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ORIGINAL ARTICLE

Artificial Intelligence-Led Whole Coronary Artery 
OCT Analysis; Validation and Identification of 
Drug Efficacy and Higher-Risk Plaques
Benn Jessney MB, BCh*; Xu Chen , PhD*; Sophie Gu, MB, BCh, PhD; Yuan Huang , PhD; Martin Goddard, MD;  
Adam Brown, MB, BCh, PhD; Daniel Obaid, MB, BCh, PhD; Michael Mahmoudi, MB, BCh, PhD; Hector M. Garcia Garcia , MD; 
Stephen P. Hoole , MD; Lorenz Räber , MD, PhD; Francesco Prati , MD; Carola-Bibiane Schönlieb , PhD;  
Michael Roberts , PhD†; Martin Bennett , MB, BCh, PhD†

BACKGROUND: Intracoronary optical coherence tomography (OCT) can identify changes following drug/device treatment and 
high-risk plaques, but analysis requires expert clinician or core laboratory interpretation, while artifacts and limited sampling 
markedly impair reproducibility. Assistive technologies such as artificial intelligence-based analysis may therefore aid both 
detailed OCT interpretation and patient management. We determined if artificial intelligence-based OCT analysis (AutoOCT) 
can rapidly process, optimize, and analyze OCT images, and identify plaque composition changes that predict drug success/
failure and high-risk plaques.

METHODS: AutoOCT deep learning artificial intelligence modules were designed to correct segmentation errors from poor-
quality or artifact-containing OCT images, identify tissue/plaque composition, classify plaque types, measure multiple 
parameters including lumen area, lipid and calcium arcs, and fibrous cap thickness, and output segmented images and 
clinically useful parameters. Model development used 36 212 frames (127 whole pullbacks, 106 patients). Internal validation 
of tissue and plaque classification and measurements used ex vivo OCT pullbacks from autopsy arteries, while external 
validation for plaque stabilization and identifying high-risk plaques used core laboratory analysis of IBIS-4 (Integrated 
Biomarkers and Imaging Study-4) high-intensity statin (83 patients) and CLIMA (Relationship Between Coronary Plaque 
Morphology of Left Anterior Descending Artery and Long-Term Clinical Outcome Study; 62 patients) studies, respectively.

RESULTS: AutoOCT recovered images containing common artifacts with measurements and tissue and plaque classification 
accuracy of 83% versus histology, equivalent to expert clinician readers. AutoOCT replicated core laboratory plaque 
composition changes after high-intensity statin, including reduced lesion lipid arc (13.3° versus 12.5°) and increased 
minimum fibrous cap thickness (18.9 µm versus 24.4 µm). AutoOCT also identified high-risk plaque features leading to 
patient events including minimal lumen area <3.5 mm2, Lipid arc >180°, and fibrous cap thickness <75 µm, similar to the 
CLIMA core laboratory.

CONCLUSIONS: AutoOCT-based analysis of whole coronary artery OCT identifies tissue and plaque types and measures 
features correlating with plaque stabilization and high-risk plaques. Artificial intelligence-based OCT analysis may augment 
clinician or core laboratory analysis of intracoronary OCT images for trials of drug/device efficacy and identifying high-risk 
lesions.

GRAPHICAL ABSTRACT: A graphical abstract is available for this article.
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Intracoronary optical coherence tomography (OCT) can 
identify high-risk plaques and is a widely used sur-
rogate efficacy marker for drug/device studies. For 

example, fibrous cap thickness (FCT) <75 µm, minimum 
lumen area <3.5mm2, lipid arc >180°, and presence of 
macrophages, calcific nodules, neovascularization, and 
cholesterol crystals1–6 are associated with major adverse 
coronary events (MACE). Many of these features change 
with drug/device therapy, including drugs that reduce 
patient events with minimal changes in plaque volume,7–13 
suggesting plaque stabilization.

However, real-world OCT pullbacks are rich data sets 
containing hundreds of images and tens-of-thousands of 
candidate measurements/artery. Consequently, detailed 
OCT analysis for clinical trials currently requires time-
consuming offline manual frame selection and mea-
surement in specialized core laboratories. Furthermore, 
inter- and intraobserver variability for particular tissues, 
measurements, and plaque types is suboptimal,14–16 

and even between core laboratories.17 Such variabil-
ity may contribute to the low event rates observed for 
high-risk OCT features (<3% individually and 3.7% 
in combination5) with positive predictive values of only 
20% to 30%,18–20 and limit the ability of OCT to identify 
high-risk plaques in real-time. A fully automated, time-
efficient OCT analysis system could improve OCT repro-
ducibility, and several systems have been described.21–26 
However, many systems are still limited by the high fre-
quency of artifacts and the similarity of artifact to dis-
ease,27 and their validation, generalizability, and accuracy 
on whole OCT pullbacks in real-world clinical scenarios 
are unclear.28 For example, many models used small or 
highly selected training data sets (eg, excluding frames 
containing stents or artifacts) and frequently lack either 
histopathologic validation or external validation against 
core laboratories using large-scale clinical trial data to 
substantiate model performance.

