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BACKGROUND: Intracoronary optical coherence tomography (OCT) can identify changes following drug/device treatment and
high-risk plaques, but analysis requires expert clinician or core laboratory interpretation, while artifacts and limited sampling
markedly impair reproducibility. Assistive technologies such as artificial intelligence-based analysis may therefore aid both
detailed OCT interpretation and patient management. We determined if artificial intelligence-based OCT analysis (AutoOCT)
can rapidly process, optimize, and analyze OCT images, and identify plaque composition changes that predict drug success/
failure and high-risk plaques.

METHODS: AutoOCT deep learning artificial intelligence modules were designed to correct segmentation errors from poor-
quality or artifact-containing OCT images, identify tissue/plaque composition, classify plaque types, measure multiple
parameters including lumen area, lipid and calcium arcs, and fibrous cap thickness, and output segmented images and
clinically useful parameters. Model development used 36 212 frames (127 whole pullbacks, 106 patients). Internal validation
of tissue and plaque classification and measurements used ex vivo OCT pullbacks from autopsy arteries, while external
validation for plaque stabilization and identifying high-risk plaques used core laboratory analysis of IBIS-4 (Integrated
Biomarkers and Imaging Study-4) high-intensity statin (83 patients) and CLIMA (Relationship Between Coronary Plaque
Morphology of Left Anterior Descending Artery and Long-Term Clinical Outcome Study; 62 patients) studies, respectively.

RESULTS: AutoOCT recovered images containing common artifacts with measurements and tissue and plaque classification
accuracy of 83% versus histology, equivalent to expert clinician readers. AutoOCT replicated core laboratory plaque
composition changes after high-intensity statin, including reduced lesion lipid arc (13.3° versus 12.5°) and increased
minimum fibrous cap thickness (189 um versus 24.4 um). AutoOCT also identified high-risk plaque features leading to
patient events including minimal lumen area <3.56 mm?, Lipid arc >180° and fibrous cap thickness <75 um, similar to the
CLIMA core laboratory.

CONCLUSIONS: AutoOCT-based analysis of whole coronary artery OCT identifies tissue and plaque types and measures
features correlating with plaque stabilization and high-risk plaques. Artificial intelligence-based OCT analysis may augment
clinician or core laboratory analysis of intracoronary OCT images for trials of drug/device efficacy and identifying high-risk
lesions.

GRAPHICAL ABSTRACT: A graphical abstract is available for this article.
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CLINICAL PERSPECTIVE

Detailed optical coherence tomography (OCT) analy-
sis requires time-consuming manual frame selection
and measurement in specialized core laboratories
and is limited by individual interpretation. Automated
machine learning-based OCT analysis shows promise
but can have methodological, data set, and reporting
deficiencies, and many models are not sufficiently
robust for clinical application. We designed and
validated a modular artificial intelligence-based OCT
analysis that automatically identifies plaque compo-
sition and risk. Unbiased automatic measurement of
intracoronary OCT images was feasible, and could
provide rapid, user-independent plaque character-
ization and measurements, including identification
of higher-risk plaque types and changes in plaque
structure associated with stabilization and reduced
patient events, with a plaque classification accuracy
of 83% versus histology, equivalent to expert clinician
readers. Specifically, artificial intelligence-based OCT
analysis replicated plaque composition changes after
statin use, including reduced lipid arc and increased
fibrous cap thickness . , and could identify high-risk
plague features leading to major adverse cardiovas-
cular events including minimal lumen area <3.5 mm?,
Lipid arc >180°, and fibrous cap thickness <75 pm,
similar to a core laboratory. Although prospective stud-
ies are required, artificial intelligence-based assistive
technology may be used for rapid and comprehensive
assessment of patients before percutaneous revascu-
larization or identification of drugs or devices that are
likely to be successful in Phase 3 trials. This technol-
ogy may allow reliable prognostic stratification that
would improve management of patients with coronary
artery disease, for example, by adopting preventive
strategies and approaches aimed at early diagnosis
and treatment of high-risk atherosclerosis.

identify high-risk plaques and is a widely used sur-

rogate efficacy marker for drug/device studies. For
example, fibrous cap thickness (FCT) <75 pm, minimum
lumen area <3.5mm?, lipid arc >180° and presence of
macrophages, calcific nodules, neovascularization, and
cholesterol crystals'~® are associated with major adverse
coronary events (MACE). Many of these features change
with drug/device therapy, including drugs that reduce
patient events with minimal changes in plaque volume,” "3
suggesting plaque stabilization.

