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“When I die, I want to die like my grandfather who
died peacefully in his sleep. Not screaming like all the

passengers in his car.”

Will Rogers
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Abstract

As the leading cause of death amongst all gynaecological cancers, ovarian can-
cer research is an increasingly important area of study. Patients of the disease
continue to suffer from significant challenges despite receiving the best treatment
currently available. Throughout the past, treatments deemed optimal have been
done so based on results from in vivo or in vitro experiments using physical cells.
Advancements in the availability and capability of technology now allows in silico
experiments to provide alternative methods and insights into tumour growth.

A key aspect of ovarian cancer progression is its tenancy to metastasise. Sur-
rounded by the peritoneal cavity and omentum, the ovaries provide an ideal lo-
cation for the spread of malignant neoplasms. This, along with the lack of early
symptoms exhibited in the majority of cases, causes ovarian cancer to maintain a
5 year survival rate of under 50%. With the help of mathematical models, the sci-
entific community is aiming to increase this statistic by optimising new treatments
and preventative approaches.

In this study, we take key aspects of ovarian cancer progression and inhibition and
develop multiscale mathematical models to investigate the role of these processes.
We begin by exploring the role of adipose tissue found in the omentum. Adipose
tissue is home to adipocytes, a cell found to secrete substrates such as leptin and
interleukin-6, proven to promote proliferation in cancer tumours. Metastasis oc-
curs as a result of a phenotypic change encouraged by this adipose derived media.
The transition between these states, known as epithelial-to-mesenchymal transi-
tion is also studied in detail, along with the ability of cisplatin to impede the overall
growth of the tumour, with relevant parameters optimised using experimental
data.
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Chapter 1

Introduction

Ovarian cancer is the largest killer of all gynaecological cancers, with a low ten
year survival rate of 30% [101, 241]. The disease is found predominantly in post-
menopausal women, with almost half the cases in the UK found in women aged
over 65 [218]. This poor prognosis can be justified by a range of various reasons.
Early stage ovarian cancer is usually asymptomatic, with symptoms appearing
only in the latter, often metastasised stages [134]. The most common of these
symptoms include bloating, abdominal pain, lack of energy, and frequent urina-
tion. These symptoms are closely associated with less severe conditions such as
dehydration, lactose intolerance, and coeliac disease, often preventing early detec-
tion of ovarian cancer [141, 8]. The stage of diagnosis has a significant role in the
chances of survival for the patient. When diagnosed prior to metastasis, ovarian
cancer has a five year survival rate of 93% [223], compared to a five year survival
rate of 10-20% for women with widespread metastatic ovarian cancer [116].

With such a significant link between the stage of diagnosis and the prognosis for
a patient, along with the low rates of early diagnosis, there is a large room for im-
provement in the treatment a patient may receive. The current standard treatment
for ovarian cancer patients involves a combination of surgery and chemotherapy
[119]. Surgery alone is sufficient in rare cases where the tumour is small and yet
to spread outside of the ovaries and fallopian tubes [199]. Since this situation
is unusual, perioperative chemotherapy (administered at the time of surgery) or
adjuvant chemotherapy (administered after the surgery) are more common meth-
ods of treatment [211, 157]. Drugs in the taxane family such as paclitaxel and
docetaxel or drugs which contain platinum such as cisplatin and carboplatin are
the most common drugs used for chemotherapy on ovarian cancer [32]. These
drugs use either intraperitoneal or intravenous administration, the frequency of
which varies from patient to patient depending on the type or stage of the cancer

[152]. Despite these methods being the current gold standard of ovarian cancer
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treatment, there remains to be high rates of recurrence [64]. Application of these
drugs also come with various risks and side effects. Exposure to taxane drugs can
lead to haematological toxicity, neurotoxicity, and other complex health conditions
[81]. Administration of platinum based drugs such as cisplatin can cause effects
including nephrotoxicity, gastrointestinal toxicity, nausea, and vomiting [172, 1].
Despite this, cisplatin remains the preferred choice for around 50% of cancer pa-
tients [249].

1.1 Adipose Tissue

Smoking is currently the largest preventable factor of tumourigenesis in humans,
however, predictions of population trends suggest this is likely to be overtaken
in the near future by obesity [20]. Consumed fats are stored as lipids in adipose
tissue, a type of tissue with a primary function of storing energy reserves for future
use when food availability is low [86]. Adipose tissue is found in various forms
throughout the body around organs, muscles, bones, and under the skin [206]. The
omentum is a thin layer of adipose tissue stretching in females from the liver down
to the ovaries. Due to its location, cells in the omentum can indirectly interact with
cells in the ovaries and help them to obtain various “hallmarks” of cancer required
to create a malignant tumour [54]. Cancer will often spread to the omentum soon
after its development in the epithelial cells of the ovary [130], making it a harder
disease to treat and lowering the prognosis for patients. Studies show that 80%
of serous ovarian carcinoma cases have spread to the omentum at the time of

diagnosis [242], leading to the poor five year survival rate.

The majority of adipose tissue is composed of cells called adipocytes which store
any excess energy in the form of lipids [52]. There are three types of adipose
tissue, each consisting of the corresponding adipocyte cells: white adipose tissue
(WAT), brown adipose tissue (BAT), and beige adipose tissue [90]. Each type of
tissue has a different function, appearance, and location in the body, with the
prevalence of each depending on factors such as the individual’s diet, age, health,
and environment [75].

White adipose tissue stores energy as triglycerides and is the most abundant type
of adipose tissue found in adult humans [90]. These white adipocyte cells have
one large fat reservoir and very few mitochondria, since their role is primarily
storage of energy [212]. The two main types of white adipose tissue are visceral
and subcutaneous. Visceral WAT surrounds internal organs such as the epicardial

adipose tissue around the heart and the peritoneum around abdominal organs
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[189]. It helps to provide extra padding and support for these organs to prevent
damage or displacement [238]. Subcutaneous WAT is found underneath the skin
and provides additional heat insulation for the body [65]. While white adipose
tissue does not actively perform thermogenesis, it plays a key role in thermostasis
by retaining and preventing heat from escaping out of the body through the surface
of the skin [88].

Brown adipocytes store energy in many small lipid droplets dispersed throughout
the cell rather than one large pool [245]. The main function of brown adipose tissue
is for the production of heat to help maintain thermostasis [197]. Brown adipocyte
cells appear this colour due to the high number of mitochondria present [28]. Using
advanced lipolysis and oxidisation of fatty acids, the mitochondria can generate
large amounts of heat by acting as a catalyst for exothermic reactions within the
cell [155]. BAT is found mostly in fetuses and infants in areas around the neck,
back, and abdomen [68]. Naturally, babies and young children would be at higher
risk to harm when exposed to extremely low environmental temperatures, hence
the additional amount of BAT available in the body [23]. The levels of BAT decrease
with age until it has all been lost, usually around the age of 80 [188].

The third type of adipose tissue is beige/brite. Beige adipocytes possess similar
properties to those which are brown, with their main function also being ther-
mogenesis [135]. However, beige adipose tissue is derived from WAT and each
beige adipocyte is only present temporarily [12]. When an organism becomes
cold, white adipocytes that have no role in heat production can differentiate into
beige adipocytes through a process called "browning" [136]. This produces large
amounts of cells with an increased ability to insulate and produce heat, helping to
regulate thermostasis [186]. When this extra heat is no longer required, these beige
adipocytes can freely return to white adipocytes by losing the additional mito-
chondria they temporarily had to produce the excess warmth [5]. Cancer cachexia
often induces this browning process, since the lack of insulation can promote the

biogenesis of beige adipocytes [95].

Alongside adipocytes, components of the stromal vascular fraction (SVF) are also
present in adipose tissue [233]. The SVF is a highly heterogeneous assembly of
cells including stem cells, macrophages, and fibroblasts [118, 16]. Adipose derived
stem cells have a key role in wound healing due to their ability to self renew
and differentiate into various cell types [87]. Macrophages are thought to be a
major source of chemical messengers such as tumour necrosis factor alpha (TNF-
«), interleukin 6 (IL-6), and interleukin 8 (IL-8) contributing to the phenotypic
characteristics of cancer cells in the vicinity [246]. Fibroblasts help to construct



4 Chapter 1. Introduction

the connective tissue found around organs to protect them from external damage,
as well as serving as progenitors for adipocytes [173]. Due to the production of
these components, adipose tissue as a whole is a highly complex structure with
functionality beyond simply the storage of fat, playing a key role in the progression

and treatment outcomes of cancer tumours.

1.2 Mathematical Modelling

Mathematical models and simulations are rapidly gaining an increasingly signifi-
cant role in drug development. Computer simulations can complement the results
found in vitro and in vivo, as well as make predictions to find results outside of
the obtained biologically experimental data. Depending on the complexity of the
model, in silico experiments are generally faster than in vitro and in vivo exper-
iments, with in vivo experiments often requiring rigorous ethical approval and
large periods of time for highly qualified experimentalists. Computer simulations
require no physical cells or resources to develop and run.

Various approaches can be taken when developing a mathematical model. Or-
dinary differential equation (ODE) and partial differential equation (PDE) models
provide an analytical approach to finding cell populations across time. These mod-
els are mostly deterministic, with identical results observed when no parameters
or equations have been changed. While theoretically possible, finding analytical
solutions such as steady states, bifurcation diagrams, and stable/unstable mani-
folds are realistically difficult. ODE models can also miss key stochastic events
and struggle to capture the spatial aspect of where populations are distributed
within a domain, with no information captured on individual cells in an ODE
model. This can lead to the omission of key individual dynamics, such as the
competition between cells for resources based on their proximity to other cells in
the domain. For heterogeneous substrates within a domain, the concentration of
oxygen, glucose, and other essential substances for cells can vary depending on the
location and proximity to the blood vessels. Since ODE models cannot provide this
individualised information, agent-based models are often a popular alternative

when spatio-temporal dynamics need to be observed.

The development of agent-based models involve creating rules to which the agents
(in this case, cells) abide. The rules can depend on the conditions in the microenvi-
ronment in which each cell is placed, inducing phenotypic changes to single cells
rather than entire populations. This provides a model with a more heterogeneous

layout, which is crucial when dealing with 2 dimensional (2D) or 3 dimensional
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(8D) tumours, throughout which resources vary dramatically. Characteristics re-
garding each individual can then be extracted from the results and a more detailed
analysis can be performed, compared to if only the total populations were available
to the user. Agent-based modelling treats every agent (for example, in this case a
cell) separately and will likely produce slightly different results on each simulation
due to the random nature of each component involved. These models are generally
more likely to reach extreme scenarios and exact states such as a tumour free

equilibrium, since the stochastic nature can allow entire populations to eradicate.

Many different agent-based tumour modelling frameworks are available, each with
their own unique approach. The user must therefore decide on what aspects of
the model they wish to prioritise based on what results are important to them.
Chaste [147] is an open-source simulation package used to model the dynamics of
soft tissue. Developed in the University of Oxford, the Chaste package focuses on
the modelling of cardiac electrophysiology and the development of cancer. The
off lattice simulations incorporate ODE and PDE solvers to help produce spatially
heterogeneous domains. Alongside Chaste, Morpheus [209] is an alternative mod-
elling environment used to study multicellular systems. Multiscale simulations can
be developed using a graphical user interface in either a 2D or 3D domain, taking
a cellular Potts approach. Cellular Potts models are also used in CompuCell3D
[214], a simulation framework used for single and multicellular modelling. These
simulations produce an on lattice virtual tissue to examine a wide range of bio-
logical processes and their dynamics. In collaboration with CompuCell3D, Tissue
Forge [194] is a recent alternative modelling framework that allows users to explore
models at biologically relevant length scales. Tissue Forge is off lattice with a built
in combination of a wide range of modelling methodologies. Here, cell movement

is force based, supporting Newtonian and Langevin dynamics.

The models developed in this study will use a PhysiCell version 1.13.1 framework
[73, 72]. PhysiCell is a multiscale agent-based modelling framework used for 2D
or 3D simulations. Cells move off lattice with physics-based velocities dependent
on adhesion and repulsion forces between neighbouring cells. Phenotypic charac-
teristics such as cycling rate, death rate, and substrate secretions can be manually
adapted, with substrate concentrations tracked on a separate mesh. Substrate dif-
fusion, decay, and adaptable boundary conditions can be implemented and con-
trolled. Simulations automatically generate tumour cross-sections, individual cell

information, and substrate spatial data in the output with low computations cost.
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1.2.1 Previous Adipose Tissue and Cancer Models

This section aims to cover examples of previously designed models to compare
the different ways that adipose tissue has been considered to quantitatively affect
the growth of cancer. These models vary greatly in style and complexity, using
many different approaches to represent the dynamics. Continuous, ODE based
modelling appears to be the preferred method of choice for mathematical biologists
looking into the field of tumour growth and fat tissue. These models generally in-
volve less stochasticity than standard agent-based models since they can be studied
analytically using ODE solvers such as MATLAB’s ODE45 function [2].

RA Ku-Carrillo et al [26] developed an ODE model which initially included three
cell type densities: immune cells, cancer cells, and normal cells, with an adipocyte
cell density added following further development of the model. Constant source
and death rates of immune cells were assumed due to the body’s attempt to combat
the disease. Tumour, normal, and fat cells were all assumed to show logistic terms
with individual intrinsic growth rates, alongside the impacts of heterogeneity in
the microenvironment and interspecific competition and mutualism. An analysis
of the model was performed, investigating the impact of fat cells on the equilibrium
points and bifurcation diagrams [49]. The analysis found three biologically realistic
equilibrium points:

1. The immune, cancer, and fat cell equilibrium. This is the point where no
normal cells remain, with death occurring in patients before the cancer can
realistically get to this stage.

2. The cancer free equilibrium. Here, only normal, immune, and fat cells
remain and the patient is considered to be cancer free. This point is stable

if the parameter values used in the model satisfy a strict inequality.

3. The coexistence equilibrium. All four types of cells are present at this steady
state. This could be the situation where a tumour is dormant and not chang-
ing in size, potentially allowing for future metastasis.

Further analysis concluded that lower values of the fat cell carrying capacity lead
to significantly lower levels of fat and cancer cells at the coexistence equilibrium,
in turn resulting in higher levels of normal and immune cells. An additional
development of the model then focused more heavily on the interactions between
fat and cancer cells. An additional term was included to account for processes
such as cachexia, where advanced cases of cancer have been found to reduce fat
and muscle volume in patients, causing significant weight loss [46]. These findings
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provide us with an insight into the extent to which the fat cells can contribute to
tumour growth using previously developed mathematical models.

RA Ku-Carrillo et al [27] later incorporated the usage and effects of a chemother-
apeutic drug into the model, in which it was assumed that the drug caused expo-
nential decay of the population for each cell type. When optimising the treatment,
the negative side effects are accounted for by including a cost function to minimise
the effect on normal cells and maximise the effect on tumour cells. A set of "kill
effectiveness" parameters was introduced to represent the impact the drug has on
the population of each respective cell type. In the simulations, the chemotherapeu-
tic treatment was only administered into the model when the number of normal
cells was over 75% of the initial population. Further analysis was performed to
find the optimal method for drug administration, with the in silico results finding
that drugs should be administered either at their maximum rate or not at all using

a binary “on/off” approach.

A different model was designed by T. A. Yildiz et al [244] using fractional calculus
without a singular kernel. The ODEs incorporate logistic growth terms and in-
tercellular relationships using Caputo-Fabrizio fractional derivatives, with a linear
expression for the influence of the drug on each cell. The model investigated the
optimal control problem (Equation 1.1) and aimed to minimise both the number of
tumour cells and the use of chemotherapeutic drugs, while maximising the number
of normal cells.

min  J(uy,up) = /tf (w1 T — woN + wsu? + wyu3) dt (1.1)
(u1,112€Ugg) 0
Here, u1 and u; are example treatment plans for drugs 1 and 2 respectively, taken
from the set of all possible treatment protocols Uy, ty is the final time of drug
treatment, and T and N are tumour and normal cell populations respectively. The
w; terms are included to account for the side effects of each drug. The results
suggested that the cancer-free equilibrium state can be achieved when the drugs
are used at varying rates, rather than the binary on/off approach found previously.
These varying rates depended on the parameter values, suggesting the importance

of optimisation in mathematical models.

Despite the limited number of previous mathematical models linking cancer tu-
mour growth to adipose tissue, there are significantly more models investigat-
ing the role of stromal cells in general on the progression of malignant tumours.

The stroma is the connective tissue within organs that provides support and aids
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effectiveness [216]. While stromal cells often have no direct use in the primary
purpose of the organ, they can be crucial in maintaining the overall functionality
and structure [170]. Stromal cells play a key role in the development of different
components of the blood and the body’s immune system. Types of stromal cells
include pericytes, fibroblasts, adipocytes, and endothelial cells [22]. Malignant
tumours can exploit these cells to help promote tumour progression, such as en-
couraging angiogenesis and metastasis [181]. The metastatic stage of a tumour is a
key factor in determining a patient’s prognosis, with metastasis thought to account
for 90% of all deaths caused by cancer [30]. Over half of the metastasised cases
spread first to the bone [166]. When stromal cells become cancer-associated, they
can increase cancer cell proliferation by secreting factors promoting tumour growth
and development [22]. For this reason, targeting therapy at the cancer stroma as
well as the tumour itself has been considered to be a significantly beneficial area of
treatment [47].

In 2010, NK Martin et al [145] designed a model linking the normal cell density,
tumour cell density, and H" ion concentration. The extracellular matrix (ECM)
and active matrix metalloproteinase (MMP) densities were also included. MMP
is a protease that can break down the ECM, allowing the cancer cells to spread
through the body more easily and metastasise [234]. Unlike many others, this
model accounted for the spatial ecology of the components and allowed the tu-
mour cells, H' ions, and MMP to diffuse throughout the domain according to the
concentration gradients. With these densities having such a large impact on the
tumour size over time, adding this spatial dimension to the model gave a further
and more realistic insight into how these cells interact with each other over time
and their dependence on the parameter values. The H™ ions produced by the
cancer cells lead to an acidic microenvironment, increasing the death rate of normal
cells. The death of normal cells allows space to free up for cancer cell proliferation,
in turn increasing H' production and normal cell death. Numerical analysis of
the model produces travelling wave solutions. Tumour cells, H ions, and active
MMP take over areas previously occupied by normal cells and the ECM due to the
acidic conditions and MMP degradation. This phenomenon would be lost without
the spatial aspect of the model, providing a new look at how tumour and normal
cells interact with each other and the components of the stroma.

Kim et al [120] developed a model to explore how the density of tumour, fibrob-
last, and myofibroblast cells, as well as the concentration of epidermal growth
factor (EGF) and transforming growth factor beta 1 (TGF-1) are linked. Substrate
concentrations are calculated using (PDEs) to incorporate chemotaxis, leading to a
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model more complex than those previously investigated. Chemotaxis is when cells
migrate in response to chemical gradients in the microenvironment. The inclusion
of this process can make mathematical analysis difficult [184] due to the non-linear
nature of the system. The sensitivity of certain parameter values on the system,
such as chemotactic sensitivities, phenotypic transformation rates, and substrate
production rates, was evaluated. The study found that only the production rate
of EGF from myofibroblasts and the transformation rate of fibroblasts into myofi-
broblasts had statistical significance on the number of tumour epithelial cells, both
of which showed a strong positive correlation. These results from the model were
then compared to the previously collected experimental data, with a close agree-
ment to the in vitro results. The experiments concluded that the differentiation of
fibroblast types can have a key impact on the growth of cancer tumours. Initialising
tumours with an absence of any fibroblasts, normal fibroblasts, or tumourigenic
fibroblasts each appeared to have a statistically significant impact on tumour size.
Having larger adipose tissue has been found biologically to increase the density
of fibroblasts via adipose derived stem cell differentiation, accentuated when the
tissue is dysfunctional in some way [19]. This again suggests the significance of
including adipose tissue in mathematical models to ensure these impacts can be

accounted for.

1.2.2 Conclusions of Models

The models discussed in Section 1.2.1 highlight the importance of adipose tissue
and the stroma in the outcome of treatment effectiveness. Despite using contrasting
approaches and styles of mathematics in their models, obesity was consistently
found to have an important effect on the growth of cancerous tumours. The prog-
nosis of the treatment depends heavily on the amount of adipose tissue present
around the neoplasm, as well as the location and stage of the cancer at the time of
diagnosis.

Each previous model discounts certain aspects of the tumour heterogeneity. Tu-
mours are made up of a mix of different cancer cell types, such as drug-resistant
or susceptible cells. The microenvironment has a key impact on the tumour size,
with oxygen and glucose levels contributing to the cycling rate of the cells in a
neoplasm. The concentrations of these substrates vary greatly throughout a 3D
spheroid, in which interior cells may be starved of nutrients, leading to a necrotic
core, for example, often omitted by ODE models. With no built up drug resistance
or heterogeneity incorporated, the treatments would remain equally as effective
regardless of how many times a drug has previously been administered. Drugs are
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initially efficient in killing the susceptible cells but the remaining drug-resistant
cells will remain and proliferate, passing their resistant nature onto the next gener-
ation through clonal replication [13]. After each treatment has been administered
and fewer susceptible cells remain, more space will become available for resistant
cell division. Therefore, future treatments would be less successful in removing the
tumour due to the high composition of resistant cells that take up this new space.
Future investigations should therefore aim to include the substrate heterogeneity
and the effects these adipose tissue secretions have on the tumour size.

In continuous models such as those mentioned previously, the tumour size can
reduce but will generally always remain non-zero, potentially allowing the cancer
cell population to recover and redevelop into a tumour. Using discrete, agent-
based models would allow for other equilibriums to be reached. Upon eradication
of the cancer cells (for example, due to treatment, immune response, or natural cell
death), the simulation can reach the cancer free equilibrium, allowing mathemati-
cal models to help determine if this state can realistically be achieved in a patient.

Many different aspects need consideration when deciding how future models in
the field should be constructed. Previous designs can be built upon to include the
latest understandings of biological processes and breakthroughs found in medicine.
With the link between adipose tissue and cancerous tumours being so profound,
further research and discoveries made in the area can help to reduce ovarian cancer-
related deaths and increase recovery rates. This is especially important in the
modern day, with unhealthy diets becoming more popular, causing an increase

in rates of obesity throughout the Western world.

1.3 Thesis Outline

This study aims to develop a selection of multiscale, agent-based mathematical
models to investigate the link between adipose tissue volume and ovarian cancer
progression. The study will focus on two of the most common ovarian cancer
cell lines observed in patients: OVCAR-3 (a human ovarian epithelial carcinoma)
and SKOV-3 (an adenocarcinoma) [176], each exhibiting highly contrasting char-
acteristics. Both cause severe, heterogeneous malignancies and have low treat-
ment success rates [115, 169]. Biological observations are obtained from in vitro
experiments to determine the role that adipose tissue can have on the two cell
lines and the tumour compositions. Epithelial-to-mesenchymal transition (EMT)
is incorporated into the model to ensure that the correct tumour heterogeneity can

be captured. Cells undergoing EMT alter their phenotype by varying their cycling
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rate, motility speed, adhesive strength, and shape. The model aims to capture
these processes and the variations the two cell lines show in their EMT dynamics.
The bystander effect will be incorporated into the model, where cells which have
already undergone EMT encourage surrounding cells to follow, inducing pockets
of mesenchymal cells within the tumour. The inclusion of this effect will be crucial
in capturing the observed appearance of the tumours in the presence of adipose
tissue.

Chapter 2 will focus on the impacts that adipose tissue has on the progression
of ovarian cancer. Comparisons will be made between simulated tumours, with
the expression of N-Cadherin and E-Cadherin tracked in each experiment. The
role of initial tumour size, amount of adipose tissue in the microenvironment,
and dosage of a drug treatment are spatio-temporally investigated by examining
tumour population sizes and cross-sections of the simulated spheroids. The dif-
ference in population dynamic trends between tumours in high and low adipose
tissue environments will be investigated.

In Chapter 3, we will develop the model further and study in more detail the
process of EMT and the main drivers of this transition. At this point, mesenchymal-
to-epithelial transition (MET), the reverse process of EMT, will also be included
to capture the transition in more detail. We will perform a sensitivity analysis to
study the key parameters in the model responsible for the changes in the output
variables such as total population or final tumour composition. A third cell type,
hybrid cells, will be introduced to help aid the comparisons made with additional
in vitro data.

Finally in Chapter 4, the drug effects are included in the model with more detail.
Data collected on OVCAR-3 and SKOV-3 spheroids for both wild type and cisplatin
resistant cell types will be used to optimise the drug-related parameters incorpo-
rated into the model. A modification of Latin hypercube analysis will be used
to optimise these parameter values by minimising the root mean squared error
(RMSE) between the simulation output and in vitro data. Following this optimisa-
tion, the results will be fitted to Emax/linear functions to allow for predictions to
be made. These predictions will include in silico recreations of in vivo settings with
varied initial tumour compositions, modelling tumours with surrounding blood
vessels to allow a more realistic system of drug administration and predictions to
be made beyond the scope of biological experiments.