We designed and tested artificial intelligence-based 
OCT analysis (AutoOCT), a deep learning artificial intel-
ligence (AI)-based intracoronary OCT analysis system 
to overcome these limitations and provide rapid, fully 
automatic, user-independent plaque characterization and 
measurements. AutoOCT could be a very valuable tool 
for trials of antiatherosclerosis drugs and identification 
of higher-risk plaques.

METHODS
Study Population
Because of the sensitive nature of the data collected, data 
access requests from qualified researchers trained in human 
subject confidentiality protocols may be sent to the senior author. 
The postmortem study was approved by the Cambridgeshire 3 

CLINICAL PERSPECTIVE
Detailed optical coherence tomography (OCT) analy-
sis requires time-consuming manual frame selection 
and measurement in specialized core laboratories 
and is limited by individual interpretation. Automated 
machine learning-based OCT analysis shows promise 
but can have methodological, data set, and reporting 
deficiencies, and many models are not sufficiently 
robust for clinical application. We designed and 
validated a modular artificial intelligence-based OCT 
analysis that automatically identifies plaque compo-
sition and risk. Unbiased automatic measurement of 
intracoronary OCT images was feasible, and could 
provide rapid, user-independent plaque character-
ization and measurements, including identification 
of higher-risk plaque types and changes in plaque 
structure associated with stabilization and reduced 
patient events, with a plaque classification accuracy 
of 83% versus histology, equivalent to expert clinician 
readers. Specifically, artificial intelligence-based OCT 
analysis replicated plaque composition changes after 
statin use, including reduced lipid arc and increased 
fibrous cap thicknessmin, and could identify high-risk 
plaque features leading to major adverse cardiovas-
cular events including minimal lumen area <3.5 mm2, 
Lipid arc >180°, and fibrous cap thickness <75 µm, 
similar to a core laboratory. Although prospective stud-
ies are required, artificial intelligence-based assistive 
technology may be used for rapid and comprehensive 
assessment of patients before percutaneous revascu-
larization or identification of drugs or devices that are 
likely to be successful in Phase 3 trials. This technol-
ogy may allow reliable prognostic stratification that 
would improve management of patients with coronary 
artery disease, for example, by adopting preventive 
strategies and approaches aimed at early diagnosis 
and treatment of high-risk atherosclerosis.

Nonstandard Abbreviations and Acronyms

AI	 artificial intelligence
AutoOCT	� artificial intelligence-based OCT 

analysis
CLIMA	� Relationship Between Coronary Plaque 

Morphology of Left Anterior Descending 
Artery and Long-Term Clinical Outcome 
Study

DICOM 	� Digital Imaging and Communications in 
Medicine

FCT	 fibrous cap thickness
IBIS-4	� Integrated Biomarkers and Imaging 

Study-4
ICC	 intraclass correlation coefficient
MACE	 major adverse cardiovascular events
OCT	 optical coherence tomography
TCFA	 thin cap fibroatheroma
ThCFA	 thick cap fibroatheroma
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Research Ethics Committee (07/H0306/123) and all relatives 
provided informed consent. The IBIS-4 (Integrated Biomarkers 
and Imaging Study-4) and CLIMA (Relationship Between 
Coronary Plaque Morphology of Left Anterior Descending 
Artery and Long-Term Clinical Outcome Study) studies were 
approved by the institutional review boards of all participating 
centers and all patients provided written informed consent.

To develop AutoOCT, we annotated 36 212 OCT frames from 
127 complete OCT pullbacks from 106 unselected patients 
with coronary artery disease from 3 UK cardiothoracic centers. 
All patients provided informed consent, and all pullbacks were 
included for analysis with no exclusion criteria. Internal histo-
pathologic validation used a coregistered OCT/histology data 
set from 13 postmortem patients with written consent from rela-
tives.29 External validation used all 83 patients from the Integrated 
Biomarker Imaging Study-4 OCT arm (IBIS-4, REGISTRATION: 
URL: https://www.clinicaltrials.gov; Unique identifier: 
NCT00962416)7 and 31 MACE and 31 control patients from the 
CLIMA study (NCT02883088).5 All pullbacks were acquired with 
frequency-domain C7-XR or OPTIS systems (Abbott Vascular, 
Santa Clara, CA) using a nonocclusive technique.