However, real-world OCT pullbacks are rich data sets
containing hundreds of images and tens-of-thousands of
candidate measurements/artery. Consequently, detailed
OCT analysis for clinical trials currently requires time-
consuming offline manual frame selection and mea-
surement in specialized core laboratories. Furthermore,
inter- and intraobserver variability for particular tissues,
measurements, and plaque types is suboptimal,'*-'6

I ntracoronary optical coherence tomography (OCT) can
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Nonstandard Abbreviations and Acronyms

Al artificial intelligence

AutoOCT artificial intelligence-based OCT
analysis

CLIMA Relationship Between Coronary Plaque

Morphology of Left Anterior Descending
Artery and Long-Term Clinical Outcome

Study
DICOM Digital Imaging and Communications in
Medicine
FCT fibrous cap thickness
IBIS-4 Integrated Biomarkers and Imaging
Study-4
ICC intraclass correlation coefficient
MACE major adverse cardiovascular events
oCT optical coherence tomography
TCFA thin cap fibroatheroma
ThCFA thick cap fibroatheroma

and even between core laboratories.'” Such variabil-
ity may contribute to the low event rates observed for
high-risk OCT features (<8% individually and 3.7%
in combination®) with positive predictive values of only
20% to 30%,'®%° and limit the ability of OCT to identify
high-risk plaques in real-time. A fully automated, time-
efficient OCT analysis system could improve OCT repro-
ducibility, and several systems have been described.?'~2°
However, many systems are still limited by the high fre-
quency of artifacts and the similarity of artifact to dis-
ease,”” and their validation, generalizability, and accuracy
on whole OCT pullbacks in real-world clinical scenarios
are unclear® For example, many models used small or
highly selected training data sets (eg, excluding frames
containing stents or artifacts) and frequently lack either
histopathologic validation or external validation against
core laboratories using large-scale clinical trial data to
substantiate model performance.

We designed and tested artificial intelligence-based
OCT analysis (AutoOCT), a deep learning artificial intel-
ligence (Al)-based intracoronary OCT analysis system
to overcome these limitations and provide rapid, fully
automatic, user-independent plaque characterization and
measurements. AutoOCT could be a very valuable tool
for trials of antiatherosclerosis drugs and identification
of higher-risk plaques.

METHODS
Study Population

Because of the sensitive nature of the data collected, data
access requests from qualified researchers trained in human
subject confidentiality protocols may be sentto the senior author.
The postmortem study was approved by the Cambridgeshire 3
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Research Ethics Committee (07/H0306/123) and all relatives
provided informed consent. The IBIS-4 (Integrated Biomarkers
and Imaging Study-4) and CLIMA (Relationship Between
Coronary Plaque Morphology of Left Anterior Descending
Artery and Long-Term Clinical Outcome Study) studies were
approved by the institutional review boards of all participating
centers and all patients provided written informed consent.

To develop AutoOCT, we annotated 36212 OCT frames from
127 complete OCT pullbacks from 106 unselected patients
with coronary artery disease from 3 UK cardiothoracic centers.
All patients provided informed consent, and all pullbacks were
included for analysis with no exclusion criteria. Internal histo-
pathologic validation used a coregistered OCT/histology data
set from 13 postmortem patients with written consent from rela-
tives.2® External validation used all 83 patients from the Integrated
Biomarker Imaging Study-4 OCT arm (IBIS-4, REGISTRATION:
URL: https://www.clinicaltrials.gov; Unique identifier:
NCT00962416)” and 31 MACE and 31 control patients from the
CLIMA study (NCT02883088).° All pullbacks were acquired with
frequency-domain C7-XR or OPTIS systems (Abbott Vascular,
Santa Clara, CA) using a nonocclusive technique.

