Beyond parameter fine-tuning, feature-level adaptation can be incorporated to enhance
stock-specific learning. Fine-tuning is crucial for ensuring that each stock model benefits from
the cross-stock knowledge integrated in the global model while preserving the unique dynamics

that define its price behaviour. The resulting fine-tuned models exhibit improved accuracy in
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predicting stock movements compared to models trained in isolation, as they incorporate both
market-wide trends and individual price variations. This final adaptation phase plays a pivotal
role in making the CSTI framework effective for real-world financial forecasting, balancing

generalisation and stock-specific refinement for optimal predictive performance.

5.3.4 Advantages of the CSTI Framework

The CSTI framework improves on traditional single-stock training by combining local learning
with global integration of cross-stock information. Its core novelty lies in the global merging
and adaptive weighting phase, which enables the model to capture dependencies across assets
that standard FL averaging overlooks. Parallel training of individual stock models ensures
scalability, allowing efficient utilisation of computational resources across many stocks. During
the merging phase, local models are combined into a global representation, where adaptive
weighting gives greater influence to stocks whose updates are more representative of shared
market behaviour. This mechanism allows the global model to learn sector-level correlations
and macroeconomic patterns, improving generalisation across diverse market conditions. The
fine-tuning stage then restores local specificity, ensuring that while benefiting from global
insights, each stock model retains sensitivity to its own unique price dynamics. Convergence
checks are incorporated to guarantee stability during the integration process, preventing noisy
or underperforming stock updates from destabilising the global model. In this way, CSTI goes
beyond conventional FL, which focuses primarily on decentralisation and privacy, by directly
enhancing predictive performance. By adaptively merging and refining models, CSTI preserves
stock-specific features while exploiting cross-stock trends, leading to more accurate and robust

forecasts for large-scale financial applications.
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5. Cross-Stock Trend Integration for Enhanced Predictive Modelling in Federated Learning

5.4 Experiments

5.4.1 Settings and Dataset

We utilised the PyTorch framework [58] to implement all neural network models. For repro-
ducibility, the source code is publicly available and can be accessed at the following link!.
Local training was conducted using various optimisation algorithms, all of which employed a
consistent learning rate of 0.01 and a momentum of 0.9. The local batch size was set to 64, and
the number of training epochs was fixed at 100. For our proposed strategy, we trained local
models for 1 epoch before integrating them to generate a global model during the first 50 epochs.
Following this, we fine-tuned the global model for the remaining 50 epochs. This approach
ensures that both the normal training process and the CSTI framework have the same total
number of model weight update iterations. To evaluate the performance of our method across
different stock group sizes, we randomly selected three groups of sub-datasets, containing 5,
25, and 50 stocks, respectively. These experiments were conducted to assess the scalability
and performance of our method with varying numbers of stocks. The backbone models used
in our experiments include Transformer, TimesNet, DLinear, FreTS, PaiFilter, TexFilter, and
PatchTST.

In our study, we conducted experiments using FNSPID, which is a comprehensive dataset
designed to address key limitations in financial market analysis by integrating numerical stock
data with sentiment-laden financial news. This dataset spans the years 1999 to 2023, encompass-
ing over 29.7 million stock price entries and 15.7 million time-aligned financial news records for
4775 companies within the S&P500 index. The dataset uniquely combines quantitative and qual-
itative data to enhance predictive modelling capabilities, particularly in the realm of stock price
forecasting. FNSPID was built through a rigorous process combining data scraping, cleaning,
and integration. Stock price data was sourced from Yahoo Finance APIs, while financial news
was collected via web scraping from platforms like NASDAQ. Ethical considerations, including
adherence to copyright laws and avoidance of premium content, were prioritised throughout
data collection. Sentiment scores were normalised and missing data gaps were handled through
exponential decay methods to maintain temporal consistency. It sets a new standard for financial
datasets, offering a rich resource for advancing research in financial market analysis, sentiment
modelling, and stock price prediction. In out experiments, we used two sets of data features.
The first set includes Open and Close prices and the second one includes Open, Close and

Sentiment.