Deep Learning Model Development and 
Training
AutoOCT was developed in Python (3.8) with training facilitated 
using the Cambridge University high performance computing 
cluster. Segmentation masks for different artery structures and 
plaque components were extracted using a DeepLabv3+ con-
volutional neural network architecture. The model was trained 
with annotated frames in axial cross-sections after grayscale 
conversion, with a (512, 512) spatial size. Data were split at a 
patient level ensuring that OCT images could not be utilized in 
both testing and validation, and consecutive frames could not 
be used in both training and validation sets. Data were randomly 
divided into training, testing and validation sets in a 14:1:1 
patient-level ratio, respectively, strictly avoiding data repetition. 
Hybrid Dice (similarity between 2 segmentations, ranging from 
0 to 1, where 1 indicates 2 segmentations are identical, and 
0 indicating no overlap) and cross entropy loss were utilized 
for training with adaptive moment estimation as the optimizer. 
A custom-designed data loader was used to overcome class 
imbalances and data preprocessed and optimized to remove 
artifacts before use in training. Extensive ablation studies with 
the validation data set (n=10 pullbacks, 10 patients) aided 
best model architecture selection. For plaque classification, 
an additional AI-based module utilizing an EfficientNet archi-
tecture was developed from 14 028 IBIS-4 OCT frames (83 
patients) and divided with a patient-level stratification into train-
ing (7904 frames, 52 patients), validation (2878 frames, 14 
patients), and testing (3246 frames, 17 patients) sets. Images 
were converted to polar orientation around the lumen center 
and resized to a spatial resolution of (512, 512) before training 
with a comprehensive augmentation pipeline to enhance model 
generalization, including random horizontal rolling, flips, color 
jittering, and grayscale conversion. For classification, we uti-
lized a 2-step system first categorizing vessel segments as: (1) 
low risk (normal vessel, adaptive intimal thickening, pathologi-
cal intimal thickening), or (2) higher-risk (fibrocalcific plaque, 
thick cap fibroatheroma [ThCFA], and thin cap fibroatheroma 
[TCFA]), with more detailed classification of higher-risk plaques 

based on measurement of plaque components (eg, FCTmin). The 
adaptive moment estimation optimizer was used for training, a 
learning rate-scheduler to mitigate over-fitting, and a custom 
imbalanced data set sampler to address class imbalance.

Data Annotation and Plaque Definitions
OCT pullbacks were exported in DICOM (Digital Imaging 
and Communications in Medicine) format for offline analysis. 
Manual segmentation of frames was performed using the 
Medical Imaging Interaction Toolkit (v2021.10) software. All 
ground-truth annotation was performed in axial cross-sections 
by an experienced intravascular imaging specialist following 
accepted plaque definitions.6 All frames were labeled, regard-
less of classification, data quality, or presence of imaging arti-
facts, but excluding frames within guide catheters or stents 
which were noted using binary labels. Lumen contours, and the 
external elastic lamina were defined, with structures in-between 
classified as guidewire shadow, bifurcations, or as plaque com-
ponents. Normal vessel and fibrous tissue were annotated as 
1 structure, but each plaque component was annotated sepa-
rately. AutoOCT definitions of different plaque morphologies 
are described in the Supplemental Material.

Measurements and Statistical Analysis
Continuous variables are summarized as median (interquartile 
range) or were stated as mean±SD and categorical variables 
as counts (percentage). Agreement between measurements 
(manual or AutoOCT) or with histology measurements was 
compared using intraclass correlation coefficients (ICCs) for 
absolute agreement and Bland-Altman plots comparing mean 
against difference in measurements. Plaque classification 
accuracy was assessed by diagnostic performance with Wald-
type asymptotic tests of noninferiority. P values were reported 
for exploratory purposes for model performance against clinical 
studies, without any claims of significance. Paired Student t-, 
Wilcoxon signed-rank-, and χ2 tests were applied when appro-
priate. Two-sided P values are reported throughout adopting 
0.05 as the significance threshold, excepting Wald-type asymp-
totic tests of noninferiority30 with continuity correction for sam-
ple size for which 0.025 was adopted. The noninferiority margin 
was set at 0.1. Analyses were performed using SPSS 28.0.0 
(SPSS, Inc, IBM Computing).

To ensure robustness and reproducibility of the meth-
ods described, AutoOCT and this article were scored against 
the Checklist for Artificial Intelligence in Medical Imaging31 
and the Consensus-based Recommendations for Machine-
learning-based Science32 checklists. Both are provided in the 
Supplemental Material.