Deep Learning Model Development and
Training

AutoOCT was developed in Python (3.8) with training facilitated
using the Cambridge University high performance computing
cluster. Segmentation masks for different artery structures and
plaque components were extracted using a DeeplLabv3+ con-
volutional neural network architecture. The model was trained
with annotated frames in axial cross-sections after grayscale
conversion, with a (512, 5192) spatial size. Data were split at a
patient level ensuring that OCT images could not be utilized in
both testing and validation, and consecutive frames could not
be used in both training and validation sets. Data were randomly
divided into training, testing and validation sets in a 14:1:1
patient-level ratio, respectively, strictly avoiding data repetition.
Hybrid Dice (similarity between 2 segmentations, ranging from
0 to 1, where 1 indicates 2 segmentations are identical, and
0 indicating no overlap) and cross entropy loss were utilized
for training with adaptive moment estimation as the optimizer.
A custom-designed data loader was used to overcome class
imbalances and data preprocessed and optimized to remove
artifacts before use in training. Extensive ablation studies with
the validation data set (n=10 pullbacks, 10 patients) aided
best model architecture selection. For plaque classification,
an additional Al-based module utilizing an EfficientNet archi-
tecture was developed from 14028 IBIS-4 OCT frames (83
patients) and divided with a patient-level stratification into train-
ing (7904 frames, 52 patients), validation (2878 frames, 14
patients), and testing (3246 frames, 17 patients) sets. Images
were converted to polar orientation around the lumen center
and resized to a spatial resolution of (512, 512) before training
with a comprehensive augmentation pipeline to enhance model
generalization, including random horizontal rolling, flips, color
jittering, and grayscale conversion. For classification, we uti-
lized a 2-step system first categorizing vessel segments as: (1)
low risk (normal vessel, adaptive intimal thickening, pathologi-
cal intimal thickening), or (2) higher-risk (fibrocalcific plaque,
thick cap fibroatheroma [ThCFA], and thin cap fibroatheroma
[TCFA]), with more detailed classification of higher-risk plaques
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based on measurement of plaque components (eg, FCT_ ). The
adaptive moment estimation optimizer was used for training, a
learning rate-scheduler to mitigate over-fitting, and a custom
imbalanced data set sampler to address class imbalance.

Data Annotation and Plaque Definitions

OCT pullbacks were exported in DICOM (Digital Imaging
and Communications in Medicine) format for offline analysis.
Manual segmentation of frames was performed using the
Medical Imaging Interaction Toolkit (v2021.10) software. All
ground-truth annotation was performed in axial cross-sections
by an experienced intravascular imaging specialist following
accepted plaque definitions.® All frames were labeled, regard-
less of classification, data quality, or presence of imaging arti-
facts, but excluding frames within guide catheters or stents
which were noted using binary labels. Lumen contours, and the
external elastic lamina were defined, with structures in-between
classified as guidewire shadow, bifurcations, or as plaque com-
ponents. Normal vessel and fibrous tissue were annotated as
1 structure, but each plaque component was annotated sepa-
rately. AutoOCT definitions of different plaque morphologies
are described in the Supplemental Material.

Measurements and Statistical Analysis
Continuous variables are summarized as median (interquartile
range) or were stated as meantSD and categorical variables
as counts (percentage). Agreement between measurements
(manual or AutoOCT) or with histology measurements was
compared using intraclass correlation coefficients (ICCs) for
absolute agreement and Bland-Altman plots comparing mean
against difference in measurements. Plaque classification
accuracy was assessed by diagnostic performance with Wald-
type asymptotic tests of noninferiority. P values were reported
for exploratory purposes for model performance against clinical
studies, without any claims of significance. Paired Student #,
Wilcoxon signed-rank-, and y? tests were applied when appro-
priate. Two-sided P values are reported throughout adopting
0.05 as the significance threshold, excepting Wald-type asymp-
totic tests of noninferiority®® with continuity correction for sam-
ple size for which 0.025 was adopted. The noninferiority margin
was set at 0.1. Analyses were performed using SPSS 28.0.0
(SPSS, Inc, IBM Computing).