The overall objective is to provide mathematical models of varying complexity to
make predictions regarding patient outcomes. The predictions involve the impact
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of adipose tissue and cancer cell interactions while incorporating the complex het-
erogeneity of a malignant tumour. The detailed microenvironment can lead to
the investigation of patient specific scenarios, allowing a more personally tailored
treatment program to be provided based on an accurate and biologically motivated

model.
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Chapter 2

An Initial Approach to Adipocyte
Driven Tumour Dynamics

2.1 Introduction

As well as acting as a home for secondary ovarian tumour masses, adipose tis-
sue was previously thought to be a relatively passive tissue with a role of simply
storing fats and regulating heat production. However, more recently it has been
discovered to also act as an endocrine function and plays a key role in hormone reg-
ulation [69, 174]. Peptides such as leptin and adiponectin were found to be secreted
by adipose tissue, both important cytokines in tumour growth and progression
[33]. They play a key role in inflammation, angiogenesis, cell proliferation, and
other processes, many of which are unrelated to cancer [55]. Leptin induces IL-6
and IL-8 production, examples of proinflammatory chemokines proven to promote
cancer progression and metastasis as well as inducing angiogenesis [198, 137, 229].
Adiponectin has been shown to have opposite effects to leptin, promoting cell
cycle arrest and apoptosis [114]. Leptin regulates the energy balance in the body
by influencing satiety levels while concurrently encouraging the development and
progression of cancer [175]. Simultaneously, the down regulation in the expression
of adiponectin observed in obese patients also leads to generally more aggres-
sive and uncontrollable tumours [99]. Patients with lower levels of adiponectin
generally have more severe and aggressive cases of cancer and higher rates of
malignant cell growth. Obesity can cause an imbalance in these hormones by
increasing levels of leptin and decreasing adiponectin [67], leaving the patient at a
higher risk of developing severe cancer. Enlarged adipocytes can lead to a lack of
oxygen to healthy cells causing necrosis, attracting proinflammatory macrophages
to further cause inflammation and progression of cancer [205]. As a result of these
interactions between the adipocyte cells in the stroma and the epithelial cells, as
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well as the rise in obesity levels in the modern world, more attention is being put
on this link between fat levels and cancer [6]. In the last decade, it has become
increasingly apparent that the development, progression, metastasis, and chemore-
sistance of a malignant neoplasm depends heavily on the composition of fat in the
microenvironment and the adipose derived components available to it.

We aim to use 3D multicellular models to determine the interactions between adipocytes
and tumour cells, along with their response to chemotherapies. By incorporat-
ing the intra-cellular and inter-cellular interactions within a tissue, our multiscale
mathematical models give an insight into the possible expected outcomes of a

patient.

2.2 Biological Experiment Outline

in vitro experiments were performed by experimental collaborators over four days
using two cell lines [159]: OVCAR-3, a human ovarian epithelial carcinoma cell line
[176] and SKOV-3, a human ovarian adenocarcinoma cell line [91]. Differences be-
tween profiles of 2D and 3D cultured populations were determined via RT-qPCR,
immunoblots, and immunofluorescence. For protein analysis, immunoblotting
was performed using primary antibodies against E-cadherin (clone G10, Santa
Cruz Biotech) and N-cadherin (clone 13A9, Santa Cruz Biotech), with GAPDH
(clone O411, Santa Cruz Biotech) used as a loading control for normalisation. For
fluorescence analysis of tumour spheroids, immunostaining was carried out. In
brief, an initial number of cells were cultured as spheroids using the hanging drop
method and subsequently fixed in 4% PFA with 1% Triton in PBS for 3 hours at
4°C. After washing with PBS, spheroids underwent a dehydration and rehydra-
tion process through sequential exposure to increasing methanol concentrations
(25%, 50%, 75%, and 95%) for 30 minutes each, followed by 100% methanol for
5 hours. The rehydration was achieved by reversing the methanol gradient back
to 0% methanol and 100% PBS. Spheroids were blocked overnight at 4°C in PBST
containing 3% BSA, followed by incubation with primary antibodies for E-cadherin
(clone: EP700Y, Abcam) and N-cadherin (clone: 13A9, Santa Cruz Biotech) and flu-
orescent secondary antibodies Alexa Fluor® 555-conjugated polyclonal goat anti-
rabbit antibody (ab150086, Abcam) and Alexa Fluor® 488-conjugated polyclonal
goat anti-mouse antibody (ab150117, Abcam). Before imaging, spheroids were
stained with Hoechst and mounted onto microscope slides for visualisation.

2D monolayers and 3D spheroid tumours were cultured and placed in the presence
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of either omental tissue-conditioned media (OT-CM), undifferentiated adipose-
derived stem cells (U-ADSCs), or an unconditioned media (UCM) control. The
presence of OT-CM was found to increase cell proliferation in all scenarios other
than in OVCAR-3 spheroids, in which unconditioned media showed the highest
cell luminescence after 96 hours, as shown in Figure 2.1.
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FIGURE 2.1: Final cell luminescence from the in vitro spheroid
experiments [159]. Cells are plated following co-culture with
a control, undifferentiated adipose derived stem cells, and
adipocytes. Populations of SKOV-3 (A) and OVCAR-3 (B) spheroids
are taken after 96 hours, with the impacts of different types of
media compared. SKOV-3 tumours co-cultured with adipocytes
show an increased proliferation rate, while OVCAR-tumours co-
cultured with adipocytes show a decreased proliferation rate when
compared to the control.

Further experiments tracked the expression throughout the tumour of E-cadherin,

a surface marker used for the identification of epithelial cells [34], and N-cadherin
and vimentin, markers used to locate mesenchymal cells [164]. It was found that
the SKOV-3 tumour had a high band intensity of N-cadherin and vimentin, mark-
ers associated with a mesenchymal phenotype, suggesting epithelial-to-mesenchymal
transition (EMT) had been completed (See Figure 2.2). The OVCAR-3 tumour
showed a higher expression of E-cadherin, thus suggesting that larger volumes
of the neoplasm was made up of epithelial cells rather than mesenchymal.
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FIGURE 2.2: Normalised band intensity found in vitro between

SKOV-3 and OVCAR-3 [159]. Epithelial markers (E-cadherin) and

mesenchymal markers (N-cadherin and vimentin) are expressed

throughout the tumour after 96 hours. The intensities of these are

normalised and compared for the different markers for SKOV-3
(black bars) and OVCAR-3 (grey bars) cell lines.

The cells on the periphery of the SKOV-3 spheroid are shown to express E-cadherin,
suggesting an epithelial phenotype, while the interior cells appear to have a uni-
form, solely mesenchymal distribution. This tumour has a consistent structure,
with only mesenchymal cells expressing N-cadherin in the centre and a thin layer
of E-cadherin expressed by epithelial cells around the tumour periphery. Mes-
enchymal OVCAR-3 cells are arranged in small clumps scattered within a sur-
rounding pool of epithelial cells to form the solid tumour (See Figure 2.3). Unlike
SKOV-3 tumours, these mesenchymal cells are capable of forming through the
tumour, including the periphery. These clumps of mesenchymal cells are thought
to play a key role in metastasis, with their collective migration allowing these
clumps to leave the primary tumour location and relocate elsewhere. The trends
observed in Figure 2.2 support the images shown in Figure 2.3, implying the SKOV-
3 spheroid is composed mostly of mesenchymal cells due to the tumour interior,
while the OVCAR-3 spheroid is made up of primarily epithelial cells.
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FIGURE 2.3: Final cadherin expressions in the cross-section of the

tumours found in vitro [159]. The spatial distribution of E-cadherin

(green) and N-cadherin (red) is shown for SKOV-3 (A) and OVCAR-
3 (B) spheroids after 96 hours.

FIGURE 2.4: Temporal dynamics of SKOV-3 and OVCAR-3

tumours in various medias [159]. Live cell populations are

measured daily for 96 hours in unconditioned media (blue), high-

grade serous ovarian cancer omental tissue conditioned media

(red), and ovarian mass omental tissue conditioned media (green).

SKOV-3 (A) tumours are initialised with 6000 cells and OVCAR (B)
tumours with 3000 cells.
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SKOV-3 cells appear to have a low proliferation rate, with an initial decrease in live

cell populations and a slow increase during the final 48 hours of the in vitro exper-

iments, as shown in Figure 2.4 (A). Omental tissue conditioned media is shown to

increase the cycling rate of SKOV-3 cells, with cell populations in unconditioned
SKOV-3 tumours consistently lower throughout the experiments. OVCAR-3 cells
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show opposite trends, with unconditioned media generally leading to the high-
est proliferation rate in OVCAR-3 cells (See Figure 2.4 (B)). Proliferation rates of
OVCAR-3 cells are also considerably higher than those of SKOV-3, with around a

tenfold increase in population sizes across four days.

2.3 Model Outline

To perform our in silico simulations, various dynamics will be implemented into a
PhysiCell modelling framework. PhysiCell is a physics based platform employing
two interacting layers to the simulation, one for the substrate concentrations and
another for the cells (See Figure 2.5). The simulations will run on a 3D spatial
domain that tracks the concentration of each substrate with user created initial and
boundary conditions. The concentrations are recorded on a discrete mesh while the
cells can move continuously across the domain. Different cell types can be placed
and initialised, each secreting and uptaking different levels of substrates. The
underlying dynamics of each cell’s volume, mechanics, and motility can be defined
by the user and adapted to fit the model created. Data collected experimentally
will be used to find the previously undocumented values of parameters required
for the model. Functional genomics will be incorporated by the properties of each

cell being passed onto daughter cells.

Substrate Concentration

FIGURE 2.5: Example grid layout for a 2D PhysiCell simulation.

Lighter shades on the bottom level of the visualisation show higher

substrate concentrations diffusing according to Equation 2.1. Two

different cell types slide along a plane on the top level based on the
value of the cell velocity, v, given in Equation 2.2.
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BioFVM [72] is implemented to recreate the chemical microenvironment, in which
multidimensional PDEs are implemented on a Cartesian mesh in Equation 2.1,

a * * :
a*‘? =DV —Ap+S(p* —p) —Up+ Y o(x—x)Wi[Sk(p; — p) — Urp] in O.
cells k
2.1)

Here, p is the vector of chemical substrates, D and A are the diffusion coefficients
and decay rates respectively. S and U are the bulk supply and bulk uptake function
respectively, while p* represents the vector of saturation densities for the sub-
strates. The J(x) term is the Dirac delta function, incorporated to include the
source/sink points in the domain due to cell secretions/uptakes. Wy, xi, Si, Uy,
and p; are the volume, position, source rates, uptake rates, and saturation densities

respectively for the k" cell.

The cells move off lattice within the 3D domain, (), based on adhesion, repulsion,
and various motility rules. The forces acting upon each cell are shown in Equation
2.2, giving the velocity after each time step and updating the position of cell i
subsequent to each iteration,

Vi = . Z <_ CécacéClZV(Pl,R,‘,AJrR]‘,A (xi - x]) - Cécrcécrvwl,R,"A+Rj’A (xi - X])>
2.2)
_C]cbav4)1,Rj,A (_d(xi)n(xj)) - Cibrvwl,Ri (_d(xi)n(xj)) + Vi mot-

Each cell has a repulsion force acting between itself and the surrounding cells to
prevent overlapping. The motility speed, V; ¢, is set to be two times higher for
mesenchymal cells as it is for epithelial to attempt to qualitatively replicate the
more metastatic behaviour of cells that have undergone EMT and is assigned a
random direction.

Here, N (i) is the list of all cells in the domain capable of interacting with cell i. The
i

i
tpand c

magnitude of the cell-cell adhesion and repulsion forces are given by ¢ Ler

respectively, while the cell-basal membrane forces are given by ¢!, and ¢/, . R; is
the radius of cell i and R; 4 its maximum adhesion distance. Functions ¢, r (x) and
P, r(x) are adhesion and repulsion functions, the details of which are defined in
PhysiCell [73]. Finally, n(x) represents the normal vector to the nearest cell basal
lamina and d(x) the distance to it.
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Several studies have investigated the composition of ovarian cancer spheroids.
Capellero et al [25] reported that tumour cells exhibit a hybrid EMT phenotype,
co-expressing epithelial and mesenchymal markers [25]. This partial EMT state
is thought to improve the viability of spheroids and their adhesion within the
peritoneal cavity. To incorporate this hybrid state in the modelling framework,
cells are assigned a cadherin rating along a scale of their epithelial to mesenchymal
phenotype running from zero (epithelial) to thirteen (mesenchymal), as illustrated
in Figure 2.6. The maximum rating is set to thirteen to allow an equally weighted
assignment of epithelial cells to ratings of 0-6 and mesenchymal to 7-13. Moreover,
an average rating value for epithelial (three) and mesenchymal (ten) cells can be

set as the default if required.
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FIGURE 2.6: Appearance of cells during the simulations based
on their current cadherin rating. Cells can take fourteen different
values, with ratings 0-6 classified as epithelial and 7-13 classified as
mesenchymal. There is an average rating of three for epithelial cells
and ten for mesenchymal cells. The colour of each cell during the
simulations represents where along this scale they are placed.

2.3.1 Cell Cycle and Death

The overall size of the tumour over time has a major impact on the likelihood of
successful treatment for cancer patients. The rapid growth of cancer tumours is
mainly due to the increased rate at which cancer cells can divide and multiply [111].
The cell cycle is split into four stages: gap 1 (G1), synthesis (S), gap 2 (G2), and
mitosis (M) [154]. Three main DNA damage checkpoints are present throughout
the cycle, located at the end of the phases G1, S, and G2 to ensure damage cannot
be passed onto future generations [39]. Alongside these, an antephase checkpoint
found between G2 and M ensures that environmental conditions such as oxygen
levels and available surrounding space are favourable to support attempting cell
division [183]. When arriving at a checkpoint, either the cell passes the checkpoint
and continues the journey through the cell cycle, or fails at the checkpoint at which
point the cell may initiate programmed cell death or enter quiescence, a state of
reversible exit from the cell cycle [11]. The ability of cancer cells to avoid these
checkpoints allows the cells to complete steps of the cycle faster and with higher
chances of success, causing the tumours to form and progress so rapidly. The
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probability a cell progresses from stage i to j during an iteration in the model is
given approximately by r;;At, where r;; is the transition rate from state i to j and
At is the change in time. Including the cell cycle as a four stage process rather
than using a single proliferation rate allows a more accurate determination of the
population dynamics by including realistic influences of the cellular conditions on
the cycling rate. Mesenchymal cells are assumed to leave the G1 stage of the cell
cycle 50% slower than epithelial cells [167], as shown in Figure 2.7 (A). Based on
an inspection of the experimental data shown in Figures 2.1 and 2.4, we assume for
simplicity that a lack of media increases the proliferation rate of SKOV-3 cells [40]
by 50% and decreases OVCAR-3 cells in spheroids [236] by 50%, shown in Figure
2.7 (B). This difference allows us to capture the phenomenon of adipose derived
media increasing the tumour cell population compared to the control in SKOV-3
tumours, while decreasing it in OVCAR-3 tumours.

The increase in mitochondrial consumption of oxygen observed during the G1/S
transition [63] suggests a dependence on oxygen in the microenvironment for the
rate at which a cell leaves the G1 stage of the cell cycle. Therefore, variations in the
cell cycle rate due to inter-cellular and intra-cellular conditions are incorporated
into the G1 stage, with fixed rates of exiting stages S, G2, and M, shown in Table
2.1

Cycle Durations

Cell Cycle State | Average Rate of Cycling Stage exit (1/mins)

Gl Equation 2.3
S 1/480 [42]

G2 1/240 [42]
M 1/60 [42]

TABLE 2.1: Average cycle durations. Cells progress through four

stages of cell cycle. The probability of cell cycle progression during

an iteration can be estimated by multiplying the rate by the time
length of the iteration.

As slower cycling cells are assumed to reach cycling checkpoints less frequently
than faster cycling cells, the death rate is also assumed to be lower. The lifespan
of cells in humans varies greatly from a timescale of days to years [196]. Higher
concentrations of the drug paclitaxel in the microenvironment are assumed to lead
to higher rates of apoptosis in the cells, as shown in Figure 2.7 (C) [227]. Treatment
in the model is assumed to cause up to a 100-fold increase in apoptosis rate. Epithe-
lial cells are more susceptible to treatment due to their faster cycling rate, while the
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mesenchymal cells are more resistant [21]. In our model, we assume an OVCAR-3
mesenchymal cell will have an average lifespan of around ten weeks, leading to a
death rate of around 1 x 10~° / min. In line with the difference in G1 cycling rate,
we assume that SKOV-3 cells die ten times as slowly as OVCAR-3 cells as shown
in Figure 2.7 (D). These death rates are explored in more depth during Chapter 4.
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FIGURE 2.7: G1 cycling and death rates for OVCAR-3 and

SKOV-3 cells. The relationships between cadherin rating and

cycling rate (A), media concentration and cycling rate (B), paclitaxel

concentration and apoptosis rate (C), and cadherin rating and

apoptosis rate (D) are shown. OVCAR-3 relationships are shown

in blue, SKOV-3 relationships in red, and those independent of the
cell lines are shown in black.
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Figure 2.7 shows the intra-cellular components and conditions in the microenviron-
ment that are incorporated into cell cycling and death rates. The cadherin cycling
impact, c., and media cycling impact, m., parameters are brought into the rate at

which a cell leaves the G1 cycling stage using Equation 2.3,

r=cc- M. (2.3)

Later in the chapter we will briefly compare the tumour growth with and without
chemotherapy treatment with a set of basic rules. When treatment is included,
paclitaxel is added uniformly throughout the domain after 24 hours, during which
all voxels are assigned a paclitaxel concentration of 50mg. Paclitaxel is assumed
to remain at a constant concentration throughout the remainder of the experiment.
The paclitaxel death impact, py, and cadherin death impact, c;, parameters are
incorporated into the rate at which a cell can undergo apoptosis using Equation 2.4,
with the probability of death occurring during the interval [t, t 4 dt] being d - dt,

d= Pa - Ccg. (2.4)

2.3.2 Role of the Bystander Effect

Based on the observations in Figure 2.3, here we develop a model that incorporates
the emergence of small mesenchymal clusters within a predominantly epithelial
population of OVCAR-3 cells, as these clusters are crucial for correctly replicating
the spheroid behaviour. In our model, we simulate a bystander effect, where ep-
ithelial cells near mesenchymal cells upregulate cadherin expression in response to
local signalling cues, reflecting the influence of mesenchymal cells on surrounding
epithelial populations [133, 103].

In this context, bystander effects are the cumulative effects of various factors such
as cytokines, growth factors, and exosomes secreted by cancer cells [140]. In the
model, the bystander effect is responsible for the formation of the disjoint mes-
enchymal clumps observed in the OVCAR-3 hybrid tumour population, co-expressing
epithelial and mesenchymal markers [217]. We assume that these bystander ef-
fects encourage epithelial cells in their proximity to undergo EMT. To achieve this
phenomenon, we include another substrate into the model. Mesenchymal cells
which have undergone EMT are set to secrete a bystander signal [140] up to a rate
of 100 units per minute, representing the percentage of the maximum secretion
possible by cells, as shown in Figure 2.8. We assume that the signal secretion
rate is increased with cadherin rating, meaning epithelial cells in the presence of
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mesenchymal cells are exposed to a higher concentration of signal and are more
likely to increase in cadherin rating themselves, inducing the bystander effect.
These factors secreted by mesenchymal cells help encourage changes in the cell
phenotype and increases the rate at which cells undergo EMT [133, 103]. This
creates localised pockets of mesenchymal clusters in which high amounts of these
secreted factors are present, further encouraging EMT in the surrounding cells.
Such tumour heterogeneity is apparent in solid tumours where spatially organised
expressions of cadherins have been described in both primary and secondary ep-
ithelial ovarian cancer tumours [4, 122].

The voxel in which a mesenchymal cell is located fills with this signal due to the
high secretion rate, remaining with a high concentration as long as the mesenchy-
mal cell resides within it. A very low substrate diffusion coefficient (1 micron?/min)
is included for the signal to keep the range of influence low, along with a signal
decay rate of 1 unit per minute to avoid a build up of signal in voxels which
no longer host mesenchymal cells. A Hill function is used to ensure there is a
small secretion rate for cells of a low cadherin rating while still allowing a high
secretion rate for mesenchymal cells. This Hill function has a half max set at 6.5,
since this is half the value of the maximum cadherin rating (13) that cells can reach
during the simulation. The saturation value is set to 100 units, at which point signal
saturation is assumed to be reached. The Hill power is set to four, optimised across

simulations using observations from the experimental images shown in Figure 2.3.
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FIGURE 2.8: Signal secretion rate for cells dependent on their

current cadherin rating. Cells at a higher cadherin rating with

a more mesenchymal-like phenotype encourage epithelial cells in

their proximity to undergo EMT. This is done by secreting a signal

with low diffusion into the microenvironment to increase the rate of
EMT.
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FIGURE 2.9: Example of the signal concentration during a

simulation. Red mesenchymal cells secrete a chemical signal,

shown by darker shades in the voxel. This signal encourages EMT

in epithelial cells according to Equation 2.5. The signal slowly

decays over time following the departure of the mesenchymal cell
from the voxel.

Figure 2.9 shows an example of four time steps taken from a minimalistic simula-
tion. Mesenchymal (red) and epithelial (green) cells are initialised in a 2D domain
made up of 100 voxels, with cells moving continuously off lattice. The arrows from
the cell in the diagram show where the cell is moving and the compartment of the
grid that the cell will be in at the next time step. The shade of a voxel shows the
concentration of the signal at the time point (black indicates maximum signal and
white indicates no signal). When the grid square is vacant of mesenchymal cells the
signal immediately begins to decay from that compartment and the concentration
decreases.

2.3.3 Intra-Cellular and Inter-Cellular Impacts on EMT

Cells have been observed to show the highest phenotypic plasticity when only
partial EMT has been completed, with the most stable cells found to be either
purely epithelial or purely mesenchymal [215]. To include this, a cadherin EMT
impact parameter, c., is introduced, shown in Figure 2.10 (A). Alongside this, cells
in low levels of oxygen are more likely to jump up a cadherin rating and perform
EMT than those which are not [36, 110]. We introduce an oxygen EMT impact
parameter, o,, in Figure 2.10 (B). The oxygen EMT impact parameter decreases as
oxygen levels increase, saturating at zero when oxygen concentration increases
above 1 unit. Adipose derived media and signal secreted by mesenchymal cells
are both assumed to encourage EMT in epithelial cells [129]. This phenomenon is
incorporated into the model using a media EMT impact parameter, ., and a signal
EMT impact parameter, s, in Figures 2.10 (C) and (D) respectively. These parame-
ters are positively correlated to the concentration of their respective substrate, with
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signal.
x10™ ‘ ‘ x10™
= 1 o 1
g g
£038 £ 0.8
|_
> 06 Sos
'-'CJ mm
504 $04;
R (@]
= <
go.2 002
0 : ‘ 0 ‘
0 5 10 0 0.5 1
Cadherin Rating Oxygen Concentration
(A) Cadherin EMT impact, c. (B) Oxygen EMT impact, o,.
x10™

S 0.041
Q 0
®© @

4 o
£ £0.03
-3 =

=

E w 0.02¢
82 <
©
= 7001

0 ‘ 0 ‘ ‘ ‘

0 50 100 0 5 10 15 20
Media Concentration Signal Concentration
(C) Media Rate parameter value, 1. (D) Signal Rate parameter value, s.

FIGURE 2.10: EMT rate variables with respect to the intra and

inter-cellular conditions. The impact of the cadherin rating (A),

oxygen concentration (B), media concentration (C), and signal

concentration (D) on the rates of EMT in cells. These variables

are included in calculating the probability of EMT on each iteration
using Equation 2.5.

All impact parameters are incorporated into calculating the probability for a cell to
jump up a cadherin rating, thus ensuring the conditions lead to an impact on the
rates of EMT. The parameter values are incorporated for each cell using a proba-

bilistic approach, viewing them as a set of independent variables and calculating
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the probability of their union as shown in Equation 2.5. Here, p is the probability
that a cell will jump up a cadherin rating on each six minute iteration,

pzl_(l_cf)'(1_06)'(1_m6)'(1_56)' (2.5)

We ensure the cells on the periphery of the SKOV-3 3D spheroids remain epithe-
lial, as observed in the biological observations, by incorporating a “transformation
threshold” parameter, set in the model to be 0.1 units of oxygen. Any SKOV-3 cells
in oxygen levels greater than this value are automatically reassigned a cadherin
rating of 0. This prohibits the cells on the exterior of the tumour from undergoing
EMT and ensures they remain epithelial to replicate the biological experiments in
which a shell of epithelial cells is wrapped around an interior mass of mesenchymal
cells. A summary of the key differences between the cell lines are shown in Table
2.2.

OVCAR-3 SKOV-3
Lower Probability of EMT Higher Probability of EMT
All cells can perform EMT | Only Interior cells can perform EMT

Faster cell cycling rates Lower cell cycling rates

TABLE 2.2: Key cell type differences. Comparisons between the

two cell lines of interest are shown, inferred from the biological

experiments shown in Section 2.2. SKOV-3 cells have higher rates

of EMT, slower proliferation rates, and retain a shell of epithelial
cells along the tumour exterior.