'https://github.com/Rand2AI/CSTI
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5. Cross-Stock Trend Integration for Enhanced Predictive Modelling in Federated Learning

5.4.2 Results Analysis

A set of comprehensive experiments were conducted to evaluate the performance of our pro-
posed method compared to the normal training strategy. Following the work in [115], the normal
training strategy involves training a model on one stock’s historical price data, then fine-tuning
it on the next stock’s data, iteratively, until all the stock data has been utilised. Table 5.1 presents
the experimental results for seven models on the FNSPID dataset, with and without sentiment
information. The results highlighted in red indicate the superior ones. Overall, our proposed
training strategy, CSTI, outperforms the normal training strategy in most experiments. For
example, with the PaiFilter model, CSTI achieved R? values of 0.9125 and 0.9096 on data
with and without sentiment information, respectively, using 25 stocks. In contrast, the normal
training strategy only achieved R? values of 0.4405 and 0.4398 under the same conditions. The
substantial gap can be attributed to PaiFilter’s reliance on capturing broad temporal patterns: the
cross-stock integration stage in CSTI enriches its representation with sector-level correlations
and shared market signals, which are otherwise missing in isolated single-stock training. How-
ever, our method does not always yield better results. In the case of TimesNet and PatchTST,
the normal training strategy consistently outperformed CSTI across experiments using 25 and
50 stocks. This behaviour can be explained by the architectural design of these models. Both
TimesNet and PatchTST employ strong sequence modelling and tokenisation mechanisms that
already capture global context internally. When additional cross-stock aggregation is introduced
through CSTI, the effect may become redundant or even introduce noise from less correlated
stocks, leading to reduced predictive accuracy. Another clear trend is that models trained on
data with sentiment information consistently outperformed those trained without sentiment
features. This supports the claim made in [115] that textual and sentiment-based signals provide
complementary information to historical price series. Importantly, the benefit of sentiment
data interacts with cross-stock aggregation, when combined with CSTI, sentiment features
help amplify shared market signals such as investor mood or sector-wide reactions, further
improving performance. Taken together, these observations show that CSTI is most beneficial
for architectures like PaiFilter that depend on broad trend information and are enhanced by
additional cross-stock correlations. For models such as TimesNet or PatchTST, which already
encode rich global dependencies, CSTI offers less advantage and may require more selective

aggregation strategies to avoid incorporating noise.

In Figure 5.3, we present visualisations of predicted regression lines from the normal training

strategy, our proposed CSTI method, and CSTI pre-trained global models, trained on 50 stocks

86



5.4. Experiments

without sentiment information. The first column displays results from the normal training
strategy, the second column shows predictions from CSTI, and the third column presents outputs
from the global model before fine-tuning. For the Transformer model on AMD stock (Figures
(a)-(c)), both the normal training strategy and CSTI follow the ground truth closely. However,
the pre-trained global model diverges in local details while retaining the overall up-and-down
trend. This shows how CSTI’s cooperative learning captures broad market patterns during
pre-training, which fine-tuning then sharpens into stock-specific accuracy. For the TimesNet
model on BIIB stock (Figures (d)-(f)), the normal training strategy aligns more closely with
short-term fluctuations than CSTI. This illustrates a limitation of CSTI, that when a model
architecture already encodes global dependencies internally, additional cross-stock aggregation
may introduce noise that obscures fine-grained local signals. The pre-trained global model
captures the main trajectory but lacks the refinement of the fine-tuned CSTI model, underscoring
the complementary roles of global integration and local adaptation. For the DLinear model on
GSK stock (Figures (g)-(i)), CSTI predictions reduce noise and align more closely with the
ground truth than the normal training strategy. Here, CSTI improves performance by filtering out
unstable local updates through its global merging and weighting stage, highlighting that simpler
linear models benefit strongly from cross-stock integration. The pre-trained global model again
captures overall directionality but misses local variations, showing that fine-tuning is necessary
to recover stock-specific latent dynamics. Overall, these visual comparisons demonstrate how
CSTI changes prediction behaviour. Pre-training on cross-stock information provides a strong
global prior, while fine-tuning restores local precision. Depending on the model architecture,
CSTI either enhances trend capture (e.g., Transformer, DLinear) or interacts with internal global
mechanisms in ways that may reduce sensitivity to short-term fluctuations (e.g., TimesNet).
This confirms that CSTI’s methodological novelty and directly shapes predictive behaviour,

rather than merely shifting performance metrics.