To ensure robustness and reproducibility of the meth-
ods described, AutoOCT and this article were scored against
the Checklist for Artificial Intelligence in Medical Imaging®'
and the Consensus-based Recommendations for Machine-
learning-based Science®? checklists. Both are provided in the
Supplemental Material.

RESULTS

Study Population Characteristics

Overall, 366 pullbacks from 297 patients were analyzed,
representing 58840 OCT frames. Separate data sets
were used for training (106 patients, 127 whole pull-
backs, 36212 frames from unselected patients from 3
UK centers), histopathologic validation (13 patients, 24
whole pullbacks, 6480 frames), and external validation
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(145 patients, 236 pullbacks, 16148 frames) from
IBIS-4 (83 patients) and CLIMA (62 patients) studies
(Figure 1). Autopsy donors were aged 47 to 85 years,
71.4% male, and died from cardiovascular or noncar-
diovascular causes (Table S1). Full IBIS-4 and CLIMA
patient characteristics are described in their respective
publications.®”

Model Performance

AutoOCT was designed with sequential modules to
detect the guide catheter or stents, segment artery or
imaging components (lumen, external elastic lamina,
guidewire shadow), correct the effect of common arti-
facts on the underlying vessel wall, and then segment
and measure individual plague components (Figure 2A).
AutoOCT performed very well on testing data for whole
pullback artery and imaging components (Dice: Lumen
0.99, external elastic lamina 0.99, Guidewire shadow
0.96), and both guide catheter and stents (Table S2),
indicating that segmentation and recognition of these
components closely replicated ground truth. A novel opti-
mization technique based on histogram matching (Fig-
ure 2B and Supplemental Material) was used to remove
the effects of artifacts on the underlying vessel wall

Al-Derived Analysis of Intracoronary OCT

and improve segmentation accuracy in complex plaque
morphologies such as rupture (Figure 3). Good perfor-
mance (Dice 0.8 or above) was subsequently achieved
for whole-pullback plaque composition on testing data
(Dice: Lipid 0.84, Calcium 0.85, Fibrous cap 0.80; Table
S2) and measurements correlated excellently (ICCa 0.7
or above) with ground-truth (lipid arc ICCa, 0.94 [95%
Cl, 0.91-0.97], calcium arc 0.88 [95% ClI, 0.79-0.95]).
Consistency of plaque classification performance was
undertaken, checking between the internal validation,
internal testing, and external holdout cohorts® to identify
drift in model predictions and optimal operating points
(Figure S1). AutoOCT analysis of a full pullback compris-
ing 271 to 540 axial frames of 512x512 pixels took
~180 to 300s.

AutoOCT Validation Against Histopathology and
Expert Reader

AutoOCT was next validated using ex vivo OCT pullbacks
obtained under physiological pressures with matched
histopathology.®® 128 unique OCT frames were co-
registered with corresponding histological sections and
lesions classified histologically by an expert cardiovas-
cular pathologist (M.G.) as normal vessel (=3, 2.3%),

Training

Internal

External

Annot

127 OCT pullbacks from 106
patients (3 UK Cardiothoracic
centres)

ation (n = 36,212)

Training data set (86%):
n=231,142
Al model training & tuning

!

Testing data (7%): n = 2,534
Evaluation metric: Dice
coefficient

!

24 OCT pullbacks from 13
post-mortem patients
(n = 6,480 frames)

236 OCT pullbacks from 145
patients from IBIS-4 & CLIMA
(n = 16,148 frames)

Co-registration with histology

(n=128)

OCT frames analysed by
expert clinical reader &

AutoOCT pathologist

A

Co-registered histology
sections analysed by
experienced cardiac

Drug Efficacy External
Validation metrics:
Change in plaque phenotype
Mean differences
ICCa

Model Internal Validation

. metrics:
Validation data (7%): n = 2, Mean differences
534 ICCa

High-risk Plaque Features
External Validation metrics:
Detection of known vulnerable

Each frame independently
analysed by core laboratory

Evaluation metric:

Dice coefficient
Sensitivity
Specificity

A

plaque metrics
Diagnostic performance

l 3
AutoOCT Model Ii

Internally Validated AutoOCT
Model

Externally Validated AutoOCT
Model

Figure 1. Study structure: training, internal, and external validation.