2.3.4 Parameter Values

The key parameters for our model, such as cell-cell adhesion strengths and sub-
strate secretion/uptakes are stated in Tables 2.3 and 2.4. For simplicity, we cur-
rently keep cell volumes, repulsion and adhesion strengths, and substrate uptake
rates equal between epithelial and mesenchymal cells. Cell adhesion (0.4 /min)
and repulsion (10.0pum/min) strength parameter values are kept consistent with
those used in the PhysiCell template project [73]. These values help ensure there
is no overlapping of the cell membranes whilst also keeping the tumour as one

collective mass.

In simulations with adipocyte derived media, we initialise the domain with 50
dimensionless units of media distributed uniformly. Oxygen enters the system
immediately using Dirichlet boundary conditions set to 38 units from each bound-
ary edge. Epithelial and mesenchymal cells in both cell lines are each set to uptake
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oxygen at a rate of 0.6 units per minute and media at a rate of 0.001 units per minute
in the model [79], removing the respective amount of substrate from the cells voxel
as a sink. Oxygen and media have diffusion coefficients of 1e5 micron? and 200
micron? per minute respectively, assigned after observations of simulation results.
Due to the short time frame of the experiments, we set the decay rate of oxygen
and media to be zero, anticipating that minimal decay would occur in biological

experiments.
Parameter Units ‘ Value ‘

Cell Volume microns® | 3000 [43]

Cell Adhesion Strength | micron/min 0.4

Cell Repulsion Strength | micron/min 10
Motility Speed micron/min | 0.1 [151]

Oxygen Uptake rate 1/min 0.6 [79]
Media Uptake rate 1/min 0.01

TABLE 2.3: Cell parameter values. Values are estimated using data
provided in literature or inferred from comparing simulation results
to biological observations.

Despite the constant influx of oxygen incorporated from the boundary edges through
Dirichlet boundary conditions, the oxygen intake from the cells can create sim-
ulated hypoxic conditions in the tumour core, resulting in a higher probability of
EMT occuring. Adipose derived media has less direct involvement than oxygen for
cellular respiration and so the cell uptake rate is set to be considerably lower. We
see in the biological experiments that the impact of media on the proliferation rate
remains relatively high throughout the 96 hour in vitro experiment, also suggesting
a low uptake rate of media in the cells. Setting an uptake value of 0.001 units per
minute ensures that central areas of the tumour can become media deficient and
cells on the periphery proliferate the fastest as a result. Parameter values can found
in Table 2.3.

Oxygen and adipose derived media are assumed to each have no decay rate due
to the short time frame of the simulation. The only reduction in the levels of these
substrates is due to the uptake rate of the cells shown in Table 2.3 for processes
such as glycolysis in respiration. The media is placed in the domain uniformly at
the beginning of the simulation to immediately encourage cell proliferation. No
further media is added during the simulation, resulting in a gradual decrease in
overall media levels. There is an input of oxygen from the boundary edges to

recreate the environment found in the in vitro experiment. This is implemented
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using Dirichlet boundary conditions along all faces of the 3D cube shaped domain.
Media and signal substrates are assigned Neumann boundary conditions with a
flux of zero along the boundary edges. Values for these parameters can be found in
Table 2.4. Parameters not stated in this section were kept as the default PhysiCell
parameter values from the template project provided [73].

Parameter ‘ Units ‘ Oxygen ‘ Media ‘ Signal ‘
Diffusion coefficient micron?/min | 1e5 [127] 200 0
Decay rate 1/min 0 0 1
Dirichlet/Neumann Boundary Conditions | dimensionless 38 0 0

TABLE 2.4: Substrate parameter values. Boundary conditions

which are non zero use Dirichlet boundary conditions and those

which are zero use Neumann boundary conditions with zero flux.

Bystander signal related parameters are determined based purely

on simulations observations due to the lack of physical substrate
found experimentally.

2.4 Model Calibration

To ensure our model gave similar qualitative results to the biological experiments,
we ran computer simulations to compare the tumour growth in unconditioned
media and omental tissue conditioned media. Tumours are initialised as closely
to the in vitro experiments as possible. The simulated tumours were placed in 3D
spheroids in a cube-shaped domain with edges of length 410um. OVCAR-3 cells
were initialised with 3000 cells in a sphere of radius 120um, while SKOV-3 cells
were initialised with 6000 cells in a sphere of radius 150pm. We ran the simulations
for 96 hours of simulated time, storing cellular and microenvironment data every
60 minutes.

The in vitro SKOV-3 tumour shown in Figure 2.3 (A) and repeated in Figure 2.11
(A) shows a large central mass of mesenchymal cells in which there is a high
expression of N-cadherin, with an exterior shell of green epithelial cells formed
around the periphery. in vitro OVCAR-3 tumours shown in Figure 2.3 (B) and
repeated in Figure 2.11 (D) are shown to have small clumps of mesenchymal cells
in the mass of otherwise epithelial cells. Both these trends are generally recreated
in the results from the model simulations for SKOV-3 and OVCAR-3 spheroids
shown in Figures 2.11 (B) and (E) respectively. To investigate the importance of the
bystander effect, the simulations are repeated with no bystander signal secretion
enabled from mesenchymal cells, with results shown for SKOV-3 tumours in Figure
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2.11 (C) and OVCAR-3 tumours in Figure 2.11 (F). The lack of EMT in these results
highlights the need for the bystander effect to be present in the model dynamics.

Current time: 4 days, 0 hours, and 0.00 minutes, z = 0.00 um Current time: 4 days, 0 hours, and 0.00 minutes, z = 0.00 ym
11532 agents 12366 agents

200um 200 um
L 0diays, 0 hours, 22 minutes, and 374000 seconds

(A) Experimental SKOV-3 (B) Simulated SKOV-3 tumour  (C) Simulated SKOV-3 tumour
tumour after 96 hours. after 96 hours with the after 96 hours with no
bystander effect. bystander effect.

Current time: 4 days, 0 hours, and 0.00 minutes, 2 = 0,00 ym Current time: 4 days, 0 hours, and 0.00 minutes, z = 0.00 ym
38131 agents 38089 agents

200um i 200um
e R 0.days, 0 hours, 25 minutes, and 27 2577 seconds

(D) Experimental OVCAR-3 (E) Simulated OVCAR-3 (F) Simulated OVCAR-3
tumour after 96 hours. tumour after 96 hours with the  tumour after 96 hours with no
bystander effect. bystander effect.

FIGURE 2.11: Comparisons of the final cadherin expressions in
the cross-section of the tumours found in vitro and in silico. The
spatial distribution of E-cadherin (green) and N-cadherin (red) is
shown in vitro for SKOV-3 (A) and OVCAR-3 (D) spheroids after 96
hours, and compared with those found in silico for SKOV-3 (B) and
OVCAR-3 (E). Simulations are also tested without the presence of
the bystander effect in EMT, shown for SKOV-3 (C) and OVCAR-3
(F) tumours.

Figure 2.12 shows the live cell populations over time for the in silico and in vitro
experiments in different types of media. The red lines represent tumours grown in
omental tissue-conditioned media, with the blue lines showing tumour growth in
unconditioned media. The green lines shows tumour population grown in ovarian
mass omental tissue-conditioned media, not used in the in silico model for simplic-
ity. Figure 2.12 (A) shows that omental tissue conditioned media helps to increase
cell proliferation when compared with unconditioned media in SKOV-3 spheroids,
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with similar dynamics captured in the results of the in silico experiments shown in

Figure 2.12 (C).
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FIGURE 2.12: Comparison of temporal dynamics of tumours in
various medias found in vitro and in silico. Results found from in
vitro experiments are shown for SKOV-3 tumours (A) and OVCAR-
3 tumours (B). Simulations are run for 96 hours in with no initial
media concentration (blue) and with an initial media concentration
of 50 units (red). These tumours are simulated for SKOV-3 cells (C)
and OVCAR-3 cells (D), and compared with the results found in
vitro for the two cell lines.

The opposite effect is observed in OVCAR-3 spheroids, in which proliferation de-

creased as a result of omentum derived media being present in the in vitro ex-

periments, as shown in Figure 2.12 (B), with simulation results shown in panel

(D). While the exact shapes of the population curves during the simulation differ,

the general trends are similar between the biological experiments and model sim-

ulations. Developing a model with a higher quantitative agreement rather than
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qualitative by including certain aspects such as a carrying capacity and further

parameter optimisation is explored in more detail later in the study.
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FIGURE 2.13: Comparison of the N-cadherin and E-cadherin
expression found in vitro and in silico. Results found from in
vitro experiments show the expression of N-cadherin (A) and E-
cadherin (B) after 96 hours. These are compared with the in silico
results in panels (C) and (D) for the two cell lines in which cells
with a cadherin rating of seven or higher are assumed to express
N-cadherin, and cells with a cadherin rating lower than seven are
assumed to express E-cadherin.

We also compare the number of cells expressing mesenchymal and epithelial mark-
ers in the spheroids. After 96 hours of simulated time, the proportion of mesenchy-
mal cells and epithelial cells in OVCAR-3 and SKOV-3 tumours were calculated, as
shown in Figure 2.13. The high expression of N-cadherin and low expression of E-
cadherin in SKOV-3 tumours found experimentally (top row), shown using black
bars, is generally captured very well by the model results (bottom row). OVCAR-
3 tumours show very low N-cadherin expression and high E-cadherin expression
following biological experiments, shown using grey bars. These results are also
found in the computer simulations we perform, with similar proportions of tumour

expressions observed across the in vitro and in silico results.
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This section helps to test the validity of the hypotheses we used to construct the
model, with Figures 2.11, 2.12, and 2.13 showing strong similarities between the
in silico and in vitro experiments. General trends in simulation results are consis-
tently captured when compared to the data provided from the in vitro experiments.
Ensuring our model has this calibration with the biological experiments provides
the foundation to build from this model with the assumption that the results are
accurate and realistic to what could be expected in vitro.

2.5 Results and Discussions

To explore the capabilities of the model, we begin to test the impact that three pa-
rameters can have on tumour growth and the final size of the neoplasm. Firstly we
vary the media in the initial conditions. This aims to show what may be expected
of a tumour in patients varying from lean to obese, with the previous sections
highlighting the importance of incorporating the volume of adipose tissue into
the model. Investigating this impact in more detail could lead to a better under-
standing of the exact tumour attributes expected for different patients. We next
introduce the drug treatment described in Section 2.3.1 to test the effectiveness of
different drug dosages on a tumour. These results can be incorporated to study
the dosage a patient should be administered with, given their obesity level or
tumour composition. Finally, we compare the tumour growth for different initial
sizes. This may lead to interesting dynamics when incorporating media, since
larger tumours will restrict the adipose derived media available to the central cells,
changing the growth over time and potentially playing a role in determining the
optimal treatment strategy.

2.5.1 Effect of Media Concentration on Tumour Growth

To explore the impacts of adipose tissue and the omentum, we vary the levels of
adipose derived media in the initial conditions of the microenvironment between
different values. All parameters remain the same as stated previously other than
the initial media concentration, assigned the default value of 50 units distributed
uniformly throughout the domain. We vary this parameter value between 0% and
200% of the default value shown in Figures 2.14 for OVCAR tumours and 2.15 for
SKOV-3 tumours, with the cross-sections at the final time displayed alongside the
temporal dynamics of the populations for each setting.
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OVCAR-3
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FIGURE 2.14: OVCAR-3 spheroids after 96 hours of simulated
time for different levels of media concentration. Cross-
sections of the OVCAR-3 tumours after 96 hours are shown for
spheroids initialised with no media (A), 50% of the default media
concentration (B), 100% of the default media concentration (C),
150% of the default media concentration (D), and 200% of the
default media concentration (E). The temporal dynamics of these
simulations show the live cell populations over time (F).

Figure 2.14 shows the tumour layout for OVCAR-3 spheroids after 96 hours in
different media levels. For adipose derived media levels at 0% and 50% of the
default value (panels (A) and (B) respectively), there are insufficient media to allow
EMT to occur and the tumour ends with almost only epithelial cells present. The
population of mesenchymal cells increases with levels of media, leading to the
eventual merging of separate clumps as seen in Figures 2.14 (D) and 2.14 (E). We see
that the total population of cells at the final time of the simulation decreases mono-
tonically as initial media conditions increase (F). While these results may suggest
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that increased fat levels may be beneficial due to less overall tumour growth over
time, mesenchymal cells have a higher tendency to metastasise and are considered
to be harder to control and treat than epithelial cells. Therefore, it is likely that
tumours in lower adipose derived media are easier to treat despite their larger

size.

SKOV-3
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media concentration value.
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(B) 50% of the default initial
media concentration value.

Current time: 4 days, 0 hours, and 0.00 minutes, z = 0.00 um
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(C) 100% of the default initial
media concentration value.
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(F) Population of cells for
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FIGURE 2.15: SKOV-3 spheroids after 96 hours of simulated time
for different levels of media concentration. Cross-sections of the
SKOV-3 tumours after 96 hours are shown for spheroids initialised
with no media (A), 50% of the default media concentration (B), 100%
of the default media concentration (C), 150% of the default media
concentration (D), and 200% of the default media concentration
(E). The temporal dynamics of these simulations show the live cell
populations over time (F).

Figure 2.15 shows that only when no adipose derived media is present do simu-
lations of SKOV-3 tumours remain fairly epithelial after 96 hours. All other initial
conditions in the microenvironment lead to outcomes in which the interior of the
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tumour is almost entirely mesenchymal with an epithelial exterior. Other than
occasional individual cells, visually there are few major differences from (B) to (E)
in Figure 2.15. Panel (F) shows there is a small change in the total population of
cells over time for different media conditions. Higher media consistently leads to
a slightly larger tumour size at the end of the simulation. This is as a result of the
increased proliferation rate that adipose derived media has on SKOV-3 cells.

2.5.2 Effect of Treatment Dosage on Tumour Growth

We next look for any potential impacts of administering treatment to a patient, with
results shown in Figure 2.16 for OVCAR-3 and Figure 2.17 for SKOV-3 spheroids.
The default drug amount is set to be 50 units delivered after 24 hours, with the
dosage again varying between 0% and 200% of the default value and cell popula-
tions tracked over time for the different levels of treatment.

OVCAR-3

Figure 2.16 shows the final OVCAR-3 spheroids after being exposed to different
concentrations of drug during the simulations. No level of drug we tested was
sufficient in eradicating the tumour entirely, despite leading to a significant de-
crease in size overall. Alongside this, the drug has a higher capability of killing
the epithelial cells over the mesenchymal cells, allowing the mesenchymal cells to
remain and in general make up more of the final tumour. Tumours made up of
mesenchymal cells are generally more resistant to treatment than those made up
of epithelial cells. This leads to the question of whether higher drug dosages are
always preferential, as the tumour can recover when the treatment is no longer
active regardless of the dosage. Any negative side effects are often dosage de-
pendent, meaning extra care is required when deciding on a treatment plan for
cancer patients. Despite only a single administration of the drug, concentrations
appear to remain sufficiently substantial at high dosages to continue reducing the
populations in the OVCAR-3 tumour until the simulation is complete. Dosages at
100% or more of the default value show a monotonic decrease in cell populations
following drug administration, suggesting that with enough time there may be
potential to eradicate the tumour completely.
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FIGURE 2.16: OVCAR-3 spheroids after 96 hours of simulated
time for different levels of treatment. Cross-sections of the
OVCAR-3 tumours after 96 hours are shown for spheroids with no
treatment (A), 50% of the default treatment dosage (B), 100% of the
default treatment dosage (C), 150% of the default treatment dosage
(D), and 200% of the default treatment dosage (E). The temporal
dynamics of these simulations show the live cell populations over
time (F), with the dashed vertical line at 24 hours showing the
introduction of treatment.

SKOV-3

We next investigate the impact of the drug on SKOV-3 cells. Figure 2.17 shows
the tumour appearance after 96 hours of the simulation. Again, no treatment level
tested in the simulations led to the complete removal of the tumour, with even any
reduction over time in the population size found to be unachievable. The drug tar-
gets the epithelial cells on the periphery, stripping the tumour of its outside layer,
thus increasing the oxygen levels to the previously interior cells. This converts the
outside mesenchymal cells into epithelial cells due to the increased oxygen levels
available to these cells and the oxygen threshold rules imposed on SKOV-3 cells in
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the model. As a result, the tumour shrinks over time while simultaneously keeping

the lining of green epithelial cells on the tumour periphery.
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FIGURE 2.17: SKOV-3 spheroids after 96 hours of simulated time
for different levels of treatment. Cross-sections of the SKOV-3
tumours after 96 hours are shown for spheroids with no treatment
(A), 50% of the default treatment dosage (B), 100% of the default
treatment dosage (C), 150% of the default treatment dosage (D), and
200% of the default treatment dosage (E). The temporal dynamics of
these simulations show the live cell populations over time (F), with
the dashed vertical line at 24 hours showing the time of treatment
introduction.

No drug concentration tested for either cell line is sufficient to completely erad-
icate the tumour over time. While simulated tumour populations decrease with
higher drug administration, certain drawbacks should be considered when treat-
ment protocol is decided such as drug resistance, side effects of chemotherapy, and
magnitude of the treatment effectiveness. In Chapter 4, we look into the effect that

a drug has on tumours in significantly more detail.
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2.5.3 Effect of Initial Tumour Size on Tumour Growth

The next result we use our model for is to find is the importance of the initial
tumour size on the cell population. We have a default tumour size of 3000 cells for
OVCAR-3 spheroids and 6000 cells for SKOV-3 spheroids, consistent with those
used in the in vitro experiments in Section 2.4. Comparisons are made between
the dynamics observed in tumours initialised with 50%, 100%, and 150% of these
default tumour sizes, with the temporal dynamics of the populations tracked. The
difference in initial tumour size can provide an option for the model to account for
the stage in which the tumour is diagnosed and how advanced the tumour is in the

area of interest.
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tumour sizes over time.

FIGURE 2.18: OVCAR-3 spheroids after 96 hours of simulated

time for different initial tumour sizes. Cross-sections of the

OVCAR-3 tumours after 96 hours are shown for spheroids with 50%

of the default initial population size (A), 100% of the default initial

population size (B), and 150% of the default initial population size

(C). The temporal dynamics of these simulations show the live cell
populations over time (D).

Figure 2.18 shows the tumour growth for a small, medium, and large initial tu-
mour size. Other than their size, the overall appearance of the tumours and the
presence of the small mesenchymal clumps in the sphere of green epithelial cells
remains similar. The larger tumours lead to a slightly more restricted availability of
media to each cell, reducing the rate of EMT. Simultaneously, the larger OVCAR-
3 spheroids have lower oxygen levels towards the centre of the tumour, in turn
increasing the rate of EMT. These two effects somewhat cancel out, keeping the
proportions of mesenchymal and epithelial cells roughly constant across tumour

sizes. The rate of growth is similar between the three simulations, with proportions



40 Chapter 2. An Initial Approach to Adipocyte Driven Tumour Dynamics

between the sizes of tumours across the three simulations remaining similar over

time.

SKOV-3

Similar to OVCAR-3 spheroids, SKOV-3 spheroids shown in Figure 2.19 appear
comparable across the different initial tumour sizes other than overall cell pop-
ulations. For all different values of initial cell population, a thin layer of green
epithelial cells consistently forms on the tumour periphery alongside a red pool
of mesenchymal cells in the interior after 96 hours of simulated time. The growth

rates between the simulations are again similar, as seen in Figure 2.19 (D).
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FIGURE 2.19: SKOV-3 spheroids after 96 hours of simulated time

for different initial tumour sizes. Cross-sections of the SKOV-

3 tumours after 96 hours are shown for spheroids with 50% of

the default initial population size (A), 100% of the default initial

population size (B), and 150% of the default initial population size

(C). The temporal dynamics of these simulations show the live cell
populations over time (D).

2.6 Conclusions

The impact that adipose tissue has on cancer patients and their treatment is clearly
shown to be crucial, with fat tissue encouraging EMT and cell proliferation in both
epithelial and mesenchymal cells. The mechanisms responsible for this are still
largely unknown but can be represented in mathematical equations used for the
simulations to ensure the model is as representative of a natural cancer tumour as
possible. We have shown previously that the model can recreate trends found in
biological experiments with accurate results. This helps justify our ability to make
predictions and gain answers to questions not yet found through in vivo or in vitro
experiments. Unlike ODE models, the fact the model is agent-based with a set of
rules for each cell phenotype makes the model extremely adaptable and replicable.
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The capacity for this change allows relatively minor adaptations to be made to
convert into models used for many other biological systems.

The key aim of the model in this chapter is to create an accurate and true model to
represent the biological dynamics. A model which incorrectly quantifies associa-
tions between the cells will lead to results that over time become an unrealistic rep-
resentation of the system and would give incorrect optimisation strategies. By per-
forming relevant experiments, these interactions can be inferred from the results
at different time steps and levels of adipose tissue. Analysing these experiments
allows us to find the unknown parameters and create a model that fits as closely
as possible to the data found. Ideally we would also obtain data on the various
stromal cells such as fibroblasts and macrophages, as well as the concentrations
of important substrates including oxygen, adiponectin, and leptin. A further key
question is finding the key parameters involved in chemoresistance. Since these
will be heavily time dependent it’s crucial that their values over time are correct
given the level of different stromal cells in the microenvironment, in particular
adipocytes.

Areas of further interest include looking into the importance of the initialisation
for the set up. Angiogenesis and metastasis are two of the areas in which cancer
can transform into a more serious threat to human life. The ability of a tumour
to provide itself with the necessary nutrients is a requirement for it to become a
significant size. How this occurs and how adipose tissue can affect the angiogen-
esis of a tumour could be found and quantified in future variations of the model.
Since few mathematical models have been created linking adipocytes with cancer,
many of the interactions require new experimental data rather than by using past
studies that could quantify the relationships. These interactions are likely to have
a significant bearing on the outcomes of the models and simulations, hence it is
important they are accurate to ensure the results are meaningful and useful for

future research and treatment protocols.

The flexibility of the model and capacity to generate custom tumours and mi-
croenvironments helps us take further steps towards achieving patient specific
treatment plans and digital twins. In doing so, a main objective would be to find
the optimal treatment protocol for each patient, thus hopefully increasing the 5 year
survival rate for ovarian cancer. In the future, the model could include additional
agents such as fibroblasts and macrophages to ensure it is as close to any in vivo
experiments as possible. Currently the adipose derived media is considered to be
one single collective substrate. We know this is not the case as it includes various
types of peptides and exosomes [93]. While a more complex model may lead to
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more representative results of tumours in patients, it is important to keep the model
simple to avoid over complication and over fitting. For this reason, we create this
model as a basis for future work and aim to explore increasing the complexity later
in the study.
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Chapter 3

Modelling the Epithelial to
Mesenchymal Plasticity in Cancer

3.1 Introduction

EMT is a key process in which epithelial cells undergo phenotypic changes, en-
abling a reduction in cell-cell adhesion and enhancing the migratory abilities es-
sential for normal tissue functionality within the body [222, 61, 125]. It allows the
closure of developmental neural tubes [117], plays a key involvement in embryo-
genesis [151], and enables wound healing to occur [144]. Despite the reliance of
the human body on this process, the role of EMT can occasionally become detri-
mental and further complicate treatment for diseases. EMT is heavily linked to
cystic fibrosis by causing goblet cell and pneumocyte hyperplasia in the lungs
[185]. Rheumatic diseases have also been linked to EMT, with rheumatoid joints

expressing an abundance of TGF-p in the synovial fluid [250, 35].

Since EMT plays a large role in many different processes, it was recently sug-
gested to separate EMT into three main types [113, 121]. EMT occurring during a
self-contained process requiring multiple cell types to be generated such as organ
development and embryo formation is classified as type 1. EMT associated with
repair such as wound healing, organ fibrosis, and tissue regeneration is classified
as type 2. This repair discontinues upon completion and when inflammation is
reduced. The third type of EMT includes instances where there is a genetic and
epigenetic difference between the epithelial and mesenchymal cell types. Type 3 is
the key type of EMT associated with cancer progression and metastasis.

As mentioned in Chapter 2, EMT is no longer viewed as a binary switch and is now
considered to be a more continuous procedure [83]. Cells can fluctuate through a
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multi-step process during which they may show partial epithelial and mesenchy-
mal characteristics [165, 161]. This leads to a more complex differentiation process
between classifications of cells. The ratio of the biological markers used in Chapter
2 (E-cadherin, N-cadherin, and vimentin) conclude the placement of these cells
along the EMT scale [37].

EMT is a crucial step in cancer progression [190], allowing mesenchymal cells
within a tumour to have lower cell-cell adhesion forces due to a reduced E-cadherin
expression on the cell surface [201]. This allows the cells to break away from the
main tumour location and escape from the brick-like structure they were previ-
ously a part of [31]. This relocation of cells can cause metastasis away from the
primary tumour site, with metastatic cases responsible for over 90% of all cancer-
related deaths [80]. One justification for this statistic is the improved drug resis-
tance possessed by the slower cycling metastatic cells [56, 149]. These metastatic
cells can obtain resistance to anoikis, a type of programmed cell death caused by a
detachment from the surrounding extracellular matrix [163]. Cells can also switch
from a phenotype tailored for proliferation to a phenotype which targets invasion
around the body [48]. This lack of proliferation hinders the effectiveness of the
drug, as targeting the rapidly dividing cells is no longer efficacious [148, 168].
This effect is responsible for lower long-term treatment dosages occasionally being
beneficial. Higher dosages can eradicate the susceptible, less concerning epithelial
cells, therefore making space and freeing up resources for the mesenchymal cells
to exploit [226, 128, 77].