Figure 5.4 illustrates the training loss over 100 epochs for two Transformer models: one
trained using the normal training strategy (red line) and the other trained with our proposed
CSTI strategy (blue line). Both experiments were conducted using 50 stocks without sentiment
information as the dataset. The normal training strategy exhibits a steady and smooth decline
in training loss from the very first epoch. This is expected, as the Transformer model quickly
adapts to the stock price data, which is relatively straightforward to regress. As a result, the
initial loss is already quite low, and it decreases further in a gradual and consistent manner,

stabilising towards the later epochs. In contrast, the CSTI approach shows a training loss pattern

87



5. Cross-Stock Trend Integration for Enhanced Predictive Modelling in Federated Learning

— CsTI

—— Normal
0.10 +

0.08 +

0.06 -

Loss

0.04 4

0.02 4

0.00 1

0 20 40 60 80 100
Epoch

(a) Both

0.0058 1 ot
—— Normal

0.0056 1

0.0054 A

Loss

0.0052 0.04 4

0.0050 + 0.024

0.0048

0 20 Py 60 80 100 0 20 40 60 80 100
Epoch Epoch

(b) Normal (c) CSTI

Figure 5.4: Training Loss Comparison

more typical of general DL models, with a sharper decline in the initial epochs followed by
minor oscillations as training progresses. This behaviour arises due to the iterative merging
of 50 local models into a unified global model at each epoch, which introduces variability
and occasional fluctuations in the loss curve. The transient spikes observed in the CSTI loss
curve indicate the periodic model merging, which slightly perturbs convergence but ultimately
allows for broader market generalisation. Despite this, the CSTI strategy achieves a comparable

final training loss as the normal training method by the end of the 100 epochs, demonstrating
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its effectiveness in converging to an optimal solution. The figure highlights the differences
in loss dynamics between the two strategies, with CSTI achieving similar performance while

incorporating cross-stock interdependencies to enhance market-wide learning.

5.5 Conclusion

In conclusion, this chapter highlights the transformative potential of integrating cross-stock
patterns into stock price prediction models using the proposed CSTI framework. Traditional
methods, while effective, often neglect the inter-dependencies among stocks, leading to sub-
optimal utilization of available market information and limiting the ability to capture broader
financial trends. By leveraging a novel training strategy that iteratively merges local stock
models into a unified global model, CSTI demonstrates its ability to enhance prediction accu-
racy and generalisation by learning shared market-wide representations. Extensive experiments
conducted on the FNSPID dataset validate the effectiveness of the method, showcasing superior
performance across various models and settings, particularly in capturing complex tempo-
ral dependencies and mitigating over-fitting. The proposed approach not only addresses the
limitations of single-stock training but also integrates complementary benefits of pre-training
and fine-tuning to capture both global trends and stock-specific nuances, ensuring a balanced
trade-off between market-wide insights and individual stock characteristics. Furthermore, the
results underscore CSTT’s scalability, efficiency, and robustness, making it a viable solution for
large-scale financial forecasting applications. This work paves the way for future advancements
in federated financial modelling, opening new avenues for enhancing predictive performance

while preserving privacy and computational efficiency in decentralised financial systems.
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Chapter 6

Conclusions and Future Work

In this chapter, we summarise the key contributions of this thesis and discuss potential directions

for future research.

6.1 Conclusions

This thesis advances the field of FL by addressing three fundamental challenges, which are
efficient aggregation, gradient protection, and real-world applicability. By demonstrating how

these aspects collectively move FL closer to practical deployment.

* First, the proposed EWWA-FL establishes a new approach to adaptive aggregation by
weighting parameters individually rather than assigning a single scalar per client. This
fine-grained mechanism directly addresses the convergence instability and bias introduced
by non-IID data, one of the most persistent challenges in FL. Experimental results across
multiple benchmarks showed faster convergence, reduced variance, and superior accuracy
compared to FedAvg, FedOpt, and FedCAMS, confirming that parameter-level adaptation
yields more stable and generalisable global models. The significance of this finding
extends beyond the specific algorithm, which demonstrates that modelling heterogeneity
at the granularity of parameters can fundamentally improve communication efficiency

and learning robustness in decentralised systems.

* Second, the AdaDefence framework contributes a practical and theoretically motivated
solution to privacy leakage in FL. By substituting raw gradients with Adam-based stand-in,

it prevents adversaries from reconstructing sensitive training data while maintaining model
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performance. The results in Chapter 4 evidenced substantial increases in reconstruction
error (MSE) and decreases in image fidelity (PSNR, SSIM), confirming that AdaDefence
effectively obfuscates information without the high computational cost of encryption
or the accuracy loss caused by like DP or HE. This contribution demonstrates that
lightweight, optimiser-driven obfuscation can achieve a favourable privacy—utility trade-

off, providing a scalable defence for real-world FL applications.