RESULTS
Study Population Characteristics
Overall, 366 pullbacks from 297 patients were analyzed, 
representing 58 840 OCT frames. Separate data sets 
were used for training (106 patients, 127 whole pull-
backs, 36 212 frames from unselected patients from 3 
UK centers), histopathologic validation (13 patients, 24 
whole pullbacks, 6480 frames), and external validation 
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(145 patients, 236 pullbacks, 16 148 frames) from 
IBIS-4 (83 patients) and CLIMA (62 patients) studies 
(Figure 1). Autopsy donors were aged 47 to 85 years, 
71.4% male, and died from cardiovascular or noncar-
diovascular causes (Table S1). Full IBIS-4 and CLIMA 
patient characteristics are described in their respective 
publications.5,7

Model Performance
AutoOCT was designed with sequential modules to 
detect the guide catheter or stents, segment artery or 
imaging components (lumen, external elastic lamina, 
guidewire shadow), correct the effect of common arti-
facts on the underlying vessel wall, and then segment 
and measure individual plaque components (Figure 2A). 
AutoOCT performed very well on testing data for whole 
pullback artery and imaging components (Dice: Lumen 
0.99, external elastic lamina 0.99, Guidewire shadow 
0.96), and both guide catheter and stents (Table S2), 
indicating that segmentation and recognition of these 
components closely replicated ground truth. A novel opti-
mization technique based on histogram matching (Fig-
ure 2B and Supplemental Material) was used to remove 
the effects of artifacts on the underlying vessel wall 

and improve segmentation accuracy in complex plaque 
morphologies such as rupture (Figure 3). Good perfor-
mance (Dice 0.8 or above) was subsequently achieved 
for whole-pullback plaque composition on testing data 
(Dice: Lipid 0.84, Calcium 0.85, Fibrous cap 0.80; Table 
S2) and measurements correlated excellently (ICCa 0.7 
or above) with ground-truth (lipid arc ICCa, 0.94 [95% 
CI, 0.91–0.97], calcium arc 0.88 [95% CI, 0.79–0.95]). 
Consistency of plaque classification performance was 
undertaken, checking between the internal validation, 
internal testing, and external holdout cohorts33 to identify 
drift in model predictions and optimal operating points 
(Figure S1). AutoOCT analysis of a full pullback compris-
ing 271 to 540 axial frames of 512×512 pixels took 
≈180 to 300s.

AutoOCT Validation Against Histopathology and 
Expert Reader
AutoOCT was next validated using ex vivo OCT pullbacks 
obtained under physiological pressures with matched 
histopathology.29 128 unique OCT frames were co-
registered with corresponding histological sections and 
lesions classified histologically by an expert cardiovas-
cular pathologist (M.G.) as normal vessel (n=3, 2.3%), 

Figure 1. Study structure: training, internal, and external validation.
Artificial intelligence-based OCT analysis (AutoOCT) was trained with annotated optical coherence tomography (OCT) frames from 127 
complete pullbacks from unselected patients from 3 UK cardiothoracic centers. The model was tested on a holdout group of 2534 frames, and 
AutoOCT performance internally validated on OCT frames from ex vivo OCT pullbacks co-registered with histology from postmortem arteries. 
AutoOCT performance was externally validated by comparison with findings from 2 large clinical trials, the IBIS-4 (Integrated Biomarker 
Imaging Study-4) trial that examined 13 m treatment with high dose rosuvastatin, and the CLIMA (Relationship Between Coronary Plaque 
Morphology of Left Anterior Descending Artery and Long Term Clinical Outcome Study) study that identified higher-risk plaque features leading 
to major adverse cardiovascular events (MACE).
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adaptive intimal thickening (n=19, 14.8%), pathologi-
cal intimal thickening (n=29, 22.7%), fibrocalcific (n=8, 
6.3%), and fibroatheroma (n=69, 53.9%). 22 (17.2%) 
fibroatheromas were TCFA (FCT<75 µm, median FCT 

58.3 µm [50.0–65.8]) and 47 were ThCFA (median FCT 
113.3 µm [85.0–140.0]).

We compared plaque component measurements from 
AutoOCT with histology and an expert interventional 

Figure 2. Deep learning model outline and artifact correction.
A, Input axial optical coherence tomography (OCT) frames were preprocessed before undergoing parallel processing. Catheter and stent 
locations were first classified with frame locations outputted. Plaque components were then segmented in either polar transform or Cartesian 
images. B, Before plaque component segmentation, images underwent correction of the effects of artifacts on the vessel wall using masking, 
polar transform, histogram matching, and retransform. Measurements were made of segmented plaque components with outputted data 
comprising clinically useful measurements and reconstructed, labeled OCT-images.
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cardiologist reader (SH), focusing on higher-risk lesions 
(Table 1). Overall AutoOCT measurements showed excel-
lent correlation with expert reader (ICCa, 0.86 [95% CI, 
0.84–0.88]; P<0.001). AutoOCT-derived measurements 
were generally similar to histology, and particularly for 
lipid arc (181.8° (122.9–248.7) versus 156.9° (118.4–
222.8), P=0.945) and in AutoOCT-defined TCFA (Mini-
mum FCT [FCTmin] 48.0 µm [40.0–60.3] versus 58.3 µm 
[50.0–65.8], P=0.674; Table 1; Figure 4). Expert-defined 
FCTmin was slightly higher than histology in ThCFAs 
(145.0 [99.0–233.0] versus 113.3 [85.0–140.0]) but 
not in TCFAs (50.0 [32.3–52.5] versus 58.3 [50.0–
65.8]), and for combined TCFAs and ThCFAs. FCTmin 
was similar for AutoOCT versus histology: P=0.451, 
expert versus histology: P=0.417, or AutoOCT versus 
expert: P=0.757). AutoOCT was able to identify histo-
logically defined lower- (normal vessel, adaptive intimal 
thickening, pathological intimal thickening) or higher-risk 
(Fibrocalcific, ThCFA, TCFA) plaque-types with a similar 