It has been shown that cells are also capable of undergoing mesenchymal-to-epithelial
transition (MET) [106, 231]. This is the reverse process of EMT, where mesenchymal
cells transition back to epithelial cells and regain the epithelial phenotype and be-
haviours previously exhibited [9, 221, 112]. The phenomenon of MET is primarily
seen in mesenchymal cells which return to focusing on proliferation following their
relocation elsewhere in the body [156]. While completing EMT allows a cell to
travel with more ease throughout the body, MET enables transformation back to
the faster proliferating, more stable epithelial phenotype [126, 182]. This allows the
tumour to grow faster and spread throughout the body more rapidly [29, 247].

EMT has become an increasingly popular area for mathematical modelling, with
many various approaches taken in the last decade. MacLean et al [139] uses an
ODE model to measure the population sizes of two cell types: epithelial and mes-
enchymal. A reversible binary switch is assumed to occur between the cell types,
with switch rates dependent on the total population sizes of each. Franssen et al
[66] later models the metastatic spread of cancer using a non-binary classification of



3.1. Introduction 45

the EMT process. Partial EMT states are introduced and use an agent-based model
with a system of ODEs within a 2D domain. The model allows cell detachment in
partial EMT cells, with cells primarily around the tumour periphery undergoing
transition to break away from the primary tumour. Other models such as those
produced by He et al [89] and Mooney et al [150] include feedback loops of various
transcription factors. Both the EMT and MET processes are modelled using sys-
tems of ODEs, with the correlations between the model output and various input
parameters such as gene expressions studied. Murphy et al [153] develops both
discrete and continuum mathematical models, inducing EMT and cell detachment
through chemical signal concentrations. These concentrations also affect the pro-
liferation rate and size of cells in the models. An extensive review performed by
Jolly et al [107] has shown how past mathematical models have helped improve
the understanding of EMT in cancer cells. The reverse process, MET, is included in
the review to explore how the plasticity of the cells along this scale can impact the
models and their findings.

Here, we investigate the role of EMT in the progression of ovarian cancer by de-
veloping a multiscale mathematical and computational model to investigate the
role of EMT in OVCAR-3 and SKOV-3 cell lines. This model allows cells to mi-
grate through the domain, proliferate at microenvironment-dependent rates, and
progress through EMT in a biologically realistic manner. The model is based on
experimental data and processes found in past literature with a focus on EMT
rather than the adipose derived media.

The model will also be used to study the importance of including MET in tumour
dynamics, a key process when modelling metastatic cancers. Direct comparisons
will be made between simulations both including and excluding the presence of
MET. Sensitivity analysis on the key parameters is performed to help quantify
the role of EMT and its association with tumour size and composition over time.
Following model validation using experimental data, future predictions are made
on different initial states of the tumour. Temporal dynamics of tumours initialised
with epithelial and mesenchymal cells across different cell lines are compared, with
the importance of accurately distinguishing the cell lines of interest. By investi-
gating the progression of cancer tumours in various scenarios, we aim to make
predictions for how cell populations and tumour compositions are likely to change
with time. Given these results, future adaptations of this model may be used to in-
corporate various treatment plans, potentially providing insights into the optimal
treatment protocols. Ideally, patients diagnosed at a certain stage could have their

tumour recreated as a digital twin and simulated using this model, incorporating
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this treatment method to provide the best prognosis possible.

3.2 Methods

Here, we study temporal tumour evolution over 96 hours using an adapted math-
ematical model. As done previously, OVCAR-3 and SKOV-3 epithelial cells are
placed in the domain, with the cross-sections of the tumour shown each day until
the completion of day four. The simulation results are then compared to the bio-
logical observations and data obtained from the in vitro experiments discussed in
Section 2.2.

This chapter focuses on the role of the EMT process in general, rather than adipocyte
driven EMT. This includes investigating the impacts of initial tumour composi-
tions, or the inclusion of the reverse process, MET. Therefore, we remove media
from the substrates and simply assume the effects are present in the background.
In addition, we now assume there is an oxygen decay rate of 10 units per minute
in the domain, causing low oxygen levels which could potentially lead to hypoxia
induced EMT. The updated substrate related parameters can be found in Table 3.1.

Parameter Units Oxygen ‘ Signal ‘
Diffusion Coefficient micron? /min leb 0
Decay Rate 1/min 10 1
Dirichlet Boundary Conditions | dimensionless 38 0

TABLE 3.1: Substrate parameter values with hypoxia. Parameter

values are carried across from those used in Chapter 2, other than

a decay rate for oxygen. Hypoxia induced EMT plays a significant
role in the dynamics, hence the inclusion of this decay.

3.21 Cell Cycle

Cells in the model progress through the cell cycle at varying rates depending on
the conditions within both the cell and the microenvironment [70]. In Chapter
2, correlations between intra and intercellular conditions were assumed to have a
linear relation to the cell cycling rate. In this section, Hill functions are used for
these correlations to create saturation effects as shown in Figure 3.1 using Equation
3.1,

t—b - xP
y= (sa 5 ase) - x + base. (3.1)
Ky, + xP
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A Hill power of four is used throughout, allowing minor behavioural changes
during perturbations of small dependent variable values, while still creating non-
linear correlations overall. Here, y denotes the response to a variable x, base and
sat are the values that the Hill function can take for x = 0 and as x tends to infinity
respectively, p is the Hill power used to assign the steepness of the curve, and Ks is
the half max, the value of x for which y is half way between the base and sat values.
These Hill functions asymptotically approach their saturation value, meaning their

exact saturation value is never reached.
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(C) Oxygen cycling impact parameter, o¢, vs
oxygen concentration in the microenvironment.
This shows the impact of hypoxia on the cell,
with cells in higher oxygen levels leaving G1 at
a faster rate through increased ATP production
[15].

FIGURE 3.1: Dependence of cell cycling parameter values on cell

conditions. Increased cadherin rating (A) and pressure a cell is

under from neighbouring cells (B) decrease the cell cycling rate,

while increased oxygen concentration (C) increases the cell cycling

rate. Hill functions range between a maximum of two to a minimum
of one.

Similar to oxygen concentrations, contact inhibition has been found to lead to
arrest in the G1 phase of the cell cycle [235]. Therefore, similar to in Chapter 2,
dependence of the conditions on the cell cycling rate is incorporated into the G1
cycling phase.
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Cells with a higher cadherin rating are assumed to have more mesenchymal pheno-
typic behaviours and so cycle slower than those possessing more epithelial charac-
teristics [78], implemented into the model as shown in Figure 3.1 (A). This param-
eter is two for entirely epithelial cells, asymptotically approaching one for entirely
mesenchymal cells. Cells under higher pressure due to combined repulsion forces
from neighbouring cells also reduce the cell cycling rate, as shown in Figure 3.1
(B) [71, 146]. This encapsulates the effect of cells requiring empty space in the
surrounding area to divide into [177]. We generate this pressure cycling impact
parameter value using a similar Hill function to that seen in Figure 3.1 (A), where
the parameter value is two where no pressure is applied to the cell and tends
to one where the pressure is two units. The unit of pressure is defined using a
dimensionless analog described in the documentation of PhysiCell [73]. With a
greater concentration of oxygen available in the microenvironment, cells are able
to increase adenosine triphosphate (ATP) production and therefore cycle faster [59,
248,191, 202]. This is incorporated into the model in Figure 3.1 (C) by introducing
an oxygen cycling impact parameter ranging from one in hypoxic conditions to

two in oxygen-rich conditions.

Due to the difficulty in quantifying the exact minimum and maximum parameter
values in these functions, we assume that each cycling impact parameter fluctu-
ates between one and two, meaning each variable has the capability of doubling
the rate to exit G1. This assumption allows us to make qualitative conclusions
regarding how the tumour size may depend on the intra-cellular and inter-cellular
conditions. The exact parameters used in the generation of these Hill functions are
shown in Table 3.2.

Cycling Rate Related Parameters

y X base | sat | Ksg

Cadherin Cycling Impact (c.) Cadherin Rating 2 1 |65

Oxygen Cycling Impact (o) | Oxygen Concentration | 1 2 1

|

Pressure Cycling Impact (p.) Pressure 2 1 1

TABLE 3.2: Hill function parameters used for the variables in the

cycling rate equation. The table shows how the cadherin rating,

oxygen concentration, and pressure that a cell is under can influence

the cycling rate of a cell. Hill functions are used to quantify the

impact of these conditions on the cell cycling rate according to the
parameters shown in the table.

These impact parameters are used to calculate the rate at which a cell leaves the
G1 stage of the cell cycle using Equation 3.2, where r is the cycling rate, b, is a base
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cycling rate parameter, 1 is the current population, and K is the carrying capacity,

r:bc-cc-pc-oc(l—%). (3.2)
The carrying capacity is included, estimated to be 6500, to allow a maximum pop-
ulation similar to that observed in the experimental data where the growth rate
of large tumours are reduced. Due to the cycling rate variability being enforced
in the G1 stage of the cycle, there is a time delay in the effect of this rate and the
tumour can reach populations higher than that specified in the carrying capacity of
the logistic growth term. Assuming on average that cells have a base cycling rate
parameter (b;) of 1/11 hours~! [158], these values allow a maximum cycling rate
of 8/11 hours~! to leave G1. Due to the other stages of the cell cycle unaffected
by the conditions, the total length of the cell cycle would therefore vary between
around 14 hours in the optimal conditions for cell proliferation and 24 hours in the
poorest.

3.2.2 Cadherin Rating

The cadherin rating of a cell has a key influence on its phenotypic characteristics
[105]. We use a number of Hill functions to build correlations between the cur-
rent cadherin rating and the behaviour of a cell. Figure 3.2 shows the assumed
quantitative trends between cadherin rating and different cell behaviours such as
migration speed (A), signal secretion rate (B), and cell-cell adhesion strength (C).
Hill functions are used to generate these correlations, with relevant values shown
in Table 3.3. Mesenchymal cells have been found to possess enhanced migratory
tendencies [192, 123] and lower adhesion strength than seen in epithelial cells [208,
124]. Here, the increased migration speed which is permitted for mesenchymal
cells allows the cells to move with greater freedom through the domain and in-
crease the probability of the cell leaving the tumour itself to reach the domain
boundary. The decrease in adhesion strength allows the mesenchymal cells to
break away from neighbouring cells and escape the tumour with greater ease.
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(B) Signal secretion vs cadherin rating. This
shows the rate at which the chemical signal
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by the cells into their microenvironment.

FIGURE 3.2: Dependence of different cell variables on the current
cadherin rating of the cell. Increased cadherin ratings increase
cell migration (A) and bystander signal secretion rate (B), while

decreasing cell-cell adhesion strength (C).

Cell Behaviour Related Parameters

y X base | sat | Kso | p
Migration Speed Cadherin Rating | 0.1 | 04 | 6.5 | 4
Signal Secretion Rate | Cadherin Rating | 0 | 10 | 6.5 | 4
Cell-Cell Adhesion | Cadherin Rating | 0.4 | 0.2 | 6.5 | 4

TABLE 3.3: Hill function parameters used for the phenotypic
behaviours. The table shows how the cadherin rating can influence
the behaviours of a cell in the model. Hill functions are used to
correlate the rating to the migration speed, signal secretion rate, and

cell-cell adhesion strengths.

Impact of Inter-Cellular Conditions

Following experimental observations, we hypothesise in our model that two main

factors in the microenvironment contribute to EMT within epithelial cells. Hypoxic

conditions have been found to encourage EMT in cancer cells by generating various

signalling pathways and activating transforming growth factor TGF-g [102, 110].
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This is achieved in the model using a Hill function to produce an oxygen EMT
impact parameter decreasing from one in hypoxic conditions to approximately
zero in oxygen-rich microenvironments, as shown in Figure 3.3 (A). It has also
been observed experimentally that mesenchymal cells appear to promote EMT
[44]. Here, we incorporate this using bystander signals, where cells higher on
the cadherin rating scale secrete the chemical signal responsible for the bystander
effect at increased rates. This leads to higher signal concentrations around the
mesenchymal cells and a chain reaction of EMT to occur. Figure 3.3 (B) shows
the quantitative impact that the signal concentration in the microenvironment has
on the signal EMT impact parameter ranging between zero and one with a half

max reached when the signal concentration is three units.
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(A) Oxygen EMT impact parameter, 0}, vs (B) Signal EMT impact parameter, s}, vs signal
oxygen concentration. This shows how hypoxic concentration. This parameter accounts for the
conditions affect the probability of a cell impact of the bystander effect on the EMT
undergoing a step of EMT during an iteration probability. Higher concentrations of signal in
of the simulation. Hypoxia encourages the microenvironment encourage epithelial
instability in epithelial cells and increases the cells to undergo EMT at a higher probability.

probability of transition.

FIGURE 3.3: Dependence of the EMT rate parameters on the
microenvironment. Increased oxygen concentration reduces the
probability of EMT occurring in a cell (A) due to the lack of hypoxic
conditions that encourage EMT. To create the bystander effect, an
increased concentration of signal around a cell increases the rate
of EMT (B). This ensures epithelial cells in the presence of signal
secreting mesenchymal cells are more likely to undergo EMT and
form mesenchymal clumps within the tumour.

These oxygen and signal EMT impact parameters are viewed as the unweighted
probability that an EMT jump will occur as a result of oxygen and signal concen-
trations respectively. Therefore, the values range between zero (highly unlikely) to
one (highly likely). A cell line dependent weighting for these terms is added later

in this section.
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Impact of Intra-Cellular Conditions

Cells are also given a cadherin EMT impact parameter, c;, causing cells with a
higher cadherin rating to progress faster through the EMT scale. Biologically, ep-
ithelial and mesenchymal cells are considered metastable, unlike hybrid cells which
possess the highest plasticity, retaining proliferative potential while also being mi-
gratory and invasive [215, 108]. We introduce this phenomenon into the model
using a Hill function based on the current rating of a cell, as illustrated in Figure 3.4.
The parameter ranges from zero for purely epithelial cells to near one for purely
mesenchymal. We combine this variable with the oxygen EMT impact, o;, and
signal EMT impact, s;. Equation 3.3 shown later describes how these variables are
combined to generate an overall jump probability depending on the cell line. This
ensures that each relevant inter-cellular and intra-cellular condition contributes to
this probability in a synergistic way.
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FIGURE 3.4: Cadherin EMT impact parameter, c¢;, vs current

cadherin rating. This shows how the current cadherin rating of a

cell affects the likelihood of further steps up the cadherin rating. The

positive correlation leads to increased stability in cadherin rating

at either end of the EMT scale, as epithelial cells are less likely to

undergo EMT on each iteration of the simulation than mesenchymal
cells that are in otherwise identical conditions.

Similar to the inter-cellular variables in Figure 3.3, the cadherin EMT impact pa-
rameter is seen as the unweighted probability that an EMT jump will occur as a
result of the current cadherin rating of the cell. The value is set to range between
zero and one prior to the cell dependent weighting. Values used in the Hill func-
tions are shown in Table 3.4.
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EMT Probability Related Parameters
y X base | sat | Kgg
Cadherin EMT Impact (c;) Cadherin Rating 0 1 |65
Oxygen EMT Impact (0;) | Oxygen Concentration | 1 0 1

N TG TS R

Signal EMT Impact (s;) Signal Concentration 0 1 3

TABLE 3.4: Hill function parameters used for the variables in
the EMT probability equation. The table shows how the cadherin
rating, oxygen concentration, and signal concentration that a cell is
in can influence the EMT probability of a cell. Hill functions are
used to quantify the impact of these conditions on the cell EMT
probability according to the parameters shown in the table.

Jump Probability

While EMT does appear more likely to occur in the G1 phase, cells are not limited
to transitioning only during this stage of the cell cycle. EMT induced by TGF-f1
was found in cells synchronised at the G1/S phase but not in those synchronised at
the G2/M phase [239]. However, despite increased blebbing during the M phase of
cell division leading to a reduction of EMT-like phenotype, the transition can still
be completed during mitosis [195]. We therefore, for simplicity, assume that the
probability a cell undergoes EMT is independent of the stage of the cycle the cell is

m.

We denote c; as the cadherin EMT impact, 0; the oxygen EMT impact, and s; the
signal EMT impact on rates of EMT in cancer cells shown in Figures 3.3 and 3.4.
A cell line specific weighting term is incorporated into these impact parameters,
for which we assign an EMT impact factor parameter, «, to both cell lines. This
parameter quantifies the tendency for the cells to undergo EMT on each iteration
of the simulation, depending on the cell line. These inter-cellular and intra-cellular
conditions give rise to a stochastic process by which the cadherin rating of the cell
is determined.

OVCAR-3

Since EMT does not occur in the majority of OVCAR-3 cells during the previous
experimental observations, OVCAR-3 is given a low EMT impact factor of one
(¢« = 1), as shown in Table 3.5. Larger values of &, such as that used in Table
3.6 for SKOV-3 cells, lead to larger weightings of the parameters when generating
the jump probability term, p, in Equation 3.3. The influence of this a parameter
is analysed later in the chapter. The cadherin EMT impact parameter has a low
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weighting for OVCAR-3 cells to ensure the number of clumps arising in the tumour
throughout the 4-day simulation is not unrealistically high compared to biological
observations (Figure 2.3). This low weighting is set to be 0.001, based on trial
simulations. The impact of oxygen is set to be medium, as hypoxia is not seen
as a requirement for EMT but does act as a key catalyst for the process [178, 58].
For simplicity, the weighting of the oxygen EMT impact is set to be 0.002, double
that used for the cadherin EMT impact. The chemical signal impact responsible
for the bystander effect has a large weighting to ensure disjoint clumps can be
formed quickly despite the low diffusion of the signal. By observing simulations
with different values of this weighting parameter, 0.01 is sufficiently high to allow
clumps to appear within the time frame, while avoiding a chain reaction of EMT

and mesenchymal cells taking over the tumour.

Parameter Unweighted Parameter Weighted
Name Parameter Symbol | Weight (x = 1) | Parameter Symbol
Cadherin EMT Impact cy 0.001 ce = 0.001-c;
Oxygen EMT Impact 0, 0.002 0, = 0.002 - 0}
Signal EMT Impact S, 0.01 se = 0.01 -5,

TABLE 3.5: Values of the different variables used for the
EMT probability in OVCAR-3 cells. The signal EMT impact
parameter has a large weighting to ensure sufficient levels of signal
concentration can induce mesenchymal clump formation. The
cadherin EMT impact parameter has a small weighting to ensure
EMT does not occur too frequently within the tumour leading to
a scenario in which the mesenchymal clumps begin to connect.
OVCAR-3 has a low EMT impact factor to prevent excessive EMT
from occurring throughout the simulation.

SKOV-3

Unlike OVCAR-3 tumours, in SKOV-3 spheroids the red mesenchymal clumps are
no longer distinguishable and instead a large pool covering the entire center of
the SKOV-3 tumour is formed, as shown in Figure 2.3 (B). To ensure sufficient
amounts of EMT occur to encapsulate this effect, the jump probability weightings
are increased by a factor of five to that implemented for OVCAR-3 cells, as shown
in Table 3.6. The shell of epithelial cells around the exterior of the tumour, as seen
in experiments, is implemented by including an oxygen-dependent condition on
the SKOV-3 cells. Hypoxic conditions in SKOV-3 tumours have been shown to
upregulate the chemokine receptor CCR?7, in turn inducing EMT development [38].
When oxygen concentration increases above a threshold value (set to 2.8 units), it
is assumed mesenchymal cells undergo instant MET and are assigned the cadherin
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rating value of zero. This occurs only around the exterior of the tumour where
oxygen is sufficient enough to cross this threshold. Table 3.6 shows the weightings
of each parameter involved in generating the EMT probability for SKOV-3 cells.
These increased weightings compared to those used in Table 3.5 for OVCAR-3
cells lead to vastly increased amounts of EMT. The EMT impact factor parameter
is given a value of five for SKOV-3 cells (x = 5), meaning the parameter weights
are five times larger in Table 3.6 than in Table 3.5. This value ensures sufficient
EMT occurs throughout the SKOV-3 tumour to allow the pool of interior mesenchy-
mal cells to develop inside the tumour. Figure 3.14 following sensitivity analysis
performed later in the chapter will show how the final appearance of SKOV-3
tumours change according to the value of the a term. From testing simulations
with different values of this term, we find that setting « equal to five completely
removes epithelial cells from the tumour interior after four simulated days.

Parameter Unweighted Parameter Weighted
Name Parameter Symbol | Weight (x = 5) | Parameter Symbol
Cadherin EMT Impact Ccy 0.005 ce = 0.005 - c;
Oxygen EMT Impact 0, 0.01 0, = 0.01-0;
Signal EMT Impact Se 0.05 se = 0.05-s;

TABLE 3.6: Values of the different variables used for the EMT

probability in SKOV-3 cells. All parameters have an increased

weighting to those used for OVCAR-3 cells to ensure sufficient EMT

can occur to generate the pool of mesenchymal cells within the

tumour interior. The EMT factor is increased from one in OVCAR-3
cells to five in SKOV-3 cells, as shown in the table.

The newly weighted EMT impact parameters discussed above are incorporated
into Equation 3.3 for OVCAR-3 and SKOV-3 cells, showing their cumulative effect,

p=1—(1—c.)-(1—0c)-(1—5). (3.3)

This jump probability, p, determines if a cell will increase its cadherin rating during
each six-minute iteration of the computer simulation, leading to a slight increase
in mesenchymal-like behaviours highlighted previously. Six minutes is chosen as
the iteration length to ensure simulations remain relatively fast while keeping the

timesteps as minimal as possible to increase simulation precision.

In Equation 3.3, c,, 0, s., denote the cell line specific, weighted cadherin EMT im-

pact, oxygen EMT impact, and signal EMT impact parameters respectively. Since
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EMT is a stochastic process, we take a probabilistic approach to determine how
likely a cell is to jump up the cadherin rating on each iteration of the simulation.
Each weighted parameter value in Tables 3.5 and 3.6 is viewed as the probability
that an event occurs, the event in this case being the cell moving up the cadherin
rating on an iteration as a result of the respective intra-cellular or inter-cellular con-
dition. We assume for simplicity that each of these three variables assigned to each
cell are independent of each other. The total probability that a cell jumps up the
cadherin rating on an iteration is therefore the probability that any of these events
occur, i.e., the probability of their union. This probability is given in Equation 3.3.
When a parent cell divides, the cadherin rating in the model is conserved to the
daughter cells.

3.3 Results and Discussions

To investigate EMT, cells are initiated with a cadherin rating of zero. It is assumed
that only EMT can occur since we take the tumour to be in its primary location
[178]. MET, the reverse process, primarily only occurs when the mesenchymal cells
have relocated and stabilised in a new environment [94, 82]. This MET process will
be discussed in more detail in Section 3.4.

200 pm

FIGURE 3.5: Cross-section of an example tumour at time ¢+ =

0. 1027 cells are randomly placed within a sphere of radius 120

microns around the center of the domain. Snapshots such as this

show a z = 0 cross-section plane of the spheroid at the respective

time of the simulation, with the colour of the cells showing the

current cadherin rating ranging between green (epithelial) to red
(mesenchymal).
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An example of the initialisation is given in Figure 3.5. This depicts a cross-section
of an OVCAR-3 tumour through the z = 0 plane at time ¢t = 0 in which all cells
are epithelial with a cadherin rating of zero. Here, we initialise the simulations
with 1027 cells in a 3D spheroid scattered randomly within a sphere of radius 120
microns. This is to recreate the initial conditions as closely as possible to those
used experimentally, in which repeats using spheroids with a mean of 1027 cells
were placed. Both oxygen and bystander signal substrates are absent at initiali-
sation. Oxygen has a constant influx into the system through Dirichlet boundary
conditions applied on all boundaries of the domain set to 38 units, with in vitro
tumours only capable of accessing oxygen through the tumour edges rather than
any internal supplies such as vessels. The signal substrate is given Neumann
boundary conditions with no constant influx. The model is simulated for 96 hours
in which all cells are initialised with an equal cadherin rating, specified for each

simulation.
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__ 0.5, c T 08
2 5 04 1 @ o
5 03 SO
[ I T l
% > 0.24 = 2
E2 0.1 E 2
o2 s 3
Zzc T ZE 0
SKOV-3 OVCAR-3 = SKOV-3 OVCAR-3
(A) Experimental E-cadherin band intensity. (B) Experimental N-cadherin band intensity.
E-Cadherin N-Cadherin
©20.8 290.6
wn w0
=906 =Q
me © 0.4
£50.4 £5
O c 0.2 oc0.2
Zm > Zm
0.0 0.0
SKOV-3 OVCAR-3 SKOV-3  OVCAR-3
(¢) Simulated E-cadherin band intensity. (D) Simulated E-cadherin band intensity.