Finally, CSTT illustrates the applicability of FL in the financial domain, showcasing how
aggregation and privacy techniques can be integrated to meet regulatory and operational
constraints. By merging stock-specific models into a global representation and fine-tuning
them locally, CSTI captures cross-stock dependencies that traditional single-stock models
overlook. The improved R? scores across diverse financial architectures validate that
cross-institutional collaboration can enhance predictive accuracy without compromising
data confidentiality. More broadly, CSTI serves as a blueprint for deploying FL in other

sensitive sectors where both performance and privacy are critical.

In combination, these advances demonstrate a coherent progression from theoretical innova-

tion to practical application. Together they improve the efficiency, security, and utility of FL,

showing that fine-grained aggregation, optimiser-based gradient protection, and cross-domain

adaptation can jointly support the development of trustworthy and scalable federated systems.

6.2 Future Work

While this thesis advances FL across aggregation, privacy, and application, several open chal-

lenges remain. We outline three key directions for future exploration.

Gradient Leakage in Natural Language Processing:

92

Most gradient leakage studies focus on computer vision tasks, yet textual models in FL,
including recurrent and transformer-based architectures, are equally vulnerable. Gradients
in language models may encode semantic or syntactic cues, enabling partial reconstruction
of private text. Future work should systematically test these risks by simulating inversion
attacks on federated NLP tasks such as sentiment analysis and document classification.
Extending AdaDefence to sequential data, for example by adapting stand-in to attention

mechanisms, will be crucial to ensure privacy in language applications.



6.3. The End

Lightweight Adaptive Aggregation:
Although EWWA-FL improves convergence under non-IID conditions, its per-parameter
weighting introduces extra computation and communication overhead. A promising
next step is to embed adaptive optimisation principles directly into the aggregation
rule, using moment-based estimates, as in Adam, to approximate parameter stability
without explicit variance computation. This approach could reduce complexity while
retaining fine-grained adaptivity, enabling scalable deployment of adaptive aggregation in

bandwidth-limited or heterogeneous settings.

Partial Gradient Leakage Analysis:
Initial evidence suggests that even incomplete gradient information may expose sensitive
data. This raises an important question, that can full gradients be inferred from partial
updates through structural correlations between layers? Future studies should model
this as a reconstruction problem, estimating missing gradients using learned mappings
between partial and complete updates. Understanding this relationship will clarify how
much information partial gradients carry and guide the design of defences robust to partial

disclosure.

Together, these directions aim to extend the robustness, scalability, and privacy guarantees of
FL beyond the current scope of this thesis, moving toward more secure and efficient real-world

deployments.

6.3 The End

The increasing reliance on large-scale Al models, particularly in the context of the AIGC era,
has raised important ethical concerns surrounding monopolisation, algorithmic transparency,
and data privacy. Centralised models, typically controlled by a handful of dominant technology
companies, often operate as black boxes trained on proprietary data, limiting public oversight
and fostering asymmetric power dynamics in the deployment and governance of Al. This
concentration of control not only stifles competition and innovation from smaller entities but
also exacerbates issues of bias, exclusion, and lack of accountability in decision-making systems.
The inability of users and developers to influence or inspect such systems highlights the urgent
need for more democratic and privacy-preserving approaches to Al development. FL presents
a promising decentralised alternative that addresses these concerns by allowing collaborative

training across multiple data custodians without requiring raw data sharing. In this framework,
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sensitive information remains on local devices, and only model updates are exchanged and
aggregated. This design inherently respects data sovereignty and regulatory requirements
while enabling the collective training of powerful models. Furthermore, by removing the
need for centralised data ownership, FL empowers diverse stakeholders, ranging from small
enterprises to individual users, to participate in the advancement of Al, thereby fostering
inclusivity and reducing dependency on monopolistic actors. FL also enhances transparency
and accountability by encouraging the development of open protocols and modular design
practices, where individual components of the learning pipeline can be independently audited,
adjusted, and improved. These characteristics make it a strong candidate for establishing a
more equitable Al ecosystem, especially in critical domains such as healthcare, finance, and
public infrastructure, where trust, fairness, and security are paramount. The contributions of
this thesis lay the groundwork for making FL. more scalable, secure, and practically deployable.
Specifically, the proposed methods address key challenges in model aggregation under non-IID
conditions, robust privacy defence against gradient leakage, and cross-institutional collaboration
in financial forecasting. These innovations collectively enhance the applicability and resilience
of FL systems. However, realising the full potential of FL in the privacy-aware Al era will
require ongoing efforts to improve aggregation efficiency, reduce communication overhead,
strengthen defences against inference attacks, and tailor FL strategies to domain-specific needs.
Future research should continue to explore these directions, ensuring that FL evolves as a core

enabler of ethical, secure, and decentralised Al technologies.
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