accuracy to an expert OCT reader (83% versus 84%). 
Refining higher-risk plaque classification using plaque 
component measurements (Supplemental Material), 
demonstrated overall diagnostic accuracy of AutoOCT of 
70% to 91% for different lesions, and 78.1% for TCFA, 
and noninferior to an expert OCT reader (P<0.025 for all 
plaque-types; Table 2).

AutoOCT External Validation Against Core 
Laboratory: Drug Efficacy
Although AutoOCT performed well on selected images 
matched with histology, AI-based OCT studies in clini-
cally relevant scenarios and real trial data are limited. We 
therefore undertook external validation against external 
core laboratories using frame-based comparison from 
2 clinical trials. The IBIS-4 OCT substudy showed that 
13 m of high-intensity statin treatment increased FCTmin, 
reduced lipid arc, and 5.8% of lesions and 69.2% TCFA 

Figure 3. Plaque segmentation before and after artifact correction.
Examples of plaque segmentation in frames containing optical coherence tomography (OCT) artifacts. From left to right, the raw OCT image, 
ground truth/manual annotations, artificial intelligence-based OCT analysis (AutoOCT) raw prediction before optimization, and final prediction 
after optimization are shown, respectively. (1) Gas bubble artifact; (2) Macrophage dots causing signal drop-out; (3) Plaque rupture with 
resulting signal drop-out. Arrows denote artifacts, outlined areas denote segmentation errors.
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regressed to more stable plaque phenotypes. Of all 83 
patients (153 arteries), 27 patients (31 arteries) had 
ThCFA or TCFA at both time points. AutoOCT lipid arc 
measurements demonstrated good correlation with core 
laboratory measurements (ICCa, 0.75 [95% CI, 0.68–
0.80]; P<0.001) with clinically acceptable average differ-
ences 18.3±58.8° (P<0.001) and 93.6% (1140/1218) 
measurements within 95% CI (Figure 4A). AutoOCT 
FCTmin also correlated well with core laboratory measure-
ments (ICCa, 0.66 [95% CI, 0.62–0.70]; P<0.001), with 
a nonsignificant and subpixel-level average difference 
(3.1±94.6 µm [P=0.241]), and 93.7% (1297/1384) 
measurements within 95% CI (Figure 4B). Both whole-
vessel AutoOCT FCTmin and lipid arc showed a similar 

increase or decrease respectively to core laboratory 
analysis (FCT 62.9±28.4 µm to 81.8±33.4 µm, P<0.001 
versus 64.88±19.89 µm to 87.88±38.08 µm, P=0.008; 
lipid arc 63.1±21.7° to 49.8±20.3°, P<0.001 versus 
55.94±31.04° to 43.46±3.48°, P=0.013; Figure 5C and 
5D; Table S3).

IBIS-4 also reported changes in plaque types with 
drug treatment, so we compared AutoOCT-based clas-
sification against core laboratory definitions. Changes 
in AutoOCT lesion mean FCTmin was similar to the core 
laboratory (76.7±36.1 µm to 83.0±35.3 µm versus 
74.0±32.3 µm to 94.2±39.9 µm), mostly driven by TCFA 
(Figure 5E). AutoOCT increased FCTmin occurred in 
82.0% TCFA (92.3% by core laboratory) compared with 

Table 1.  Histological, AutoOCT, and Expert Reader OCT Features for Each Plaque Subtype

Histological classification

ThCFA (n=47) TCFA (n=22) Fibrocalcific (n=8)

Histology

 � Lumen area, mm2 3.89 (2.47–6.65) 4.09 (1.97–5.64) 4.17 (3.20–4.76)

 � Min lumen diam, mm 1.77 (1.43–2.40) 1.85 (1.07–2.07) 1.83 (1.52–2.14)

  Max lumen diam 2.69 (2.37–3.59) 2.76 (2.26–3.26) 2.73 (2.52–3.05)

 � Lipid arc, ° 140.7 (109.6–165.6) 156.9 (118.4–222.8) n/a

 � FCTmin, μm 113.3 (85.0–140.0) 58.3 (50.0–65.8) n/a

 � Calcium arc, ° 34.5 (33.1–101.3) 97.3 (87.1–112.6) 41.0 (34.0–90.3)