FIGURE 3.6: Band intensity of E-cadherin and N-cadherin for the
in vitro and in silico experiments. Results after 96 hours from the in
vitro biological experiments shows the normalised band intensities
of E-cadherin (A), a marker for epithelial cells, and N-cadherin
(B), a marker for mesenchymal cells. These are compared with in
silico results taken after 96 hours of simulated time. Proportions
of cells classified as epithelial (E-cadherin) and mesenchymal (N-
cadherin) for both cell lines are recorded, shown in panels (C) and
(D) respectively.
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3.3.1 OVCAR-3
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FIGURE 3.7: Simulated OVCAR-3 tumour at different time points
using default parameter values. The initial distribution of OVCAR-
3 cells for the simulation is shown in panel (A). Cells after one day
(B) and two days (C) show that initially very small amounts of EMT
occur in the first 48 hours. Due to the bystander effect, clumps
appear rapidly towards the latter simulation times, as shown after
three days (D) and four days (E), in which small red mesenchymal
clumps begin to form. Population types are shown in (F), with
epithelial (green) and mesenchymal (red) tumour proportions over
time with 95% confidence intervals.

Similar to the calibration performed in Chapter 2, Figure 3.6 shows the proportion
of epithelial (E-cadherin) and mesenchymal (N-cadherin) cells in the final popula-
tion of the tumour. Figures 3.6 (A) and (B) show the in vitro results while (C) and
(D) show the results found in silico using the mathematical model. 95% Confidence
interval bars are present in Figures 3.6 (C) and (D). However, due to the consistency
across results from ten simulation repetitions, the intervals are too small to be
visible in the bar charts. OVCAR-3 cells finish with a vast majority of epithelial cells
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in both the experimental and computer simulation results. SKOV-3 cells have a ma-
jority of mesenchymal cells, however, due to the outer shell being solely epithelial,
SKOV-3 tumours have much higher proportions of epithelial cells than OVCAR-
3 has mesenchymal. The simulation outputs are in qualitative agreement with
the experimental results, with E-cadherin expression around three times higher in
OVCAR-3 tumours than in SKOV-3 tumours. N-cadherin expression is negligible
in OVCAR-3 tumours when compared to expressions in SKOV-3 tumours.

We now investigate how the simulated tumours change in both composition and
size over time. Figure 3.7 shows simulated cross-sections of an OVCAR-3 tumour
after 0 hours (A), 24 hours (B), 48 hours (C), 72 hours (D), and 96 hours (E). After
one day (B) there is very little change in the tumour composition as cells remain
almost purely green, suggesting no change in their cadherin ratings from zero.
After two days (C) small, faintly mesenchymal clumps form on the left and right of
the tumour. Upon completing day three (D), early stages of clump formation begin
to appear and multiple patches of red mesenchymal cells show scattering through-
out the tumour. After the final day (E), multiple clumps of mesenchymal cells
have advanced throughout the cadherin rating and progressed rapidly through
the stages of EMT, showing close agreement to the observation seen in Figure 2.3
(A).

We observe that despite the small red clumps, the majority of cells remain epithelial
with a low cadherin rating. While the volume of these clumps appear negligible
in comparison to the volume of the tumour, these clusters of mesenchymal cells
cannot be overlooked. Upon breaking away, these cells can relocate and have a key
responsibility in the metastasis of the tumour [204]. These clusters can perform
collective migration throughout the body despite the lack of individual cell adhe-
sion [220, 219]. The exact procedure by which this is carried out and made viable
is relatively undocumented.

Moreover, each cell in the model has a pressure exerted on it by neighbouring cells,
changing the cell cycling rate. We can compare the pressure each cell is under to
its proximity to the centre of the tumour taken as the origin of the domain, shown
in Figure 3.8 (A). Qualitatively speaking, there is a general negative correlation
between the distance a cell is from the centre of the tumour and the pressure acting
upon it. This is in agreement with the results found in the literature [207], allow-
ing us to implement pressure-dependent behaviours to the cells in future model
adaptations with confidence. Figure 3.8 (B) shows the oxygen levels throughout
the tumour for each cell. Hypoxia is shown to be achieved in central areas of
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the tumour in which oxygen levels are lower than observed around the tumour
exterior.
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FIGURE 3.8: Conditions of cells with respect to the position in
the tumour. Each black dot in the subfigures represent a cell at
the final simulation time point. Panel (A) shows how the trends in
the dimensionless pressure on the cells are affected by the distance
of the cell from the center of the tumour. Using a trial simulation
initialised with a tumour of OVCAR-3 cells, results show a general
negative trend between the radius from the center of the tumour
and the pressure on a cell. Pressure is generally lowest for cells
at high radii, suggesting those on the tumour surface are under
lower pressure from the neighbouring cells. Panel (B) shows a clear
positive trend between surrounding oxygen levels for a cell and the
radius of the cell from the center of the tumour, confirming those
cells on the surface of the tumour have access to more oxygen than
those in the interior.

3.3.2 SKOV-3

SKOV-3 tumour simulations give drastically contrasting results to that seen in
OVCAR-3 spheroids, with cells progressing up the cadherin ratings at a much
faster due to the increased jump probability. Figure 3.9 shows simulated cross-
sections of a SKOV-3 tumour after 0 hours (A), 24 hours (B), 48 hours (C), 72 hours
(D), and 96 hours (E). Large areas of the cross-section of the tumour begin to rapidly
undergo EMT, creating a blend of epithelial and mesenchymal cells in the neoplasm
as seen after one day (B). After 48 hours of simulated time (C), a clear majority
of interior cells have fully undergone EMT and have a cadherin rating of around
thirteen. Occasional green epithelial cells arise around the tumour periphery where
oxygen has increased above the threshold value. After 72 and 96 hours in (D)
and (E) respectively, the epithelial shell begins to form and creates a solid coating
around the primarily mesenchymal tumour. The SKOV-3 tumours show a close
agreement to experimental observations shown in Figure 2.3 (B). The outer shell of
epithelial cells remains thin, with only mesenchymal cells making up the interior
of the tumour.
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FIGURE 3.9: Simulated SKOV-3 tumour at different time points
using default parameter values. The initial placement of SKOV-
3 cells for the simulation is shown in panel (A). After only one day
(B), high levels of EMT has already occurred throughout the tumour,
with completed EMT observed in almost all interior cells after two
days (C). A red mesenchymal pool forms inside the tumour after
three days (D) and four days (E) with a green epithelial layer created
around the periphery. Population types are shown in (F), with
epithelial (green) and mesenchymal (red) tumour proportions over
time with 95% confidence intervals.

3.3.3 Sensitivity Analysis

Sensitivity analysis is a crucial part of any mathematical model, quantifying the
sensitivity of each parameter on the output of a simulation. By changing the values
of these input parameters, we can calculate the associated variation in the output.
Multiple aspects of the output can be investigated, including information on the
cell populations or the substrate concentrations. We use a form of Latin hypercube
sampling (LHS) to perform global sensitivity analysis, along the Pearson Product
Correlation Coefficient (PCC) value for different parameters to tell us which have
the highest impact on the model output. We compare both how the size of the
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tumour and the composition of the tumour changes with fluctuations in the param-
eters used in Equations 3.2 and 3.3 for the two cell lines investigated. Generally,
most parameters incorporated into these equations have a notable impact on at
least one form of output. Parameters used in Equation 3.2 unsurprisingly tend
to have more impact on the final simulated tumour size than the mesenchymal
fraction for both OVCAR-3 and SKOV-3 tumours. This is due to changes in the
cycling rate having a direct link to the proliferation observed during the simulation.
Parameters used in Equation 3.3 have less impact on the final OVCAR-3 tumour
populations but a much larger impact on the tumour composition. Increasing the
parameters in Equation 3.3 increases the probability of cells undergoing EMT. This
impact is more observable in OVCAR-3 tumours where the mesenchymal clumps
can be formed throughout the tumour rather than only in the interior. SKOV-3
spheroids generally reach complete EMT in the tumour regardless of small changes
in the parameter values used in Equation 3.3, as shown later in Figure 3.14. As a
result, minor perturbations in the EMT impact weightings used for SKOV-3 have

little impact on whether complete interior EMT is achieved.

By utilising an adaptation of LHS, global sensitivity analysis can be performed
on the model [84]. Analysis is performed on six parameters: c. (cadherin cycling
impact), o, (oxygen cycling impact), and p. (pressure cycling impact) used to cal-
culate the cell cycling rate in Equation 3.2, as well as c, (cadherin EMT impact),
0. (oxygen EMT impact), and s, (signal EMT impact) used to calculate the EMT
jump probability in Equation 3.3. The values of each parameter is ranged by +20%
using 51 equally spaced values for each parameter. Each of these 51 values for
each parameter is then assigned to one of the 51 simulations we run, resulting in
a unique value for each parameter across the simulations. Two output variables
from each simulation following 96 hours of simulated time are investigated:

¢ The total live cell population in the tumour.
¢ The fraction of the tumour considered to be mesenchymal.

Here, the classification of epithelial and mesenchymal cells is made according to
if the cadherin rating is 0-6 (epithelial) or 7-13 (mesenchymal). This selection is
due to the importance of these results in cancer diagnosis. The stage a patient
is deemed to be at depends largely upon the size and metastatic ability of the
tumour. These outputs are then compared with the input parameter values for each
of the six parameters of interest, with the PCC value calculated to find the nature
and magnitude of the correlation between the i** input x; and output y; shown in
Equation 3.4 [179]. The value of this PCC variable shows if the correlation between
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the input parameter and the simulation output is weak, moderate, or strong (See
Table 3.7),

YL (i =) (yi — 7))

PCC = .
VI (i — 02y — 92

(3.4)

Coefficient Magnitude ‘ Strength of Correlation

0 No Correlation
Upto 0.4 Weak Correlation
0.4 up to 0.7 Moderate Correlation
Over 0.7 Strong Correlation

1 Perfect Correlation

TABLE 3.7: Evaluations of different values for the PCC. Posi-

tive/negative values suggest a likely positive/negative correlation

[45]. Stronger correlations between the input and output result in
higher magnitudes of the coefficient.

Total OVCAR-3 Population

Figure 3.10 shows the relationship between the key model parameters highlighted
previously and the total population of OVCAR-3 cells after 96 hours of simulated
time. The maximum cadherin cycling impact (A) has a strong influence and the
maximum oxygen cycling impact (B) has a moderate influence on the final popula-
tion size respectively. The maximum pressure cycling impact (C) is found to have a
statistically weak influence on the final cell population, suggesting small variations
in this value do not have a major impact on the population size in the tumour. The
three parameters used in calculating the jump probability (Equation 3.3) all have a
weak correlation to the total population of OVCAR-3 cells. This is to be expected
since these parameters have no direct link to the cycling rate of the cell, instead
only affecting the cadherin rating in the tumour.
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FIGURE 3.10: The impact of parameter values on the total
cell population in OVCAR-3 tumours. The total tumour cell
population after four days is found and compared for various
parameter values. The PCC is given for each parameter across
51 simulations. Figures (A), (B), and (C) concern the cycling rate
used in Equation 3.2, while Figures (D), (E), and (F) concern rates at
which EMT can occur within the cells used in the jump probability
in Equation 3.3.

Mesenchymal Fraction of OVCAR-3 Tumours

Figure 3.11 shows the relationship between the six parameters and the fraction of
the total tumour population considered mesenchymal after 96 hours of simulated
time. The oxygen EMT impact (E) and signal EMT impact (F) weights have a
strong and moderate influence on the final composition of the OVCAR-3 tumours
respectively. The cadherin EMT impact weight is the only weighting in Table 3.5
with a weak correlation to the final tumour composition. This is likely due to the
small weighting that was assigned to the cadherin EMT impact used in Equation
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3.3. All input parameters in Equation 3.2 have a negligible impact on tumour

composition, suggesting there is a reasonable level of stability with respect to the

user parameters involved in the cell cycling rate.
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The impact of parameter values on the final

composition of the OVCAR-3 tumour. The fraction of the total

tumour cell population classed as mesenchymal is found and

compared for various parameter values. The PCC is given for each

parameter across 51 simulations. Figures (A), (B), and (C) concern

the cycling rate used in Equation 3.2, while Figures (D), (E), and (F)

concern rates at which EMT can occur within the cells used in the
jump probability in Equation 3.3.

The sensitivity of parameters on total populations and mesenchymal fractions show

mostly opposite trends. Parameters showing strong correlations with total cell

populations generally show weak correlations with the mesenchymal fraction and

vice versa. This is due to the fact that these parameters either link directly to the

cell cycling rate or the EMT probability, rather than both.
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FIGURE 3.12: Impact of parameter values on the final total
cell population in the SKOV-3 tumour. The total tumour cell
population after four days is found and compared for various
parameter values. The PCC is given for each parameter across
51 simulations. Figures (A), (B), and (C) concern the cycling rate
used in Equation 3.2, while Figures (D), (E), and (F) concern rates at
which EMT can occur within the cells used in the jump probability
in Equation 3.3.

Figure 3.12 shows the relationship between the same six parameters highlighted
previously and the total population of SKOV-3 cells. The maximum cadherin cy-
cling impact (A) and oxygen cycling impact (B) have a moderate and strong influ-
ence on the final population size respectively. Similar to OVCAR-3 tumours, the
maximum pressure cycling impact has a weak correlation to the final population
of SKOV-3 tumours, along with all the EMT impact weight parameters used in
Equation 3.3.
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FIGURE 3.13: Impact of parameter values on the final composition

of the SKOV-3 tumour.

The fraction of the total tumour cell

population classed as mesenchymal is found and compared for

various parameter values. The PCC is given for each parameter

across 51 simulations. Figures (A), (B), and (C) concern the cycling

rate used in Equation 3.2, while Figures (D), (E), and (F) concern

rates at which EMT can occur within the cells used in the jump
probability in Equation 3.3.

Figure 3.13 shows the relationship between the six tested parameters and the frac-

tion of the SKOV-3 tumour population considered mesenchymal after 96 hours of

simulated time. Surprisingly here, no EMT impact weight parameter has more

than a weak impact on the percentage of mesenchymal cells in the final tumour,
despite their direct link to the EMT jump probability (Equation 3.3). This is due
to the fact that the interior SKOV-3 cells complete EMT and become mesenchymal
regardless of small changes in these parameters. As well as this, the maximum
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cadherin cycling impact and oxygen cycling impact both have moderately negative
correlations to the mesenchymal fraction of cells in the tumour. Increased cycling
rates allow the tumour to grow faster, allowing the exterior cells to approach the
domain boundaries. Here, the oxygen available to the cells is higher due to the
Dirichlet boundary conditions imposed in the model, allowing a thicker shell of
epithelial cells, thus decreasing the fraction of the tumour cells considered to be
mesenchymal.

Cell Line Differentiation

Another approach to sensitivity analysis can be to change the difference in weight-
ing terms between Tables 3.5 and 3.6. In these tables the weightings of parameters
used in the EMT jump probability, p, in Equation 3.3 have five times larger weight-
ings for SKOV-3 cells than OVCAR-3 cells. This creates the clearly distinguishable
difference in tumour layouts, with OVCAR-3 possessing disjoint clumps of mes-
enchymal cells while SKOV-3 tumours have a pool of mesenchymal cells making
up the entire interior. We define « to denote the factor at which SKOV-3 cells have a
larger weighting than that used for OVCAR-3 cells in Table 3.5. For example, x = 5
in Table 3.6. We can vary the value of & to explore at which point the tumour shows
OVCAR-3 and SKOV-3 characteristics. Figure 3.14 shows the tumour appearance
after 96 hours of simulated time for different values of «.

In Figure 3.14 (B) and (C) where &« = 1.5 and a = 2, the tumour appears to show
a hybrid state of OVCAR-3 and SKOV-3. Large clumps of mesenchymal cells are
formed, with their increased size leading to eventual overlapping while making
up a large proportion of the inside of the tumour. With values of a between two
and four in Figures 3.14 (D), (E), and (F), the pool of mesenchymal cells has formed
with only occasional epithelial cells appearing within the tumour interior. This
appears closer to the original SKOV-3 tumour appearance. The slow transition be-
tween the cell lines across the figures display that the switch in the model between
SKOV-3 and OVCAR-3 cells can be continual and non binary, generating cells with
characteristics of both cell lines.
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FIGURE 3.14: Impact of the value of « on the final composition of

the SKOV-3 tumour. Larger values of this « term lead to increased

weightings for the parameters used in the EMT jump probability in

Equation 3.3. Snapshots of the z = 0 plane are taken after four days
of simulated time and compared for different « values.

3.4 Modelling Mesenchymal to Epithelial Transition

In this section, the effects of EMT and MET occurring simultaneously in tumours
is explored. To model this, various intra-cellular and inter-cellular conditions are
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assumed to affect the rate of MET. Hyperoxic conditions have been found to in-
crease the conversion of the EMT process into MET within cells [36]. Biological
observations also suggest hybrid cells possess the highest cell plasticity on the
epithelial-mesenchymal scale [215]. This suggests MET is more likely to occur in
hybrid cells than the stable mesenchymal cells. To incorporate these dynamics, we
denote two new variables, ¢}, defined as 1 — ¢} and o}, defined as 1 — 0}. These
represent the contributions of higher oxygen levels and lower cell cadherin rating
to an increased probability of MET on each iteration. In terms of probability, these
can be seen as the compliments of c; and o; respectively. These parameters are
shown in Table 3.8 and applied to Equation 3.5 to calculate the jump down proba-
bility on each iteration. For simplicity, we use the same “jump down” probabilities
for the two cell lines, using similar values and weightings to those in Table 3.6
to account for the lack of signal impact involved in the EMT dynamics. Since no
evidence was found in the literature of any bystander signal impacting MET rates,
the concentration of the bystander signal was not incorporated into this equation.

Parameter Unweighted Parameter Weighted
Name Parameter Symbol | Weight | Parameter Symbol
Cadherin MET Impact fo 0.005 cm = 0.005 - ¢},
Oxygen MET Impact O 0.01 om = 0.01 - 0y,

TABLE 3.8: Weightings for parameters used in generating the rates

of MET for cells. Only the current cadherin rating and the oxygen

levels around the cell change the probability of a cell moving down
the cadherin level on each iteration.

It has been observed experimentally that mesenchymal cells which have under-
gone EMT and have relocated to a secondary location may undergo MET at this
new location [240]. This allows the cell to re-obtain the epithelial phenotype and
behaviours previously exhibited to encourage stability and enhanced proliferative
abilities [82]. MET has been observed in OVCAR-3 cell lines in which partial EMT
has been completed [60]. SKOV-3 cells also show capabilities of showing molecular
changes consistent with MET, transitioning from elongated to cuboidal shapes [96].
Here, we explore the effects of MET by including a probability in which cells can
jump down in cadherin rating, g, shown in Equation 3.5,

g=1—1—cm) (1 —om). (3.5)
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Cells continue to traverse through the cadherin ratings, jumping by only one step
at a time. However, in this section, they are able to move either up or down during
each iteration to allow for this MET process to be captured by the model.

To investigate the effects of heterogeneous cellular composition, a “hybrid” cell
classification is now included into the model. Instead of only including epithelial
and mesenchymal cells, the population is divided into three subgroups, giving us
more precise results when tracking population types over time by providing extra
categories for classification. Cells with a rating of four or less are now classified as
epithelial, five to eight inclusive as hybrid cells, and nine or more as mesenchy-
mal (See Figure 3.15). The tumour is initialised with each cell type separately
to investigate the temporal impact of the starting tumour population type. This
could ultimately provide an overview of how treatments for patients with tumours
composed of varying cell types are likely to differ with time. Epithelial cells are
initialised with a rating of zero, hybrid with a rating of seven, and mesenchymal
with a rating of thirteen.
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FIGURE 3.15: Classification of cadherin ratings when hybrid cells
are included in the model. When including MET, a hybrid state
is introduced into the classification of cells. Cells rated 0-4 are now
classified as epithelial, 5-8 as hybrid, and 9-13 as mesenchymal. This
ternary classification allows for more detailed results and easier
comparisons with past models as shown in Sections 3.4.1 and 3.4.2.

3.41 OVCAR-3
Epithelial

OVCAR-3 tumours initialised with epithelial cells no longer obtain the defined
isolated clumps of mesenchymal cells observed in Figure 3.7 during the simulation.
Instead, the MET probabilities are too high to allow any notable amount of EMT
to occur, as shown in Figure 3.16. The tumour size grows rapidly over time since
the composition of the tumour remains mostly epithelial. Epithelial cells have the
fastest cycling rate and so the tumour can proliferate at a faster rate than those
initialised with hybrid or mesenchymal cells.



72 Chapter 3. Modelling the Epithelial to Mesenchymal Plasticity in Cancer

(A) 0 hours (B) 24 hours (C) 48 hours (D) 72 hours (E) 96 hours

FIGURE 3.16: OVCAR-3 tumour over four days of simulated time,
initialised with epithelial cells. The initial placement of OVCAR-3
cells with an cadherin rating of zero is shown in panel (A). Minimal
EMT occurs in the first day (B), with only very faint areas of darker
green cells appearing after two days (C), suggesting very little EMT
has occurred at this point. The amount of EMT undergone after
three days (D) and four days (E) remains negligible, with all cells
remaining purely epithelial over time.

Due to the lack of mesenchymal cells, even after 96 hours of simulated time, the
adhesion between cells in the tumour remains high. The cells remain densely
packed and part of the main tumour rather than breaking away and losing contact
with other cells. This suggests that metastasis would be unlikely to occur at this
point since the tumour is one rigid structure.

Hybrid

OVCAR-3 tumours initialised with hybrid cells result in a complete mix of epithe-
lial, hybrid, and mesenchymal cells. No ordering or formation of clumps is visible
despite the bystander effect present, as shown in Figure 3.17. Population sizes of
the cell types appear generally similar with no clear majority of epithelial, hybrid,
and mesenchymal cells present.

The tumour initialised with hybrid cells shows very high plasticity after only 24
hours of simulated time, as seen in Figure 3.17 (B). Following one day of simu-
lated time there is a large population of green and red cells at the extremities of
the epithelial-mesenchymal scale. This is unlike other initial conditions in which
immediate changes in the tumour appearance are not observed as clearly. This
suggests that hybrid cells in the model have the lowest stability and can fluctuate
between states more readily than the more stable epithelial or mesenchymal cell
type. Hybrid states are common in ovarian cancer and allow cells to retain both
epithelial and mesenchymal characteristics, contributing to metastasis by exhibit-
ing continued proliferation while gaining motility and resistance to therapy [236].
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FIGURE 3.17: OVCAR-3 tumour over four days of simulated time,
initialised with hybrid cells. The initial placement of OVCAR-
3 cells with an cadherin rating of seven is shown in panel (A).
After one day (B), the tumour is made of a mixture of epithelial,
hybrid, and mesenchymal cells, each scattered what appears to
be at random throughout the tumour, with similar observations
seen after two days (C). After three days (D), small collections
of epithelial cells can be observed in among the scattering of
individual epithelial, hybrid, and mesenchymal cells, seen further
after four days (E).

Mesenchymal

When OVCAR-3 tumours are initialised with mesenchymal cells, the majority of
the cells remain mesenchymal throughout the four day simulation. After the final

simulation output, a scattering of epithelial cells is present throughout the tumour

with no immediate observable patterning, as shown in Figure 3.18.

(A) O hours (B) 24 hours (C) 48 hours (D) 72 hours (E) 96 hours

The OVCAR-3 tumour remains mostly mesenchymal over time, with a small num-
ber of epithelial cells appearing in the final tumour in Figure 3.18 (D) and (E). A

number of cells can be seen escaping the main tumour clump and moving freely
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FIGURE 3.18: OVCAR-3 tumour over four days of simulated
time, initialised with mesenchymal cells. The initial placement
of OVCAR-3 cells with an cadherin rating of thirteen is shown in
panel (A). Minimal MET occurs in the first day (B), with areas of
green epithelial cells appearing after two days (C). This patch of
epithelial cells in the bottom right section of the tumour continues
to grow after three days (D) with areas of epithelial cells observed
throughout the tumour after four days (E), despite the vast majority
of cells remaining mesenchymal during the simulation.
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out into the domain. The tumour appears less grouped together with more empty
space between the cells than seen in Figures 3.16 and 3.17. This is due to the high
mesenchymal population decreasing the adhesion strengths within the tumour and
the extra cell motility creating a less rigid tumour structure. This model resem-
bles biologically the mesenchymal tumour cells with enhanced migratory capacity,

favouring tumour cell dissemination over proliferation.

Temporal Dynamics

Here, we study the temporal evolution of cell populations to understand the dy-
namics and cellular transitions as shown in Figure 3.19. This is compared with
experimental data in Figure 3.20 obtained by Ruscetti et al [187] for prostate can-
cers, obtained using the PKV cell line. The experiments by Ruscetti et al [187]
shows the epithelial-mesenchymal plasticity in the PKV cell line cultured in vitro.
Population fractions of each phenotype are tracked over the course of fourteen
days, obtaining the temporal dynamics of the tumour. The PKV cells were iso-
lated using fluorescence-activated cell sorting, identifying epithelial, hybrid, and
mesenchymal-like cells during the in vitro experiment.
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FIGURE 3.19: Epithelial vs hybrid vs mesenchymal OVCAR-3 cell
populations found in silico including MET. OVCAR-3 tumours
are initialised with epithelial (A), hybrid (B), or mesenchymal (C)
cells. Simulations are run for fourteen days with the cellular
proportions of the OVCAR-3 tumour composition recorded every
hour. Curves show the populations of epithelial (green), hybrid
(brown), and mesenchymal (red) cells during the simulation.
Confidence intervals of 95% are present in each plot, taken from ten
repeats of the simulation. However, due to the lack of substantial
stochastically in the model, these intervals are not visible in the
plots.

The comparisons between SKOV-3 and OVCAR-3 tumours in previous sections
highlight the necessity for identifying potential differences in cell line character-
istics. Despite this, different cell lines may still possess similar general trends
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and provide tentative insights into the predicted behaviour of others for model
validation. The qualitative trends between the PKV cell line experimental results
found in vitro by Ruscetti et al [187] and the OVCAR-3 cell line model results found
here in silico are in close agreement. To remain consistent with the results found in
vitro, we extend the time of the simulation from four days to fourteen. Simulations
initialised with epithelial cells remain almost entirely epithelial throughout the
simulation, with only small fluctuations in the cadherin rating of cells, as shown in
Figure 3.19 (A). In Figure 3.19 (B), hybrid cells can go either way along the cadherin
scale, with a notable population of epithelial, hybrid, and mesenchymal cells all
present at the final time. Simulations initialised with mesenchymal cells remain
mostly mesenchymal, with a small population of both epithelial and hybrid cells
forming over time.
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FIGURE 3.20: Epithelial vs Hybrid vs Mesenchymal cells
populations found by Tripathi et al [225]. Each panel shows
the cell population of the cell types over time for both an in vitro
experiment performed by Ruscetti et al [187] (dotted curves) and
in silico simulation results of a model designed by Tripathi et
al [225] (solid curves). Epithelial (E), hybrid, and mesenchymal
(M) cell populations are shown using green, orange, and purple
curves respectively. Cells initialised with either epithelial (A) or
mesenchymal (C) cells generally remain with the respective cell type
as the majority of the tumour at the final time of the simulation.
Tumours initialised with a hybrid population (B) show lower
stability, with cells rapidly transforming into either mesenchymal
or epithelial cells.

Figures 3.19 and 3.20 confirms the importance of initial conditions on the tumour
development, with (A) and (C) showing the stability in tumours initialised with
epithelial or mesenchymal cells. While small changes occur in the tumour compo-
sition, the majority of cells in these scenarios remain the same type as those they
were initialised with. Tumours initialised with hybrid cells (B) show increased
plasticity and fluctuation in the cell types, with mesenchymal and epithelial cells

both making up a large proportion of the overall tumour population.
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3.4.2 SKOV-3

We can perform a similar experiment using SKOV-3 tumours. Since SKOV-3 cells
are assumed to progress through EMT more rapidly than OVCAR-3 cells, the tu-
mour progresses to the steady state of mesenchymal cells in the interior with a shell
of epithelial cells around the exterior very rapidly. This leads to less dependence on
the initial condition of the tumour cell type. Figure 3.21 shows the progression of
the tumour over four days when initialised with epithelial cells. After 24 hours of
the simulation, the majority of the cells become mesenchymal and have undergone
EMT, as shown in Figure 3.21 (B). Few epithelial cells remain due to sufficient oxy-
gen levels preventing EMT from occurring, with the vast majority of interior cells
undergoing complete EMT within the first day. Midway through the simulation,
as shown in Figure 3.21 (C), all cells other than those initiating the formation of
the epithelial cells along the periphery undergo complete EMT. These interior cells

remain mesenchymal for the remainder of the simulation.
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FIGURE 3.21: SKOV-3 tumour over four days of simulated time,
initialised with epithelial cells. Epithelial SKOV-3 cells are placed
in the domain with an cadherin rating of zero (A). After one day (B),
the majority of the tumour has undergone full EMT, showing a large
area of red mesenchymal cells within the tumour. All interior cells
complete EMT within two days (C), with occasional cells around
the periphery converting back to epithelial cells as a result of high
oxygen levels. This epithelial shell becomes more prominent after
three days (D) and four days (E), where the outer layer of epithelial
cells surround the interior pool of mesenchymal cells.

Figure 3.22 shows the populations of each cell type over time. In all initial condi-
tions, mesenchymal cells rapidly become the main cell type in the SKOV-3 tumour.
The epithelial cell population fraction gradually increases in Figures 3.22 (B) and
(C). This is due to the tumour periphery expanding outwards and becoming more
oxygenated due to the Dirichlet conditions from the domain boundary. This in-
creased oxygen allows the threshold to be reached deeper into the tumour and the
thickness of the epithelial shell to be increased. Cells mostly remain divided into
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either mesenchymal or epithelial, with very few hybrid cells appearing through-
out the tumour. This agrees with the biological observations in the experiments
shown in Figure 2.3 (B), where there is a clear division between the red pool of
mesenchymal cells in the tumour core and green epithelial cells around the edge.
Regardless of the initial conditions in the model, final population sizes for each
type of SKOV-3 cell remain relatively consistent due to the fast rate at which EMT
is reached compared to OVCAR-3 tumours.
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FIGURE 3.22: Epithelial vs hybrid vs mesenchymal SKOV-3 cell
populations found in silico including MET. SKOV-3 tumours
are initialised with epithelial (A), hybrid (B), or mesenchymal (C)
cells. Simulations are run for fourteen days with the cellular
proportions of the SKOV-3 tumour composition recorded every
hour. Curves show the populations of epithelial (green), hybrid
(brown), and mesenchymal (red) cells during the simulation.
Confidence intervals of 95% are present in each plot, taken from ten
repeats of the simulation. However, due to the lack of substantial
stochastically in the model, these intervals are not visible in the
plots.

3.5 Conclusions

The role of EMT has been shown to have a key impact on OVCAR-3 and SKOV-3
tumours over time. While on the surface it may appear EMT is a binary process
in which a switch is simply turned on, the complex dynamics in the background
lead to a microenvironment-dependent, heterogeneous tumour layout. Few mod-
els created previously have investigated this continuous perspective of EMT with
such a spatially dependent, heterogeneous approach. OVCAR-3 and SKOV-3 cells
use similar rules in the mathematical model, with identical Hill functions used in
the generation of parameters required for the EMT and cycling rates equations.
By varying only the factor at which these parameters are larger in SKOV-3 cells
than OVCAR-3 cells and incorporating an oxygen threshold in which SKOV-3 cells
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become epithelial, the biological observations seen in vitro can be accurately recre-
ated. These changes are sufficient to induce the drastic differences seen between
the cell lines experimentally.

The bystander effect is proven to generate results similar to those found experimen-
tally. By using biological observations in Figure 3.20 for calibration, we can test our
model against other data sets. The results show that the developed mathematical
model can qualitatively predict the biological observations, indicating the useful-
ness of the model in exploring processes involved in EMT, MET and potentially to

study responses to the therapy.

Sensitivity analysis on the model demonstrates that the outputs of interest are
sensitive to most parameters involved in generating the rate at which a cell cycles
(Equation 3.2) and undergoes EMT (Equation 3.3). SKOV-3 tumours have the
unexpected behaviour of the mesenchymal fraction appearing independent of the
parameter values used in Equation 3.3. Instead, the fraction is more dependent on
the parameters used in the cell cycling rate in Equation 3.2. This is due to the fact
that oxygen has Dirichlet conditions on the boundary edges, meaning cells able to
get closer to the edges are in higher concentrations of oxygen. Higher cycling rates
allow the tumour to expand and reach the boundary edges faster, allowing oxygen
to reach further into the tumour surface and creating a thicker shell of epithelial

cells around the tumour periphery.

The inclusion of MET in Section 3.4 highlights the importance of including all rele-
vant processes on the cells studied. Including MET restricts the ability of the chem-
ical signal to create mesenchymal clumps in OVCAR-3 tumours via the bystander
effect. The tumours without MET ability are more representative of pre-metastatic
tumours rather than those which have relocated into a secondary location. The
detachable mesenchymal clumps and lack of clear overall structure to the tumour
generally make OVCAR-3 tumours more harmful than SKOV-3 tumours. When
including the process of MET alongside EMT, major differences in the final tumour
layouts appear. The clumps seen in OVCAR-3 tumours are less apparent in the
neoplasm, while SKOV-3 tumours remain possessing a similar green epithelial
shell around the pool of central red mesenchymal cells. By changing initial con-
ditions, we can see the importance of how we set the tumour composition used
when starting a simulation. The bystander effect induces a chain reaction, encour-
aging cells in the proximity of surrounding mesenchymal cells to undergo EMT at
an increased rate and become mesenchymal themselves. In SKOV-3 tumours the
jump probability is large enough to reach stability within four days as EMT can
be achieved in a shorter period of time than in OVCAR-3 tumours. This stability
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is seen in biological observations in which the interior of the tumour completes
EMT and is made exclusively of mesenchymal cells, while the exterior cells remain
epithelial with time upon reaching a certain proximity of the domain boundaries.
These findings highlight the need for an accurate diagnosis when a patient is seen

with ovarian cancer, in both the tumour size and composition.

The developed multiscale model shows a reasonable level of quantitative and qual-
itative agreement with experimental data [187] and previous model results [225].
Despite both different methods of fluorescence analysis performed between the
varying cell lines, the general trends found between Ruscetti et al [187] and the
mathematical model described above show similar qualitative results. While Ruscetti
et al [187] uses a different cancer type (prostate) to that used for our model, this
agreement allows us to have a certain level of confidence when extrapolating the
model and parameter values beyond those in scenarios investigated experimen-
tally. Doing this creates an opportunity to explore heterogeneous tumour variabil-
ities such as a specific size, cell line, and mesenchymal composition. Including
this heterogeneity can help make the tumour microenvironment more biologically
realistic when treatment is then incorporated, making any gathered information

more relevant to patients and improving the quality of care they receive.
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Chapter 4

Quantitative Modelling of Tumour
Responses to Treatment

4.1 Introduction

Behind only cardiovascular disease, cancer is the second largest cause of death in
the United States [143]. The International Agency for Research on Cancer reported
around 20 million cases of cancer in the year 2022 worldwide, leading to 9.7 million
cancer related deaths [18]. Around one in five people are diagnosed with cancer
during their lifetime, with the disease being attributed to the deaths of one in
nine men and one in twelve women [18]. Due to late diagnosis and ineffective
treatment methods, many cancer types such as pancreas (10%) and lung (7%) have
very low 5-year survival rates [92, 17, 24]. As a result, an increased focus is being
put on improving the prognosis of cancer treatment using a combination of meth-
ods including immunotherapy, chemotherapy, and radiotherapy [132]. Providing
the optimal treatment protocol to patients is critical to ensure they have the best
chances of survival while limiting the side effects associated with the therapies.

Cisplatin administration has become a popular method of ovarian cancer treatment
and a crucial element of modern day medicine [237]. The drug has proven anti
cancer properties caused by inhibiting DNA replication and inducing apoptosis
through the formation of DNA adducts. These adducts cause helix instability and
distortions in the DNA strands [224, 98]. The drug is administered intravenously
and activates inside the cells by exchanging chloride ligands for water [249]. Cis-
platin was FDA approved in the US for use against testicular and ovarian cancers
in 1978, achieving approval the following year in Europe [74].

While cisplatin has evident positive effects on tumour size and aggression for pa-
tients, treatment may come with severe side effects. Renal toxicity is observed
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in 28-36% of patients treated with 50mg/m? of cisplatin as a single agent [74].
Neurotoxicity has been shown to be a side effect of cisplatin administration, with
severe cases including patients suffering from a coma or status epilepticus [180].
Another crucial component of designing treatment protocol for patients is drug
resistance. Tumours under repeated exposure to cisplatin can over time develop a
larger proportion of resistant cells in its composition [142]. For this reason, finding
a treatment plan for patients which provides optimal results while limiting the
negative impacts associated with cisplatin is essential.

Using in vivo and in vitro experiments, tumour characteristics can be tested in
a laboratory with different levels of treatment. These experiments require large
amounts of time, money, and training to carry out. Mathematical models can
present an alternative approach to testing the effects of drugs on a tumour without
the need for these resources [14]. By developing a model to investigate the tempo-
ral and spatial dynamics of a neoplasm, simulations can be run and inferences can
be made without these limitations. New treatment protocols can be tested in silico

against cultured cell lines and provide results on the expected impacts.

When designing a drug treatment model, the developer has to consider the drug
administration, mechanisms, diffusion, and degradation. Each of these aspects
come with new questions and problems to address. For example, drugs admin-
istered in vivo are likely to be injected into the blood stream, entering the tumour
microenvironment via diffusion from the blood vessels. If the tumour possesses
a heterogeneous composition, resistant and susceptible cells can react differently
to the treatment. The drug may also not diffuse equally throughout the tumour,
causing the cells on the periphery of the tumour to be under higher exposure
to the treatment. Certain cell types may be affected instantly by an increased
concentration of drug in the microenvironment, while others may have a delay
in the effects and initially remain unchanged. For each of these processes, a set of
parameters is required to ensure quantitative accuracy in the outputs.

Many previous reviews have been performed on the types of mathematical models
used to predict the impact of treatment on cancer tumours [243, 50, 53]. In a
similar way, reviews have also been carried out on the possible approaches used
to optimise parameter values based on experimental results [7, 228, 62]. These
reviews tend to focus their attention on a certain type of model, such as ODE
or agent-based models. Therefore, in this section, we aim to provide a broader
overview of how drugs can be included into mathematical models regardless of
the variety. Parameter optimisation approaches will be investigated, again with a
broad range of techniques that are capable of optimising most types of model.
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4.1.1 ODE Models for Drug Inclusion

ODE models track the rate of growth of tumour cells, usually dependent on current
cell population sizes, substrate concentrations, and various drug related parameter
values. Stein et al [210] used a model in which the rate of change of the tumour
population, x, at time t is dependent on the natural growth rate, », and a dose
dependent drug effect, E, as shown in Equation 4.1,

E:r—E-x. (4.1)
The key chemotherapeutic parameter in Equation 4.1, E, relates to the effect of the
drug on the growth rate of the tumour. The term is calculated using an E; parame-
ter found experimentally, quantifying the effect of the drug when administered at
a dosage of img as shown in Equation 4.1a,

E=E;-p+N(0,1;). (4.1a)

A patient specific parameter, p, is also incorporated into the dynamics, dependent
on variables such as the starting tumour size of the patient. To include stochasticity
into the model, a normal distribution, N(0,7;), is included with mean zero and a
dose dependent standard deviation of #;, again calculated through fitting the ODE
model to experimental data.

Instead of one homogeneous population, cancer tumours can be made of many
different cell types. This tumour heterogeneity can give rise to a wide range of
ODE compartment models, with the various cell types responding to treatment in
different ways. Panetta et al [162] splits tumours into a population of proliferating
cells, P, and quiescent cells, Q. The treatment is assumed to have no direct effect
on the dynamics of the quiescent cell population, impacting only the cells actively
proliferating. The total population of the tumour, x, is given in Equation 4.2. Here,
r is the natural growth rate of proliferating cells, and E the dose dependent drug
effect,

dx

— =r-P—E-P. 4.2

7 =7 (4.2)
The drug effect term, E, is dependent on the value of an effect parameter, d, and

the concentration of the anticancer drug, c(t), as shown in Equation 4.2a,
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E=d-c(t). (4.2a)

Unlike the first model, this is a purely deterministic model with no stochasticity,
with the effect of the drug directly proportional to the concentration. While the
model includes no patient specific parameters, it does incorporate the composi-
tion of the tumour between proliferating and quiescent cells, with the drug only
effective against the proliferating population.

A key limitation of both previous models is that the tumours are assumed to de-
velop no drug resistance over time. This building up of resistance to chemother-
apeutic drugs is a key aspect of cancer treatment and prognosis, with initial treat-
ments often showing high success compared to administrations at later times. Claret
et al [41] developed a tumour growth model that incorporated a time dependent

resistance into the dynamics, shown in Equation 4.3,

d

d—::r-x—E-e’At-x. (4.3)
Similar to the previous models, r represents the tumour growth rate and E the
initial drug effect term. To ensure the cell death caused by the drug reduces over

M, is included. This gradually diminishes the

time, an exponential decay term, e~
effects of the drug, reducing the kill rate and allowing the tumour population to

recover, encapsulating the dynamics observed in patients more accurately.

Time dependency can be introduced into mathematical models of tumour growth
in a number of ways. Ollier et al [160] develops an alternative model, in which
rather than assuming the drug has an instantaneous effect on cancer cells, the
model includes a damaged cell compartment. Sensitive cells can become damaged
when exposed to chemotherapeutic drugs, with cell damage acting as an interme-
diate compartment between healthy cells and cell death. Populations are split into
3 groups: susceptible (S), resistant (R), and damaged (D). This leads to a rate of
change in total tumour population, x, as shown in Equation 4.4,

f—us (1-§)-ES,
R (1-§),

4D _E.5—yu-D, (4.4)

H=r-(S+R)-(1—-%)—p-D.
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As well as the inclusion of a logistic growth term with carrying capacity K, pop-
ulation dynamics of the tumour are also effected by the rate of death, p, from
the damaged cell population. A higher drug effect term leads to a higher rate
of susceptible cells becoming damaged and capable of drug induced death. The
effect of the drug in Equation 4.4 is similar to that used in Equation 4.2a, in which

the effect is directly proportional to the concentration of drug.

The idea of damage accumulated by cells can take various directions. The model
described in Equation 4.4 uses a binary approach in which cells either are or are
not damaged. Other models take a more continuous approach to DNA damage, in
which DNA damage undergoes a multistep process before completing programmed
death. Simeoni et al [203] introduces a model with four compartments, one for
healthy cells (x1) and three for progressively more damaged cells (x2, x3, and xy),
with the total population denoted by x as shown in Figure 4.1 and Equation 4.5,

%1 = f(x1,x) —ky-c(t) - x1

%:kz-c(t)-xl—kl-xz

B3 — fyoxpy—ky - x

ddt 1 2 1 3 (45)
G =kixs =k xy

Y

% = f(xl,x) —k1 - Xg4.

cycling cells

Exponential growth
followed by a linear phase

FIGURE 4.1: Flow of cells through the compartments. The image
is taken from the paper by Simeoni et al [203]. Cycling cells in
x1 become damaged by the drug and enter x,, initiating a chain
reaction of damage until the cells die by exiting x4. The rates at
which cells move from damage compartments are assumed to be
independent of the compartment the cell is in.

This approach allows the model to account for a delay in the impact of damage
from the drug. The rate at which cells leave damaged compartments is assumed
to be constant regardless of the stage of damage. A Hill-type function is included,
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f(x1,x), in the growth rate of the x; compartment, explained in detail by Simeoni
et al [203].

The models discussed so far all relate to a single drug type acting individually to
reduce the tumour population. In many cases, however, a combination of drugs
are administered to patients with the hopes of these drugs acting synergistically
to reduce tumour growth more effectively than single dosage treatments. Bao [10]
accounts for this by developing a mathematical model for a single drug and extend-
ing the model to capture the effects of two drugs used simultaneously. Similar to
Equation 4.2, the population of sensitive cells in the tumour, y, is given by Equation

4.6 for a single drug treatment,

dy
E—r-y—Eyy. (4.6)
Here, E; is the effect of drug i, found using a Hill function as shown in Equation

4.6a,

ci(t
Ei=d- ¢ (4.6a)
ki + ci(t)
The function incorporates a maximum death rate d, a half max concentration pa-
rameter k;, and the drug concentration c;.

This model is extended for when a second drug is introduced and administered
simultaneously with another. The effects of the drug are assumed to combine

additively, as shown in Equation 4.6b,

d
S —ry—(E+E) -y (4.6b)

This combined effect ensures the overall death rate caused by a chemotherapeutic
treatment increases with the addition of another drug.



4.1. Introduction 87

Population Dynamics ‘ Drug Effect (E) ‘ Equation Model ‘
r—E-x Ei-p+N(0,1;) 41 Stein et al [210]
r-P—E-P d-c(t) 4.2 Panetta et al [162]
B—p.x—E-eMx d-c(t) 4.3 Claret et al [41]
r-(S+R)-(1—%)—u-D d-c(t) 44 Ollier et al [160]
fx1,x) — k- x4 d-c(t) 4.5 Simeoni et al [203]
ry—Ei-y d- o 4.6 Bao [10]

TABLE 4.1: Table of ODE approaches. A summary of the ODE

models developed previously to link the drug effect to tumour

growth are provided above, with a wide range of different methods
used in each.

A summary of the models discussed in this section is provided in Table 4.1, show-
ing the population dynamics and drug effect for each model.

4.1.2 Agent-Based Models for Drug Inclusion

Alongside ODE models, agent-based models can provide an alternative, more stochas-
tic approach to cancer treatment modelling. Agent-based models allow for a set of
user defined rules to be assigned to the cancer cells, dependent on the conditions

in the microenvironment, as performed in Chapters 2 and 3. Unlike ODE models,
agent-based models provide each cell with individual dynamics depending on
their situation, allowing for a more probabilistic approach to be taken.

Wang et al [230] developed an agent-based model to perform angiogenesis analysis
on melanoma cells. The apoptosis rate of these cells were heavily dependent on the
concentrations of the drug and glucose in the environment of the cell.

The probability of apoptosis for melanoma cells, p, during a time interval of At is
given by Equation 4.7,

p=1—e¢ Mottt (4.7)
The natural death rate of melanoma cells is given by Ay, and the death rate due to
the cytotoxic drug is given by A;.

Here, w; and w, in Equation 4.7a are weighting factors given to the concentration
of drug, C, and the concentration of glucose, G respectively,
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w1C

M=——.
! 14+ w,G

(4.7a)
Unlike the ODE models, these concentrations of drug or glucose are assumed to be
heterogenous throughout the spatial domain, leading to potentially varied rates of
apoptosis from cell to cell.

Surendran et al [213] modelled the growth of glioblastomas, a type of brain cancer,
using an agent-based approach. A treatment plan consisting of temozolomide
administration was modelled using a PhysiCell framework [73] and simulated
based upon a set of ODEs. The probability that a cell dies, p, on an iteration of
length At is shown in Equation 4.8, using a Hill function with a Hill power of one,

C
p:r'<c+lcso>' (48)

Here, r is the natural proliferation rate, C is the concentration of temozolomide,
and ICs is the half effect drug concentration.

A similar model was produced by Hamis et al [85], where rather than assuming the
drug directly increases the death rate of the cancer cells, here the drug is assumed
to inhibit the repair of damaged cells. Cells in the G1 state of the cell cycle become
damaged with a constant rate. Damaged cells can then either begin programmed
cell death with probability p, or repair and return to being undamaged with prob-
ability 1 — p. This probability is found using a Hill function as shown in Equation
4.9,

Cr

P 49
ECJ +Cv “9)

p=E
Here, E is the maximum effect of the drug, C is the concentration of drug in which
the cell is located, ECsp the half max drug concentration, and < the Hill power.
Increasing the concentration of this drug decreases the value of p and encourages
the death of the cell, rather than allowing the repair of a damaged cell that may
behave abnormally.

In a similar probabilistic approach, Jalalimanesh et al [97] estimated the fraction
of cancer that survive irradiation when administered at a certain dose. When
treatment is administered, the agent-based model kills this fraction of the cancer
cell population, calculated using Equation 4.10,
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F=1—exp(—a-C—b-C?. (4.10)

Here, F denotes the fraction of cancer cells killed by a certain dosage of irradiation,
C is the dosage administered to the patient, and a and b are factors obtained via
parameter fitting. An algorithm is performed on each cell individually to ensure
that approximately this fraction of the tumour is killed.

Table 4.2 provides a summary of the agent-based model approached discussed in
this section [104]. Here, the death probability is provided for each model, showing
how likely a cell is to die during an iteration of the simulation.

’ Death Probability (p) ‘ Equation Model ‘
1 — e~ (RotA)at 4.7 Wang et al [230]
r- (%ICSO) 4.8 Surendran et al [213]
E. : cgfl o 49 Hamis et al [85]
1—exp(—a-C—b-C?) 4.10 Jalalimanesh et al [97]

TABLE 4.2: Table of agent-based approaches. A summary of the
agent-based models previously developed that link the drug effect
to tumour growth are provided above.

4.1.3 Parameter Optimisation Methods

The values of parameters which have not previously been found and documented
in scientific literature require other methods to estimate. Parameter optimisation
is a process in which the values of the unknown parameters in a mathematical
model are found using one of a number of different approaches. To initiate pa-
rameter optimisation, data obtained from a in vivo or in vitro experiment is usually
required. This data enables the user to quantify the difference between the in silico
output and the experimental results, allowing this to be minimised and the relevant
parameter values to be extracted. Due to the variety in types of in silico models and
format of experimental results, there is no single standard approach to parameter
optimisation. Optimisation techniques used for ODE models may not work for

agent-based models, or vice versa for example.

Grid Search

Grid search is a common technique used to optimise parameters by running sepa-
rate simulations for every possible combination of values in the parameter space.

The results from each simulation is saved and compared to the data set that the
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user wishes to emulate with their model. The parameter set associated to the
simulation with the smallest error to the data is extracted and assumed to be the
optimal combination of parameter values for the model. This method is generally
easy to initialise and is completely exhaustive of every parameter combination.
However, it is usually only chosen as the method for parameter optimisation when
the parameter space is small due to the high computational cost. If n parameters
need optimising, each with m possible values, performing a grid search on the
model would require n™ simulations.