AutoOCT

 � Lumen area, (mm2) 4.42 (2.98–6.62)
P=0.648

4.25 (2.98–5.73)
P=0.383

4.85 (3.39–5.09)
P=0.078

  Min lumen diam, mm 2.01 (1.54–2.51)
P=0.325

1.85 (1.67–2.25)
P=0.742

2.16 (1.89–2.24)
P=0.078

  Max lumen diam 2.83 (2.31–3.57)
P=0.676

2.83 (2.21–3.36)
P=0.109

2.79 (2.26–2.98)
P=0.232

 � Lipid arc, ° 143.4 (111. 0–204.2)
P=0.290

181.8 (122.9–248.7)
P=0.945

n/a

 � FCTmin, μm 145.0 (99.0–233.0)
P=0.0002

48.0 (40.0–60.3)
P=0.674

n/a

 � Calcium arc, ° 45.6 (40.4–71.8)
P=1.000

52.1 (45.050–66.6)
P=0.250

55.6 (46.9–87.5)
P=0.938

Expert OCT reader

 � Lumen area, mm2 4.41 (3.05–7.48) 
P=0.394

3.24 (2.39–4.47)
P=0.0313

4.85 (3.46–5.28)
P=0.0547

  Min lumen diam, mm 2.11 (1.63–2.56) 
P=0.181

1.67 (1.28–1.88)
P=0.297

2.26 (2.03–2.43)
P=0.0234

  Max lumen diam 2.85 (2.31–3.60) 
P=0.966

2.66 (2.23, 2.91)
P=0.469

2.56 (2.20–2.89)
P=0.0781

 � Lipid arc, ° 226.1 (176.2–303.0) 
P<0.0001

304.5 (258.9–360.0)
P=0.0156

n/a

 � FCTmin, μm 118.2 (65.2–208.0) 
P=0.203

50.0 (32.3–52.5)
P=0.469

n/a

 � Calcium arc, ° 98.7 (49.1–157.2 
P=0.500

66.7 (61.1–72.2)
P=1.000

149.8 (55.0–151.8)
P=0.0625

Data presented are median (interquartile range), Wilcoxon signed-rank test P value against histology for histology-
defined ThCFA and fibrocalclific lesions and against histology for AutoOCT and histology-defined TCFA (n=8) and expert 
and histology-defined TCFA (n=7), respectively. AutoOCT indicates artificial intelligence-based OCT analysis; FCT, fibrous 
cap thickness; n/a, not applicable; OCT, optical coherence tomography; TCFA, thin cap fibroatheroma; and ThCFA, thick 
cap fibroatheroma.
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58.3% of ThCFA (52.2% by core laboratory; Figure 5F), 
suggesting that high-intensity statin treatment increases 
FCTmin mostly in TCFA.

AutoOCT External Validation Against Core 
Laboratory: High-Risk Plaque Features
The CLIMA study5 of untreated proximal left anterior 
descending arteries showed that minimum lumen area 
<3.5 mm2, FCT <75 µm, and lipid arc >180° on OCT were 
associated with 1-year MACE (composite end point of 
cardiac death and target segment myocardial infarction. 
We studied 62 participants (31 MACE and 31 controls), 
with similar patient and lesion features (Supplemental 
Material, Table S4). AutoOCT showed that more MACE 
patients had minimum lumen area <3.5 mm2 (38.7% ver-
sus 19.4%; P<0.001), FCT <75 µm (29.0% versus 12.9%; 
P<0.001), and maximum lipid arc >180° (54.8% versus 
41.9%; P<0.001), similar to core laboratory analysis of our 
subset (Table S5). Although the sensitivity and specificity 
of different OCT criteria to predict MACE varied, AutoOCT 
and core laboratory positive predictive value, negative 
predictive value, and diagnostic accuracy of each vari-
able were similar (Figure 6 and Table S6), suggesting that 
AutoOCT can identify features of plaque vulnerability.

DISCUSSION
We designed and tested a modular deep learning AI-
based image analysis system for intracoronary OCT, 
including correction of segmentation errors induced by 
common artifacts and both internal and external valida-
tion to detect and measure multiple markers of disease 
progression/regression and higher-risk plaques. Impor-
tantly, AutoOCT was trained using whole pullbacks from 
unselected patients, representative of real-world clinical 
practice, and not only perfect, artifact-free images with 
classical architecture features and known measurements. 
Our key findings are (1) AutoOCT could recover images 
containing common artifacts; (2) AutoOCT-derived plaque 
classification correlated well with histology; (3) AutoOCT-
derived identification and measurement of higher-risk 
features such as FCT and lipid arc were comparable to 
histopathology, correlated well with an expert reader, and 
accurately identified TCFA; (4) AutoOCT replicated core 
laboratory findings consistent with plaque stabilization 
after high-intensity statins and features of plaque vulner-
ability that predict MACE, including minimum lumen area 
<3.5 mm2, FCT <75 µm, and lipid arc >180°.

Despite reported success of deep-learning models for 
intracoronary OCT imaging, many models are trained and 

Figure 4. Artificial intelligence-based OCT analysis (AutoOCT) performance in high-risk lesions.
Left to right, Plaque components for higher-risk plaque-types measured on histology sections, coregistered optical coherence tomography 
(OCT) frames by AutoOCT, and expert OCT reader, and attention map output from the plaque classification system. Lipid and calcium arcs 
are labeled in yellow and blue respectively as degrees, and fibrous cap thickness (FCT) by red line in microns. TCFA indicates thin cap 
fibroatheroma; and ThCFA, thick cap fibroatheroma.
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tested with small, curated data sets with limited disease 
diversity and highly selected frames that exclude com-
mon artifacts from stents, poor image quality, thrombus, 
plaque rupture, dissection, and bifurcations that may not 
represent real-world algorithm performance.26 In con-
trast, AutoOCT was trained with whole unselected pull-
backs (average 285 frames/patient), which is crucial for 
generalizability and real-world application, and used pre-
processing to mitigate effects of artifacts, optimize poor-
quality images, and allow analysis of all available data. 
Many studies report identification of lumen or individual 
plaque components rather than the overall plaque phe-
notype through collating multiple features.26,28 In contrast, 
AutoOCT derives binary segmentations for tissues fol-
lowed by a measurement pipeline which combines labels, 
allowing multiple tissue types to be identified and mea-
sured to identify lower versus higher-risk plaques (adap-
tive intimal thickening and pathological intimal thickening 
versus TCFA, ThCFA, and fibrocalcific). Finally, many 
studies lack validation against histopathology, and most 
lack validation against core laboratory analyses of indi-
vidual frames. We used a well-curated database of real-
world clinical OCT pullbacks from 3 centers for training, 
a separate data set for internal validation, and externally 
validated AutoOCT against core laboratory analysis of 2 
large-scale landmark clinical trials. While improvements 
continue, the current algorithm replicated core laboratory 
performance.

Our study demonstrates that AI-based OCT analysis 
may aid drug and device development, and trial design 
and analysis for natural history studies. For example, 

increased FCT, reduced lipid arc, TCFA regression, and 
reduced ThCFA progression can represent a signature of 
a drug/device likely to reduce MACE. AutoOCT of coreg-
istered baseline and follow-up images showed accurate 
and reproducible vessel and frame-based analysis of 
these features, and gave similar results to the IBIS-4 
study core laboratory. AutoOCT may therefore allow fast, 
automated identification of features of drug efficacy 
and changes in plaque morphology in small numbers of 
patients over short time-frames.

Histopathology and multiple imaging studies have 
identified the substrate underlying many MACE.1,5,34–38 
However, studies to identify features predictive of MACE 
show a high prevalence of vulnerable plaque features 
but low positive predictive values18–20 and require large 
patient numbers often studied for 3 to 5 years. Further-
more, study analysis is labor-intensive, time-consuming, 
and requires expert interpretation. AutoOCT had a 
frame-level accuracy to detect TCFA of 78.1% ex vivo 
and FCT negative predictive value of >97% for MACE in 
vivo. While AutoOCT positive predictive value for MACE 
was low and similar to core laboratory analysis in vivo, 
AutoOCT positive predictive value for detecting TCFA ex 
vivo was 33.4%, representing noninferior performance 
compared with an expert-reader. While AI-based OCT 
analysis may not replace core laboratories, whole ves-
sel and frame-based analysis in minutes/pullback may 
greatly speed up the analysis process.

Limitations
Our study has some limitations. We used all frames for 
training, regardless of patient characteristics, image 
quality, presence of artifacts, or plaque phenotype. 
Having no exclusion criteria increases sensitivity, but 
reduces specificity to detect plaque components. In 
addition, all OCT data utilized was generated using 
Abbott systems and formal validation of our findings on 
other manufacturers’ images is ongoing. Importantly, 
our model was trained with data representative of real-
world clinical practice, and all data utilized has been 
provided by researchers undertaking independent 
studies or clinical work. In addition, all data was used 
to validate AutoOCT to avoid selection bias and create 
an OCT system trained and tested representative of 
real-world OCT data. We have also demonstrated gen-
eralizability on 3 independent data sets, and showed 
similar measurements to core laboratories, with metrics 
within the published variability for OCT analysis.15,16,39,40 
Second, our postmortem study examined frames from 
13 OCT pullbacks and findings should be validated in 
larger data sets; however, 128 OCT frames with 128 
ROI were coregistered with histology from the entire 
pullback rather than just specific plaque types, sug-
gesting a robust applicability to clinical OCT. In addi-
tion, the validation of OCT measurements against 