Du et al [57] adopted a grid search approach to optimise the values of four param-
eters in their model. The model predicted the activity of epidermal growth factor
receptor inhibitors, a class of drugs used for their anti-tumour properties. After
grid search was completed, optimal parameter values were selected for the model
using the best multi-linear regression from the simulations for the half effect drug
concentration parameter value, pICsy. Principal component analysis of the de-
scriptors incorporated into this linear relation was performed, providing improved

predictions to other linear regression models under consideration.

Grid search alongside matrix factorisation was performed by Wang et al [232]
for various methods used to predict drug impact. Drug response matrices were
scaled by dividing by the maximum absolute value in the matrix, ensuring all
elements fell within the range [-1,1]. Regularisation parameters incorporated into
the row vectors of these matrices were selected either from a uniform scale or a
logarithmic scale via the grid search method across the parameter space. Three
different methods of matrix factorisation used for the estimation of drug response
were compared using the Pearson Product Correlation Coefficient (PCC) and root
mean squared error (RMSE) analysis. For model validation, nine of the ten data
sets were used as training, with the remaining set used to test, repeated ten times
with a different testing set on each run. Taking a similarity regularised matrix
factorisation approach was found to achieve the best results, leading to the highest
PCC value and lowest RMSE value.

Bayesian Optimisation

When determining parameter values, data obtained from the biological experi-
ments may not be the only information a modeller wishes to base their optimisation
on. Bayesian optimisation is a technique used to allow the incorporation of prior
beliefs regarding the value of a parameter. Depending on the certainty of these
prior beliefs, a weighting may be assigned to the likelihood distribution (generated
from the data) and the prior distribution estimated by the modeller. These weights
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depend on aspects such as the certainty of the collected data and can generate
a posterior distribution for the parameters from which optimised values can be
extracted. Bayesian optimisation can take many different approaches depending
on the form of the data available and the prior assumptions made by the modeller.

An agent-based model developed by Demetriades et al [51] quantified the im-
pact of a cancer drug, with unknown parameters estimated using the Variational
Bayesian Monte Carlo method. The rate at which cells divide and die were each
assigned a prior Gaussian distribution with estimated respective means found by
fitting to relevant in vitro values. Gaussian processes were then used to act as a
statistical surrogate to estimate these posterior distributions, minimising the com-

putational cost.

A key positive when using a Bayesian approach to model drug therapies is the
inclusion of the prior distribution. Patient specificity is critical in obtaining optimal
treatment protocols, suggesting that finding a way to incorporate a patient specific
distribution for parameter values would be highly advantageous. Jayachandran et
al [100] developed a model using Bayesian parameter optimisation that introduced
a patient specific posterior distribution. Estimations of the relevant parameter
values were used to generate a prior distribution based on a unique set of data
provided by each patient, generating individual likelihood functions. Bayes theo-
rem was then used to calculate the posterior parameter distributions and estimate

the patient specific parameters.

Particle Swarm

While Bayesian optimisation incorporates prior beliefs with previously collected
data, the more usual approach to parameter optimisation is to base parameter
values on the data alone to reduce subjectivity. Particle swarm is a method used to
optimise parameter values in a model by minimising a loss function. One or more
initial estimations are made for the values of the model parameters. This set of
predictions can be visualised as a set of particles placed within the parameter space.
The value of the loss function is calculated for each particle in its current position,
and a random velocity is assigned to each particle. Each particle then updates
its position within the parameter space based on this assigned velocity. The loss
function is again stored, a new velocity given to each particle, and the location
updated. This is repeated up to a certain number of iterations at which point an
optimal position in the parameter space associated with the minimal loss function
is extracted. Adaptations can be made to this algorithm, such as incorporating a
bias into the assigned velocity of the particles to encourage movement towards
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local/global minima found prior to the current iteration. The local best method
encourages particles to move towards the minimum in its local neighbourhood
using a bias in the velocity, while the global best method sets the bias towards the

minimum in the entire parameter space.

Petrovski et al [171] used particle swarm to optimise chemotherapy treatment for
their model of cancer tumour populations. The objective function to minimise for
optimisation was the sum of the tumour cell populations at each time point over
the course of the simulation. The optimisation used 50 particles placed randomly
in the parameter space. On each of the 30 iterations performed, the particles were
given a biased velocity towards the best values found thus far. The efficiency of
using a local best and global best method were compared, with the global method
reaching a feasible solution in a considerably lower number of iterations.

Instead of having a single objective function such as tumour size over time, particle
swarm can be used to optimise multiple objective functions at once. Shindi et al
[200] used two objective functions in the optimisation, minimising the total tumour
size over time while also minimising the total drug used. These two results are
stored for each particle after each iteration, with pareto optimal solutions found
across the parameter space. This generates a pareto front, consisting of values
which cannot be optimised further for either objective function. Using the values
in this pareto front, a weighting was assigned between the two objective functions
depending on the importance between minimising the tumour population and the
dosage given to the patient. This weighting determined how far along the pareto
front the optimised values were taken.

The approaches taken to mathematical modelling of drug effects, such as the af-
fected cell types, effect function, or methods taken to include DNA damage, show
a high variation from model to model. As a result, the decision made by a modeller
regarding which approach to take can have a key impact on the results and findings
from the in silico experiments. ODE models are excellent at predicting overall tem-
poral population sizes deterministically, with the potential of analytically found
results that can give important predictions for cancer treatment responses. Agent-
based models allow for a more spatial approach, with dynamics studied on a more
individualised level. The stochastic nature of these models can allow for more bi-
ologically realistic dynamics, though carrying out analysis on agent-based models
is generally more troublesome than on ODE models.

Multiple approaches are taken, such as ODE models with patient specificity, added
noise, and drug decay. Compartment models were introduced to allow for damage
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to cells or splitting the population into different cell types, as well as models to
account for the synergistic effects of administering multiple drugs at once. Rather
than approaching death as a rate, agent-based models take death as a probability
to occur during an iteration. These models tend to utilise a Hill function in their
dynamics, incorporating the ICsg value, the concentration of drug at which 50% of
the cell population is killed.

Finding the values of model parameters such as the ICsy value is critical for ac-
curate and meaningful results. While some values can be found in the literature,
often drug, cell line, or model specific parameters have not been previously found
and so require data found experimentally to be optimised. These approaches have
a high variation in rigour and speed, allowing a modeller to choose which level
of detail they wish their parameter search to undergo. If the modeller has prior
knowledge regarding these values, Bayesian optimisation can be used to account
for this knowledge whilst still incorporating the data found experimentally. While
grid search is exhaustive of every parameter combination, a modeller may be con-
strained by time and require an approach with an individualised termination point,
such as the particle swarm algorithm.

Modelling chemotherapy is crucial in improving the understanding of the impact
that different treatment protocols can have on cancer tumours. The development
of a range of mathematical models allows different aspects of cancer dynamics to
be explored, broadening the knowledge without the need for additional extensive
in vitro or in vivo experiments. These improvements can help improve the treat-
ment administered to patients, increasing the survival rates and quality of life for
patients of the disease.

4.2 Model Outline and Optimisation

The approach taken in this chapter builds upon on the model developed in Chap-
ter 3, with the key adaptations being in the cycling and apoptosis rates. Data is
obtained for cisplatin treatments at dosages of 0, 1, 3.125, 6.25, 12.5, 25, 50, 100, and
200mg/m?, with live cell populations counted initially and subsequently every 24
hours for 72 hours. For each setting, total tumour populations are measured across
three repeats, with results normalised to the initial populations. Optimisation is
performed by running simulations with various parameter values, and comparing
the results with those found biologically by quantifying the error.

Suppose X(t) and Y(t) denote the live cell population at time point ¢ for an in
silico simulation and in vitro experiment respectively, the error, RMSE, is given in
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Equation 4.11,

RMSE = \/ ?1(X(2 — Y(t))Z. (4.11)

A short example of how Latin hypercube sampling (LHS) and the RMSE can be
used to optimise multiple parameters simultaneously is highlighted in the box
below. We take an initial estimate for each parameter and a range that this value
can take, creating an array of equally spaced values for each parameter. Each
parameter value in each array is then randomly assigned to a simulation.

Suppose there are two parameters, p; and p», to perform global parameter
optimisation on. We make an initial estimate of 20.0 for the value of p; and
50.0 for the value of p, based on some previous knowledge, and have a high
confidence in the values of these parameter so have a range of only & 10%. If
we want to test five values of each parameter, then p; would generate an array
of [45,47.5,50,52.5,55] and p; an array of [18,19,20,21,22]. The elements of each
of these arrays are then randomly assigned to a simulation, as shown in Table
4.3. After the completions of the simulations with their associated parameter
values, the RMSE is compared across each of the five runs.

Simulation Number | p; value | p; value ‘ RMSE ‘

1 52.5 22 0.021
2 45 21 0.038
3 47.5 18 0.014
4 55 20 0.031
5 50 19 0.017

TABLE 4.3: Procedure used for LHS optimisation. Here, two

parameters and five simulations are tested, with the RMSE

value shown in the right hand column. Results suggest that

the optimal value of p; is 47.5 and 18 for p; since these lead to
the smallest RMSE value.

Here we see that simulation 3 gives rise to the lowest RMSE when compared
to the data, and so we assume that 47.5 is the optimal value of parameter p;
and 18 is the optimal value of parameter p;.
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4.2.1 Optimisation of Proliferation Rates

To allow for cell line specific optimisation of cycling rates, Equation 3.2 is carried
forward with some small adaptations. Here, the cell cycling rate, b, is a cell line
specific parameter which is assumed to change between cell lines, while c., p,,
and o, remain independent of the cell line. Alongside this, observations of the
experimental data provided suggest an adaptation to the logistic growth term may
be required. Tumours appear to grow rapidly at low populations, with overall
growth rates appearing to have a negative correlation to tumour size. Equation
4.12 shows the new approach taken to the population dynamics in the remainder
of this chapter,

rC:bc'Cc'pc'Oc‘<1§_1>. (4.12)

The current number of live cells in the tumour is denoted as 1, with the carrying
capacity due to available volume for the tumour grow in in vitro experiments rep-
resented by K. While a logistic growth term would produce an S shaped curve,
dividing this term by  would generate an increasing concave down population

curve, as observed in the untreated experimental results.

For simplicity, we focus on the two constant parameters involved in Equation
4.12 in this section for parameter optimisation: the cell cycling rate, b., and the
carrying capacity, K. The other terms depend on dynamic conditions such as those
in the microenvironment, leading to excessive complexity when optimising their

functions.

Firstly, we aim to optimise the rates of proliferation in cells by assuming that the
cell line specific values of the cell cycling rate, b, and carrying capacity, K, remain
constant regardless of the cisplatin treatment dosage. We initially estimate the cell
cycling rate and carrying capacity parameter values for each cell line, informed by
an inspection of the data when no drug is present and testing different values until
the trends appear similar between the simulation and biological experiment. A
parameter range of £ 20% is then used on these values to ensure a large range
of parameters are tested, reducing the dependency on our initial estimates for
their values. For each round of optimisation, 21 different values are used for
each parameter, meaning 21 different simulations are performed with the RMSE
calculated across the simulations using Equation 4.11.
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FIGURE 4.2: RMSE for various simulations using different

proliferation related parameters. To find the optimal parameter

values when comparing to the in vitro data, different values of

the cell cycling rate, b;, and carrying capacity, K, were tested.

Simulations with the lowest RMSE when compared to the data
were assumed to use optimal parameters.

Figure 4.2 shows the results from an example run of LHS for SKOV-3 wild type

cells, comparing the RMSE with the parameter values for b, and K in Equation 4.12.

In this example, an initial cell cycling rate of 2.9¢ — 5/min and carrying capacity of

8000 was investigated based on the initial observations of simulation results.

The RMSE results shown in Figure 4.2 have no clear positive or negative trends be-

tween the parameter values and RMSE, suggesting the optimal values are within

the parameter ranges that were tested. The cell cycling rate and carrying capacity

generate a minimum RMSE value at around 2.7e — 5/min and 7452 respectively.

The temporal population dynamics from this simulation are shown in Figure 4.3,

showing a general agreement between the in vitro results in blue and the in silico

results in green.
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FIGURE 4.3: Example temporal dynamics comparing model and

experimental results. Populations were tracked over 72 hours for

in silico (green) and in vitro (blue) experiments, with populations
normalised to the initial value.
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Cell Line Cycling Rate (b,) ‘ Carrying Capacity (K) ‘
SKOV-3 Wild Type 0.0000270 7452
OVCAR-3 Wild Type 0.0000602 13680
SKOV-3 Cisplatin Resistant 0.0000696 5280
OVCAR-3 Cisplatin Resistant 0.0000193 15120

TABLE 4.4: Proliferation related parameter values. Values for the

cycling rate and carrying capacity are optimised for each cell line

individually using data from the control experiment. These values
are used throughout the remainder of the chapter.

We perform this parameter optimisation on four ovarian cancer cell lines in this
way, with wild type and cisplatin resistant variations of SKOV-3 and OVCAR-3
cells. For each cell line, we use data collected from the control experiments to op-
timise the cell cycling rate and the carrying capacity. We assume these parameters
may be different across cell lines due to the differences in phenotypic behaviours
and physical characteristics. The cell cycle rate and carrying capacity parameter
values leading to the lowest RMSE are shown in each respective cell line in Table
4.4.

4.2.2 Optimisation of Apoptosis Rates

Cisplatin is a DNA-damaging drug which can reduce the size of ovarian cancer
tumours in multiple ways [193]. Apoptosis rates have been found to increased as
a result of exposure to cisplatin in rapidly cycling cells [131]. The DNA adducts
within rapidly cycling cells induce apoptosis when exposed to cisplatin, causing
increased death rates within the tumour [131, 76]. Extended exposure to cisplatin
is also found to cause prolonged DNA damage, leading to increased rates of cell
death [3]. Apoptosis rates in this chapter are therefore assumed to depend on two
aspects of the treatment given to the tumour:

¢ The current concentration of drug that a cell is located in.
¢ The damage that a cell has taken during its lifetime due to drug exposure.

After each iteration of the simulation, a value proportional to the concentration of
cisplatin in which a cell is placed is added to a cumulative total of cell damage,
leading to cells situated in higher concentrations of cisplatin over time to become
more damaged. Equation 4.13 shows how the damage is accumulated in a cell

using an iterative process,



98 Chapter 4. Quantitative Modelling of Tumour Responses to Treatment

cisplatin(x;, t)

damage(x;, t + 1) = damage(x;, t) + 1000

(4.13)
In this equation, damage(x;,t) denotes the damage in the i cell on iteration ¢
when placed in a microenvironment with cisplatin concentration cisplatin(x;,t).
A division of 1000 is included simply to prevent the damage(x;, t) variable from
having an excessive number of digits.

Quantifying how these cisplatin(x;, t) and damage(x;, t) variables impact the death
rate of cell i is the main focus of this chapter. Later in this section, the value of
damage(x;, t) will generate a new damage impact variable, dam;, incorporated into
the apoptosis rate according to Equation 4.14,

rg = by - (14 damy + cisy). (4.14)

The cisplatin concentration, cisplatin(x;,t), will also generate a new drug impact
variable, cis;, included in this equation. Instead of the historical conditions of the
cell, this cis; variable is based only on the current concentration of cisplatin in
which a cell is situated. This ensures drugs can still have an impact on the death
rate of a cell without any significant prior exposure or accumulated damage. Here,
r4 represents the death rate of a cell (1/min), dam; the damage impact parameter,
and cisy the drug impact parameter. The base death rate parameter, by, is set to
le — 5 /min, the minimum death rate value of OVCAR-3 cells used previously in
Chapters 2 and 3.

Since there is a small amount of drug uptake by the cells, as well as a decay rate
over time, the concentration of drug becomes heterogeneous through both space
and time. Therefore, we cannot assume that cells treated with 10mg/ m? remain
in 10mg/m? of cisplatin throughout the 72 hour simulation. We aim to build
functions for how the cell damage (damage) and drug concentration (cisplatin)
variables for each cell respectively correlate to the damage impact (dam,) and drug
impact (cis;) variables in Equation 4.14. This is done by partitioning the function
into sections, with each section of the function corresponding to a different dosage.
For example, the first section for the drug concentration would be between 0 and
1mg/ m?, the second would be between 1 and 3.125mg/ m?, the third between 3.125
and 6.25mg/m?, and so on.
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FIGURE 4.4: Optimisation process for drug and damage impact

parameters. Impact parameter curves are optimised by building

upwards through the different dosages. The error between a range

of gradients is calculated, with the gradient associated with the
lowest error saved and used for future simulations.

The same partition would also be performed for the accumulated damage, with the
partitions based on the maximum accumulated damage during the simulations at
each dosage. For example, the first section for the accumulated damage would be
between 0 and 0.543, the second would be between 0.543 and 1.733, and so on.
LHS is then performed on each section one at a time, building up from the lowest
dose section to the highest, each time generating a range of possible gradients used
for a linear correlation between the drug concentration and drug impact variables
in that section, alongside the accumulated damage and damage impact variables
simultaneously. The optimised gradient is selected by calculating the RMSE from
the data for each simulation and recording the gradient that led to the minimised
error. The gradients are then stored and the correlation remains constant for that
section in all future simulations. This is repeated for all partitions until all treat-
ment dosages have been analysed, up to 200mg/m?. Figure 4.4 shows an example
of these steps by building upon the optimisation of the drug impact curve with re-
spect to drug concentration, where the blue line represents the gradient associated
with the minimum RMSE from the data in each section. The line plot generated
by optimising the gradients is next converted into a scatter plot, with each point
representing optimised values from a new dosage of treatment. Since the control
experiment is redundant when using data to optimise the drug effects, this leads
to eight points, one for each treatment dosage. A linear/Emax curve is then fitted
to these points for the damage impact and drug impact parameters, allowing us
to make predictions for dosages not tested experimentally. An overview of the
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optimisation process performed for each cell line is given in a step by step guide
below.

1. Take the calibration data found experimentally for the control case in which

no treatment is introduced.

2. Perform LHS on this calibration data to minimise the RMSE from the simula-
tion output, optimising the cell cycling rate parameter and carrying capacity
for each cell line.

3. Set these as the optimised parameter values for the respective cell line, used
for all future simulations irrespective of the drug dosage.

4. Take the experimental calibration data for the first drug dosage, set to 1mg/m?
of cisplatin.

5. Perform LHS on the gradient of the drug impact parameter from 0 to 1mg/m?
of drug concentration and on the gradient of the damage impact parameter
from 0 to 0.543 of damage.

6. Set these as the gradients in these ranges of the corresponding x axes for each

impact parameter.
7. Take the calibration data for the next dosage, 3.125mg/m?.

8. Perform LHS on the gradient of the drug impact parameter from 1 to 3.125mg/m?
of drug concentration and on the gradient of the damage impact parameter
from 0.543 to 1.733 of damage.

9. Set these as the gradients in these ranges of the corresponding x axes for each

impact parameter.
10. Take the calibration data for the next dosage, 6.25mg/ m2.

11. Repeat these steps of extracting the relevant calibration data, performing
LHS, and optimising the gradients of the corresponding section of the plots
until all gradients have been optimised up to 200mg/m? and 116.234 damage.

12. Extract the points on these plots that correspond to each dosage (1mg/m?,
3.125mg/m?, ..., 200mg/m? for the drug impact parameter and 0.543 dam-
age, 1.733 damage, ..., 116.234 damage for the damage impact parameter).

13. Generate a linear fit to these points using a y = m - x function.
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14. Repeat the simulations using these linear functions for the drug impact and
damage impact parameters, comparing the new simulation results at each
dosage to the calibration and validation data found experimentally.

15. If the comparisons appear adequate, assume a linear fit is sufficient. Other-
wise, return to step 13 and instead fit these points using the Emax function
shown later in Equation 4.15, repeating the simulations using this new fitting.
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FIGURE 4.5: Temporal dynamics of SKOV-3 wild type cell
populations using optimal impact curves for the given drug
dosage. The green curves represent the simulation results and the
blue curves represent the in vitro calibration results, with general
agreement observed between the two across all dosages tested.

Figure 4.5 shows the results from the first parameter optimisation of SKOV-3 wild
type cells. The optimised value for each dosage has a relatively good fit to the
data. The general trends are captured, with small variations observed between the

simulation and calibration data at Img/m? and 25mg/m?.
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FIGURE 4.6: Optimal impact curves fitted for SKOV-3 wild type

cells. These are the curves producing the lowest RMSE when

compared to the data for SKOV-3 wild type cell lines for the
accumulated damage impact (A) and drug impact (B).

The optimised parameter values at each dosage are then extracted and plotted for
the damage impact and drug impact, as shown in Figure 4.6. These trends would
ideally be monotonically increasing, as higher DNA damage and drug concentra-
tions in the microenvironment should in turn increase apoptosis rates. Though this
is not the case in Figure 4.6, the general trends show a positive correlation for both
plots.

Linear Fitting

Each point used to generate the line plots in Figure 4.6 is extracted and transformed
into a scatter plot, with one point for each non-zero dosage. To prevent the over-
titting observed in Figure 4.6, a linear fit is then made to these points with a y
intercept of zero, as shown in Figure 4.7. The red line provides the linear fitting
for the damage impact (A) and the drug impact (B) in Figure 4.7. The gradient
coefficient for these plots are shown in Table 4.5, using the linear plot y = m - x and
optimised on MATLAB.
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FIGURE 4.8: Temporal dynamics of SKOV-3 wild type cell

populations using linearly fitted parameter values. Green curves

represent the simulation results at each dosage, with blue curves

representing the in vitro experimental results used for calibration.

Red and yellow curves show the population dynamics found in in
vitro experiments used for model validation.



104 Chapter 4. Quantitative Modelling of Tumour Responses to Treatment

v x | m |
Damage Impact Damage 1.092

Drug Impact | Drug Concentration | 0.200

TABLE 4.5: Fitted linear coefficients for SKOV-3 wild type cells.

Increasing the drug concentration in which a cell is placed and the

DNA damage carried out in the cell increases the apoptosis rate
according to these fittings, with results shown in Figure 4.8.

Finally, simulations are run again at each drug dosage, this time using the param-
eters taken from the linear fits in Figure 4.7. At any given time, a cell with a certain
damage variable in a certain concentration of cisplatin will extract its individual
damage impact and drug impact parameters according to the linear fit shown in
Figure 4.7. These values are incorporated into Equation 4.14, assigning the cell a
death rate accordingly. The results at each dosage using this method can be used
to compare the differences between the experimental data and the simulations
in which this linear fit is used, as shown in Figure 4.8. Simulations using the
values given by the linear fit (green) are compared with the calibration data (blue)
along with two experimental repeats used for validation (red and yellow). Low
dosages show a good fitting of the model to the data. The accuracy in the fitting
is occasionally lost at medium dosages, despite the general trends continuing to be

captured.

Emax Fitting

Figure 4.8 shows that when the linear fit in Figure 4.7 is implemented, the model
loses a large amount of accuracy in the medium level dosages when compared to
the validation and calibration data. This suggests that the linear approach may be
under fitting the data. To explore this idea, we change the type of function used to

tit the data to an Emax function, shown in Equation 4.15,

Emax . xHill

- CHIll - xHill (4.15)

Yy

Figure 4.9 shows the fitted Emax curve to the same data points as before, with
optimised coefficients provided in Table 4.6. This approach increases the death

rate at low damage and dosages with a higher gradient observed near the origin.
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FIGURE 4.10: Temporal dynamics of SKOV-3 wild type cell

populations using Emax fitted parameter values. Green curves

represent the simulation results at each dosage, with blue curves

representing the in vitro experimental results used for calibration.

Red and yellow curves show the population dynamics found in in
vitro experiments used for model validation.
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y ‘ X ‘ Eax Hill ‘ Cso ‘
Damage Impact Damage 110.8 | 1.054 | 15.48
Drug Impact | Drug Concentration | 47.07 | 0.5778 | 50.95

TABLE 4.6: Fitted Emax coefficients for SKOV-3 wild type cells.

Increasing the drug concentration in which a cell is placed and the

DNA damage carried out in the cell increases the apoptosis rate
according to these fittings, with results shown in Figure 4.10.
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FIGURE 4.11: Comparison between calibration, simulation, and

validation data for SKOV-3 wild type cells. Results from the

calibration data at each dosage (A), is compared with the results

from validation data using error bars with simulation results shown
in dashed lines (B).

As before, simulations are run again at each drug dosage. This time, the death
raters for each cell are calculated using the Emax fits shown in Figure 4.9. Results
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from these simulations are shown in Figure 4.10. Simulations using the values
given by the Emax fit (green) are compared with the calibration data (blue) and two
repeats used for validation (red and yellow). Comparing these results with those
found previously in Figure 4.7, the Emax approach provides a much improved
fit to the data, with simulation results at almost all dosages appearing reasonable
compared to the data.

As an alternative way to view the results, Figure 4.11 (A) provides the experimental
data used to calibrate the model at each dosage. Figure 4.11 (B) shows the 95%
confidence intervals found in the data used to validate the simulation results and
compares these with the simulation output, plotted using the dashed lines. The
model struggles to capture the very low dosages, however, has a good fit to those
at higher treatment levels.
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FIGURE 4.12: Temporal dynamics of OVCAR-3 wild type cell
populations using optimal impact curves for the given drug
dosage. The green curves represent the simulation results and the
blue curves represent the in vitro calibration results, with general
agreement observed between the two across all dosages tested.

The processes performed in Section 4.2.2 are then repeated for the remaining cell
lines. Figure 4.12 compares the simulation results after the first parameter opti-
misation with the calibration data for OVCAR-3 wild type cells, with the optimal



108 Chapter 4. Quantitative Modelling of Tumour Responses to Treatment

tittings of parameter values shown in Figure 4.13. Again, simulation results at
lower dosages generally have a good fit to the data, with more notable differences
appearing at medium dosages such as those observed for 25mg.
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FIGURE 4.13: Optimal impact curves fitted for OVCAR-3 wild

type cells. These are the curves producing the lowest RMSE

when compared to the data for SKOV-3 wild type cell lines for the
accumulated damage impact (A) and drug impact (B).

Linear Fitting

After optimising a linear fit with coefficients shown in Table 4.7 to the results for the
drug impact and damage impact parameters, the drug impact parameter appears
to have a poor fitting. Since the scale of the drug impact shown in Figure 4.14 (B) is
relatively small compared to the damage impact shown in Figure 4.14 (A), almost
all of the death in OVCAR-3 wild type cells can be attributed to the accumulated
DNA damage. The poor fitting for the drug impact parameter is therefore mostly
unnoticeable when calculating the death rate in Equation 4.14.

y x \m\

Damage Impact Damage 6.047

Drug Impact | Drug Concentration | 0.001

TABLE 4.7: Fitted linear coefficients for OVCAR-3 wild type cells.

Increasing the drug concentration in which a cell is placed and the

DNA damage carried out in the cell increases the apoptosis rate
according to these fittings, with results shown in Figure 4.15.
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FIGURE 4.14: Fitted linear curves for OVCAR-3 wild type cells.

The damage (A) and drug (B) impact parameters are optimised at

each drug dosage and combined. Blue dots represent the optimised

value at each separate drug dosage, with the red line showing the
linear regression optimised across the points.
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FIGURE 4.15: Temporal dynamics of OVCAR-3 wild type cell

populations using linearly fitted parameter values. Green curves

represent the simulation results at each dosage, with blue curves

representing the in vitro experimental results used for calibration.

Red and yellow curves show the population dynamics found in in
vitro experiments used for model validation.
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After simulating the model using the fittings shown in Figure 4.14, again we find in
Figure 4.15 that the model is somewhat unable to capture the in vitro dynamics for
medium dosages. The fit used for the damage impact parameter eluded to this, in
which the linear curve appeared too low for most dosages, suggesting insufficient

apoptosis could occur.

Emax Fitting

To combat this poor fitting at medium dosages, again an Emax fitting is used in
place of the linear fitting. Figure 4.16 shows the Emax fitting to the points collected
by the previous optimisation, with the relevant parameters given in Table 4.8.
When compared with the linear fitting, this allows for an increased damage impact
parameter for cells with a medium damage, creating higher rates of apoptosis and
lower cell populations. As these dosages were responsible for the main discrepan-
cies between the in vitro and in silico results in Figure 4.15, this change in death rate

appears promising to improve on the results.
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FIGURE 4.16: Fitted Emax curves for OVCAR-3 wild type cells.
The damage (A) and drug (B) impact parameters previously
optimised at each drug dosage and combined. Blue dots represent
the optimised value at each separate drug dosage, with the red line
showing the linear regression optimised across the points.
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E Conc ‘ E.iax Hill ‘ Cso ‘
Damage Impact Damage 685.6 | 0.9033 | 21.74
Drug Impact | Drug Concentration 0 0 0

TABLE 4.8: Fitted Emax coefficients for OVCAR-3 wild type cells.

Increasing the drug concentration in which a cell is placed and the

DNA damage carried out in the cell increases the apoptosis rate
according to these fittings, with results shown in Figure 4.17.

The resulting model dynamics are notably improved when compared with the in

vitro data, as shown in Figures 4.17 and 4.18. The death occurring at medium

dosages allows the model dynamics to capture the experimental trends with higher

accuracy. The model remains limited at certain time points for certain dosages,

potentially suggesting a flaw in either the model or the data for the OVCAR-3 wild

type cell line.
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FIGURE 4.17: Temporal dynamics of OVCAR-3 wild type cell

populations using Emax fitted parameter values. Green curves

represent the simulation results at each dosage, with blue curves

representing the in vitro experimental results used for calibration.

Red and yellow curves show the population dynamics found in in
vitro experiments used for model validation.
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(B) Results used for model validation with 95% confidence intervals at different
drug dosages for OVCAR-3 wild type cells vs model simulation results.

FIGURE 4.18: Comparison between calibration, simulation, and

validation data for OVCAR-3 wild type cells. Results from the

calibration data at each dosage (A), is compared with the results

from validation data using error bars with simulation results shown
in dashed lines (B).

SKOV-3 Cisplatin Resistant

Turning attention now to the cisplatin resistant cell lines, Figure 4.19 demonstrates
that after the first optimisation shown in Figure 4.20 for SKOV-3 resistant cells at
each dosage, the model has a good fit to the data. Low dosages show a small
discrepancy between the simulation results and calibration data. At medium and
high dosages, the simulation results appear similar to those found in the calibration
experiments, with notable differences only at specific time points and dosages.
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FIGURE 4.19: Temporal dynamics of SKOV-3 cisplatin resistant
cell populations using optimal impact curves for the given drug
dosage. The green curves represent the simulation results and the
blue curves represent the in vitro calibration results, with general
agreement observed between the two across all dosages tested.
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FIGURE 4.20: Optimal impact curves fitted for SKOV-3 cisplatin

resistant cells. These are the curves producing the lowest RMSE

when compared to the data for SKOV-3 wild type cell lines for the
accumulated damage impact (A) and drug impact (B).
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The linear fit used for the production of results in Figures 4.22 and 4.23, with the
associated gradient coefficient shown in Table 4.9. This produces the fit shown in
Figure 4.21, with a very low gradient for the drug impact plot.

y x [ m |
Damage Impact Damage 2.886

Drug Impact | Drug Concentration | 0.053

TABLE 4.9: Fitted linear coefficients for SKOV-3 cisplatin resistant

cells. Increasing the drug concentration in which a cell is placed and

the DNA damage carried out in the cell increases the apoptosis rate
according to these fittings, with results shown in Figure 4.23.
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(A) Linear curve fitted to the optimised (B) Linear curve fitted to the optimised
values of damage impact with respect values of drug impact with respect to
to accumulated damage for each cell. surrounding drug concentration.

FIGURE 4.21: Fitted linear curves for SKOV-3 cisplatin resistant
cells. The damage (A) and drug (B) impact parameters are
optimised at each drug dosage and combined. Blue dots represent
the optimised value at each separate drug dosage, with the red line
showing the linear regression optimised across the points.

Again, the magnitude of the drug impact parameter is very small when compared
to the damage impact parameter. This suggests that the majority of cell death for
SKOV-3 resistant cells will be due to the DNA damage accumulated over time.
The linear fit for the damage impact parameter, as shown in Figure 4.21 suggests
the potential for a linear fit to be sufficient in capturing the dynamics for this cell
line, without the need of an Emax function for additional accuracy.
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(B) Results used for model validation with 95% confidence intervals at different

drug dosages for SKOV-3 resistant cells vs model simulation results.

FIGURE 4.22: Comparison between calibration, simulation, and

validation data for SKOV-3 cisplatin resistant cells. Results from

the calibration data at each dosage (A), is compared with the results

from validation data using error bars with simulation results shown
in dashed lines (B).

Simulations are re-run at each dosage using this linear fit, with model results in

Figures 4.22 and 4.23 showing an excellent fit at most if not all dosages tested. The

data used to calibrate the model shows that the untreated tumour has only the third

highest rates of growth. The model removes this phenomenon, ensuring higher

dosages always result in higher cell kill, also concluded by the validation data. This

provides an example of where mathematical models can help to remove outliers

from the experimental output that may otherwise be biologically irrelevant.
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FIGURE 4.23: Temporal dynamics of SKOV-3 cisplatin resistant
cell populations using linearly fitted parameter values. Green
curves represent the simulation results at each dosage, with blue
curves representing the in vitro experimental results used for
calibration. Red and yellow curves show the population dynamics
found in in vitro experiments used for model validation.

OVCAR-3 Cisplatin Resistant

Finally for the OVCAR-3 resistant cells, Figure 4.24 shows that at the optimised
value for each dosage, the model has a good fit to the data with very small error.
The optimised curves for the damage impact and drug impact parameters are
shown in Figure 4.25.

y x [ m |
Damage Impact Damage 0.922

Drug Impact | Drug Concentration | 0.328

TABLE 4.10: Fitted linear coefficients for OVCAR-3 cisplatin

resistant cells. Increasing the drug concentration in which a cell

is placed and the DNA damage carried out in the cell increases

the apoptosis rate according to these fittings, with results shown
in Figure 4.27.

A linear equation is fitted to the optimised damage and drug impact plots, shown
in Figure 4.26, with gradient coefficients given in Table 4.10.
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FIGURE 4.24: Temporal dynamics of OVCAR-3 cisplatin resistant
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Results using the values in this linear fitting in the simulations are shown in Figures
4.27 and 4.28. Since again these appear to be a good fit to the validation data, the
Emax approach is not taken and a linear fit is assumed to be sufficient to a good
model fit.
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(B) Results used for model validation with 95% confidence intervals at different
drug dosages for OVCAR-3 resistant cells vs model simulation results.

FIGURE 4.28: Comparison between calibration, simulation, and

validation data for OVCAR-3 cisplatin resistant cells. Results from

the calibration data at each dosage (A), is compared with the results

from validation data using error bars with simulation results shown
in dashed lines (B).

4.3 Results and Predictions

To make predictions using the newly fitted parameters and model, we create a
setting that replicates a more in vivo setting with the aim of creating an environ-
ment similar to that in a patient. Spheroids are initialised in the spatial domain
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with varying proportions of wild type and cisplatin resistant cells. This helps to
gain more insights into the impacts of tumour composition on the progression for
different treatment protocols. Previously, the drug was initialised uniformly, with
the only heterogeneity in cisplatin due to a small update rate from the cells. Here,
vessels are introduced into the domain described later in Section 4.3.1 to produce
an environment to those observed within patients. These vessels are assigned a
secretion rate of cisplatin equal to the dosage of drug assumed to be administered.
Figure 4.29 shows an example cross-section of the cisplatin concentration during
a simulation, with high cisplatin densities observed in close proximity to where
vessels pass through.
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FIGURE 4.29: Cross-section of cisplatin concentrations after vessel

secretion. Concentrations of cisplatin are tracked across the domain

with a treatment dosage of 10mg. High concentrations (yellow)

are located around vessels, with low concentrations (purple) found
elsewhere.

4.3.1 Initialisation

Vessels are assumed to be spaced around 100-200 nanometres apart from each
other [109], leading to nine vessels being initialised inside a 620 x 620 nanometre
domain. This is done using an algorithm prior to placing the tumour into the
domain. A vessel cell is placed along the bottom of the spatial domain, with a
centre at z co-ordinate set to be z = r — 310, where r is the blood vessel cell radius to
allow for the entire cell to be contained in the domain. The x and y co-ordinates are
taken from a uniform distribution, each with a minimum of » — 310 and maximum

of 310 — r. After this cell has been placed, polar coordinates are used to select a
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random point on a hemisphere, sharing the same center as the cell and surrounding
the cell in the positive z direction, with a radius of 2r as shown in Figure 4.30 (A).
After selecting a point on this hemisphere, a new vessel cell is placed with this
point as its centre. This process is then repeated with the new vessel cell, and so
on. This generates a chain of cells, each with a larger z coordinate than the last
to ensure the vessel works upwards with each vessel cell centre 2r away from its
neighbours. When the algorithm attempts to place a cell within r distance of a x,
y, or z boundary, the vessel is assumed to have left the domain and the chain for
that vessel is ended. At this point, a new vessel is made by placing a new cell along
the bottom of the domain and repeating the entire process. This is repeated until

the correct number of vessel cells are present, with an example domain shown in
Figure 4.30 (B).

(A) The process in which chains of vessel cells (B) The domain layour prior to the placement of
are created for the simulation. the spheroid, with nine vessels initialised
randomly.

FIGURE 4.30: The vessel formation process. Vessels form by

creating a chain of cells with touching surfaces (A). This leads to

the vessels working up through the domain until they make contact

with a domain boundary, at which point the next vessel chain is
made until termination (B).

Spheroids are composed of 400 cells initialised within a ball of radius of 50 nanome-
tres in the centre of the domain. Tumours are composed of either 25%, 50%, or 75%
susceptible (wild type) cells , with the remained made up of cisplatin resistant cells.
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(A) 0 hours (B) 24 hours

(C) 48 hours (D) 72 hours

FIGURE 4.31: An example 3D simulation for heterogeneous

SKOV-3 tumours Tumours above are initialised with 300 sensitive

cells (blue) and 100 resistant cells (yellow) with nine blood vessels

(red). Snapshots of the 3D domain are recorded every 24 hours,

showing the progression of the tumour due to the growth of
resistant cells.

Dosages of 10mg and 75mg are tested to investigate treatment levels previously
unexplored. The blood vessels begin secreting the drug after six minutes of sim-
ulated time to represent the short delay between treatment administration and
effect. Once this begins, vessels secrete cisplatin continuously at the same rate for
the remainder of the simulation. Figure 4.31 shows an example of a simulation for
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SKOV-3 tumours initialised with 75% susceptible cells with a drug dosage of 10mg,
in which red blood vessels surround a tumour composed of susceptible cells (blue)
and resistant cells (yellow).

4.3.2 Impact of Initial Conditions

Population dynamics are tracked over three days to produce results of the same
time scale as those used in the calibration and validation. Simulation data is taken

every hour, recording the live cell populations for susceptible and resistant cells.

Resistant cells remain the dominant population in SKOV-3 tumours regardless of
treatment level or initial tumour composition. A dosage of 10mg, shown in the top
row of Figure 4.32 appears insufficient in reducing the tumour size, with simulated
populations of resistant cells increasing monotonically. At the higher dosage of
75mg, shown in the bottom row of Figure 4.32, the treatment is able to generate
a small, temporary reduction in the resistant population. However, again this
is insufficient in eradicating the tumour population, with recovery appearing to
begin towards the end of the simulation.
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FIGURE 4.32: SKOV-3 tumours with varying initial compositions.

Populations are made up of 25% (left), 50% (middle), and 75%

(right) wild type cells, with the remainer of the populations made

up of cisplatin resistant cells. Tumours are then given a dosage of

10mg (top) and 75mg (bottom) cisplatin, with live cell populations
recorded every hour.

Similar to that seen in the SKOV-3 simulations, resistant cells prevail throughout
the simulations. Initially, susceptible cells are able to proliferate before the drug can
induce sufficient cell damage to reduce the population. This occurs after around
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one day for 10mg, as shown in the top row of Figure 4.33 and around half a day for
75mg, as shown in the bottom row of Figure 4.33.
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FIGURE 4.33: OVCAR-3 tumours with varying initial composi-

tions. Populations are made up of 25% (left), 50% (middle), and 75%

(right) wild type cells, with the remainer of the populations made

up of cisplatin resistant cells. Tumours are then given a dosage of

10mg (top) and 75mg (bottom) cisplatin, with live cell populations
recorded every hour.

4.4 Discussion

The effects of cisplatin have been shown to play a critical role in the inhibition
of cancer tumour progression. Tumours which would naturally grow otherwise
exponentially appear to be somewhat controllable provided that certain treatment
protocols are fulfilled. The model discussed in this chapter captures this phe-
nomenon, with higher dosages generally leading to an increased reduction in can-
cer tumour growth, as observed in the in vitro experiments. Initially, a very good
fit was made in most cases between the model output and the experimental data
when parameters were optimised for each individual dosage separately. Calibrat-
ing these results to the relevant Emax and linear curves showed a good fit to
the validation data for the four cell lines. This validation provided confidence
when using the model to make predictions in Section 4.3 beyond those tested
experimentally. Adapting the domain settings to contain drug-secreting vessels
gave a more insightful prediction regarding how cisplatin may impact tumour
growth inside a human body, showing the diffusion of the drug from the blood

vessels following intravenous administration.

This chapter introduced the first quantitative data exploring the difference between
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drug sensitive and drug resistant tumours used in this study. By fitting unique
parameter values for each cell line, predictions can be made about the tumour
growth depending on the initial composition. Resistant cells were found to be
effected less by exposure to cisplatin, allowing them to remain during the course
of the simulations regardless of the treatment dosage. The removal of sensitive
cells in turn provides more space for resistant cells to proliferate into, removing
the contact inhibition there may have previously been. This reaffirms the “less is
more” approach which is now being taken to many cancer treatments for patients,
in which using lower dosages allows the susceptible cells to remain and prevent
the tumour becoming predominantly drug resistant.

To explore this idea further, adaptations could be made to the administration of the
drug. Currently, cisplatin is assumed to be administered as soon as the simulation
starts with vessels secreting the drug with minimal delay and continues to do so
until the terminations of the simulation. An approach that may be more relevant
is to explore intermittent treatment, such as treatment periods followed by holiday
periods. This is common practice during chemotherapy due to the toxicity and
practicality of administering treatment. Another addition to the model could be to
introduce a possible switch of cells from susceptible to resistant. Susceptible cells
which withstand cisplatin exposure for prolonged periods of time may develop
properties allowing them to transform into resistant cells, further adding to the
resistant cell population. Obtaining biologically realistic rates for this switch would
be essential to ensure results remained reasonable.

After exploring the quantitative impact of cisplatin on tumours, the chapter high-
lights the significant effect that chemotherapeutic treatments can have. It is there-
fore essential that patients are provided with the optimal protocols given the asso-
ciated drawbacks with higher dosages. Mathematical models can have a key role in
finding these treatment plans and helping to improve the survival rates for cancer

patients.
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Chapter 5

Conclusions

5.1 Conclusions

In this study, we have developed multiple mathematical models to study the pro-
gression of ovarian cancer using a range of various approaches. A relatively simple
model was initially introduced to obtain preliminary results and gain an under-
standing of what may be expected following the development of more detailed
models later in the study.

Firstly, an investigation of the effects of adipocyte exposure on OVCAR-3 and
SKOV-3 cell lines was performed in Chapter 2. Observations of biological experi-
ments, along with an extensive literature review provided a basis for the rules to
incorporate into the initial model. The model included the effects on the cell cycle
of the adipose derived media concentration in the microenvironment. The two
cell lines were found to possess contrasting phenotypic changes when tumours
were placed in the presence of adipose tissue, with OVCAR-3 cycling rates de-
creasing while SKOV-3 cycling rates increased. The model introduced the idea of
the bystander effect for EMT in cancer cells. The process of mesenchymal cells
secreting a chemical encouraging EMT with low diffusion into the microenviron-
ment generated the red polka dot effect observed in OVCAR-3 tumours and the
internal mesenchymal pool seen in SKOV-3 tumours. This effect remained present
throughout the study and is critical in producing the tumour layouts observed in
vitro. The qualitative results found in vitro were captured well by the model in
Chapter 2, with tumour cell population sizes and compositions in general agree-
ment. This allowed us to make confident predictions regarding the effects of the
conditions on the tumour growth, such as the adipose media concentration, treat-
ment dosage, and initial tumour size. Spatio-temporal dynamics were tracked and
recorded along with tumour cross-sections for each simulation to help make direct

comparisons across the different conditions.
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Chapter 3 directed attention away from the role of adipocytes, and assumed adi-
pose derived media was present throughout the simulations. The focus of this
chapter turned to the impact that EMT had on tumour progression. The process
of EMT was implemented with more detail, with the resulting phenotypic changes
incorporated into the cells. Mesenchymal cells were assigned higher migration
speeds and lower adhesion strengths than epithelial cells to capture the dynamics
observed biologically. A carrying capacity was incorporated into the cycling rate
equation in this chapter, as comparisons between the in silico simulation and in vitro
experiment results were made for cells with a maximum occupancy. The current
cadherin rating in the cells, as well as the concentration levels of oxygen and by-
stander signal in the microenvironment were all incorporated into the generation of
a probability that a cell moved up the discrete EMT scale, with different weightings
assigned for each cell line. The reverse process of EMT, MET, was introduced to
allow mesenchymal cells to revert back to a more epithelial phenotype, as seen in
post metastatic tumours. The results of different initial conditions were investi-
gated, with tumours initialised with epithelial, mesenchymal, and a third “hybrid”
cell type. The temporal dynamics were studied and compared with results found
in a prostate cancer cell line, with similar quantitative results found in OVCAR-
3 tumours. Sensitivity analysis was performed to investigate the responsiveness
of the tumour population size and composition to the parameters involved in the
cell cycling and EMT probability equations, where all tested parameters showed
occasions of at least moderate impacts on the results.

Data obtained by biological experiments was used to generate a model tailored
towards the impact of cisplatin in Chapter 4. The model incorporated a slight
variation in the cell cycling rate equation and used a dynamic death rate depen-
dent on the drug concentration. A damage variable, accumulated by prolonged
exposure to high concentrations of cisplatin, alongside the current concentration
of cisplatin a cell was placed in, were combined to approximate an apoptosis rate
variable assigned to each cell individually. Parameter optimisation using the in
vitro data was performed to quantify how the cisplatin concentration in the mi-
croenvironment and damage variable associated with each cell affect this apoptosis
rate. By working consecutively through the different dosages for each cell line,
optimised linear and Emax functions were built up for drug impact and dam-
age impact parameters. Values were extracted from these functions and tested
against validation data obtained through additional in vitro experiments to ensure
the model provided accurate predictions. SKOV-3 cell lines generally showed a
close fit between the model predictions and the validation data, with OVCAR-3
cell lines losing predictive ability at higher dosages. Following model validation,
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predictions were made to give insights into what may be expected in an in vivo
setting. Tumours made up of various compositions of wild type and cisplatin
resistant cell types were initialised in the domain along with surrounding blood
vessels to supply the cisplatin. This helped to provide predictions more relevant
to the real life situation of a patient, in which drugs are administered and diffuse
throughout the tumour from a blood vessel source.

The overall aim of the project was to produce models capable of capturing the
dynamics in various ovarian cancer tumours. With a large difference in tumour
characteristics observed from cell line to cell line, the models required cell line
specificity to ensure relevant results were produced. Different aspects of the mi-
croenvironment, tumour composition, and treatment protocol were explored to
provide a detailed overview of ovarian cancer progression, highlighting the need
for further research into the disease.

5.2 Future Work

The work done in this study opens up many possibilities for future research paths.
Each model developed in this study omits various biological details that could be
included to make the model more complex and closer to an in vivo setting. Different
substrates in the microenvironment can have important roles to play in cancer
progression, with only the key substrates included in the models developed in this
study. Alongside substrates, other components in the microenvironment such as
fibroblasts, macrophages, and adipose derived exosomes can have an key impact
on the progression of ovarian cancer. Extracellular vesicles such as exosomes are
small agents that can transfer information between cells, altering their behaviour
and phenotype. The impact of including these adipose derived exosomes into
simulations could be explored in future adaptations of the models described above
to make more in depth investigations.

In Chapter 2, we investigated the role of adipocytes and the adipose tissue in
tumour progression. Throughout the chapter, the adipose derived media was as-
sumed to follow simple decay/uptake rules with a minimal effect on the temporal
substrate dynamics. Further insights could be inferred if the domain boundaries
had flux conditions that changed with time. This could represent a patient losing
or gaining weight, affecting the proliferation and composition of the tumour. This
would allow for predictions to be made on the impact that dieting for certain
periods could have on tumour regression over the course of weeks or months. It
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could also incorporate the effects of cachexia, potentially by introducing a large
decrease in adipose derived media when the tumour fulfils certain criteria.

Chapter 3 focused more heavily on the mechanisms of EMT and capturing the
dynamics observed across various cell lines. While SKOV-3 tumours displayed a
shell of epithelial cells around a mesenchymal core, OVCAR-3 tumours generated
small clumps of mesenchymal cells within a region of epithelial cells. One hypoth-
esis is that these clusters of mesenchymal OVCAR-3 cells can collectively exit the
tumour and migrate away, ultimately relocating elsewhere in the body and com-
pleting metastasis [219]. Currently, the model incorporates a low adhesion force
for mesenchymal cells, preventing the capability of these clusters from collectively
escaping the tumour. Future adaptations could incorporate the occurrence of this
event, providing a prediction of when metastasis may happen and if this can be
prevented.

Possible treatment protocols provided to patients were modelled in Chapter 4.
Following parameter optimisation, tumours were placed in a domain along with
a network of vessels. These vessels were set to secrete a constant supply of cis-
platin into the microenvironment after commencing treatment. This is not usually
possible due to the side effects the patient is likely to experience under constant
chemotherapy. The simulations may therefore be more biologically relevant if the
treatments were given in intervals, implemented by dynamic secretion rates. This
can imitate intermittent chemotherapy, where treatment is provided to a patient
between periods of recovery. This is a popular method of cancer treatment, allow-
ing the body to recuperate between the administrations. Results in this case may
be more representative of the plausible treatment protocols for patients.

With ovarian cancer affecting so many women each year, further research into the
possible treatments is essential. The continuation of drug development alongside
the presence of multidisciplinary tools will ideally help improve the poor current
prognosis, improving the lives of the current and future generations of ovarian

cancer patients.
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