Table 2.  Accuracy of AutoOCT and Expert Reader Plaque 
Classification Compared With Histology

Histological classification

Low risk ThCFA TCFA Fibrocalcific

AutoOCT

 � Sensitivity, % 72.6 70.2 27.3 12.5

 � Specificity, % 88.3 70.4 88.7 96.7

 � PPV, % 80.4 57.9 33.4 20.1

 � NPV, % 83.0 80.3 85.4 94.3

 � Diagnostic 
accuracy, %

82.0 
(0.012)

70.3 
(0.001)

78.1 
(0.001)

91.4 (<0.001)

Expert OCT reader

 � Sensitivity, % 72.7 53.2 31.8 50.0

 � Specificity, % 87.8 72.8 84.0 91.7

 � PPV, % 76.9 53.2 29.2 28.6

 � NPV, % 85.2 72.9 85.6 96.5

 � Diagnostic 
accuracy, %

82.4 65.6 75.0 89.1

Wald-type asymptotic tests of noninferiority P values shown in brackets 
demonstrate noninferiority between AutoOCT and expert reader for each plaque-
type. Low risk defined as normal vessel, adaptive intimal thickening (AIT), or 
pathological intimal thickening (PIT). AutoOCT indicates artificial intelligence-
based OCT analysis; NPV, negative predictive value; PPV, positive predictive 
value; TCFA, thin cap fibroatheroma; and ThCFA, thick cap fibroatheroma
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histopathology is limited by very different resolutions, 
nonuniform shrinkage, and tissue destruction, par-
ticularly affecting measurements such as FCTmin of 
small structures, although every effort was made to 
mitigate modality differences through perfusion fixa-
tion of specimens. Coregistration between OCT and 
histology is also challenging, and small longitudinal 
mismatches may also influence correlations. However, 
an experienced imaging specialist (B.J.) performed all 

coregistration blinded to plaque classification. Similarly, 
our study utilized a single expert OCT reader and expert 
cardiovascular pathologist. However, all analysis was 
performed blinded and while other groups have utilized 
multiple readers or pathologists, even specialized core 
laboratories with multiple readers differ in opinion both 
internally and with other core laboratories.14–17 Third, 
although preprocessing can correct segmentations 
due to most imaging artifacts, it cannot restore some 

Figure 5. Artificial intelligence-based OCT analysis (AutoOCT) validation of drug effects against core laboratory. 
A and B, Bland-Altman plots of mean (x axis) and difference (y axis) with histograms of mean (top) and difference (right) for measurements of 
lipid arc (n=1218; A) and minimum fibrous cap thickness (FCT; n=1384; B). C and D, Example fibroatheroma lesions that show regression of 
thin cap fibroatheroma (TCFA; C) or progression of thick cap fibroatheroma (ThCFA; D) after statin therapy. Fibrous caps are outlined in red. E 
and F, Graphs for minimum FCT at baseline and follow-up for individual fibroatheromas (E) or mean FCT (F) for TCFA and ThCFA (n=31).
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artifacts that mimic TCFA including tangential signal 
dropout.27 However, we report similar positive predic-
tive value and overall diagnostic accuracy for TCFA 
compared with an expert reader. Fourthly, several anal-
ysis errors are due to technical limitations of OCT, such 
as light shielding in dense fibrocalcific plaque and simi-
larity between tissues. These issues may explain both 
differences between AutoOCT and expert analysis for 
lipid and FCT, but are shared by both human and AI-
based systems (Figure S2). Fifth, while the current ver-
sion of AutoOCT can identify stent location, length and 
size, at present the model is not trained to measure fea-
tures such as edge dissection and malposition. Finally, 
although our subset of CLIMA patients was similar 
to the entire cohort, the absolute prognostic value of 
each AutoOCT-defined parameter will require analysis 
of the whole 1003 patients over full follow-up. In addi-
tion, although both IBIS-4 and CLIMA are prospective 
studies comparing baseline imaging and outcomes, 
our analysis was retrospective and further prospective 
studies utilizing prespecified AutoOCT-defined higher-
risk features at baseline would be informative.

Conclusions
We developed and validated a highly generalizable 
deep learning AI-based model utilizing real-world clini-
cal data for automatic coronary OCT plaque charac-
terization. Our model utilized image preprocessing to 
correct segmentation errors and optimize poor-quality 
OCT images containing artifacts and may thus reduce 
subjectivity and increase reproducibility in image inter-
pretation. AutoOCT demonstrated the small changes 
in plaque composition seen with pharmacotherapy and 
identified features of plaque vulnerability, illustrating its 
potential in research and real-time plaque classifica-
tion and identification of higher-risk lesions to inform 
patient management.
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