Artificial intelligence-based OCT analysis (AutoOCT) was trained with annotated optical coherence tomography (OCT) frames from 127
complete pullbacks from unselected patients from 3 UK cardiothoracic centers. The model was tested on a holdout group of 2534 frames, and
AutoOCT performance internally validated on OCT frames from ex vivo OCT pullbacks co-registered with histology from postmortem arteries.
AutoOCT performance was externally validated by comparison with findings from 2 large clinical trials, the IBIS-4 (Integrated Biomarker
Imaging Study-4) trial that examined 13 m treatment with high dose rosuvastatin, and the CLIMA (Relationship Between Coronary Plaque
Morphology of Left Anterior Descending Artery and Long Term Clinical Outcome Study) study that identified higher-risk plaque features leading

to major adverse cardiovascular events (MACE).
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Figure 2. Deep learning model outline and artifact correction.

A, Input axial optical coherence tomography (OCT) frames were preprocessed before undergoing parallel processing. Catheter and stent
locations were first classified with frame locations outputted. Plaque components were then segmented in either polar transform or Cartesian
images. B, Before plaque component segmentation, images underwent correction of the effects of artifacts on the vessel wall using masking,
polar transform, histogram matching, and retransform. Measurements were made of segmented plaque components with outputted data
comprising clinically useful measurements and reconstructed, labeled OCT-images.

adaptive intimal thickening (n=19, 14.8%), pathologi- 583 pm [50.0-65.8]) and 47 were ThCFA (median FCT
cal intimal thickening (n=29, 22.7%), fibrocalcific (n=8, 113.3 pm [85.0-140.0)).

6.3%), and fibroatheroma (n=69, 53.9%). 22 (17.2%) We compared plague component measurements from
fibroatheromas were TCFA (FCT<75 pm, median FCT ~ AutoOCT with histology and an expert interventional
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OCT Image Ground Truth

~N

Raw Prediction Final Prediction

[] Lumen

[ calcium [ Fibrous Cap  [] Lipid

[ Guidewire Shadow

-

Figure 3. Plaque segmentation before and after artifact correction.

Examples of plaque segmentation in frames containing optical coherence tomography (OCT) artifacts. From left to right, the raw OCT image,
ground truth/manual annotations, artificial intelligence-based OCT analysis (AutoOCT) raw prediction before optimization, and final prediction
after optimization are shown, respectively. (1) Gas bubble artifact; (2) Macrophage dots causing signal drop-out; (3) Plaque rupture with
resulting signal drop-out. Arrows denote artifacts, outlined areas denote segmentation errors.

cardiologist reader (SH), focusing on higher-risk lesions
(Table 1).Overall AutoOCT measurements showed excel-
lent correlation with expert reader (ICCa, 0.86 [95% C],
0.84-0.88]; ”<0.001). AutoOCT-derived measurements
were generally similar to histology, and particularly for
lipid arc (181.8° (122.9-248.7) versus 156.9° (118.4—
2292.8), P=0.945) and in AutoOCT-defined TCFA (Mini-
mum FCT [FCT ] 48.0 um [40.0-60.3] versus 58.3 pm
[60.0-65.8], P=0.674; Table 1; Figure 4). Expert-defined
FCT . was slightly higher than histology in ThCFAs
(145.0 [99.0-233.0] versus 113.3 [85.0—-140.0]) but
not in TCFAs (50.0 [32.3-52.5] versus 58.3 [60.0—
65.8]), and for combined TCFAs and ThCFAs. FCT
was similar for AutoOCT versus histology: P=0.451,
expert versus histology: A=0.417, or AutoOCT versus
expert: P=0.757). AutoOCT was able to identify histo-
logically defined lower- (normal vessel, adaptive intimal
thickening, pathological intimal thickening) or higher-risk
(Fibrocalcific, ThRCFA, TCFA) plaque-types with a similar

Circ Cardiovasc Imaging. 2025;18:e018133. DOI: 10.1161/CIRCIMAGING.125.018133

accuracy to an expert OCT reader (83% versus 84%).
Refining higher-risk plaque classification using plaque
component measurements (Supplemental Material),
demonstrated overall diagnostic accuracy of AutoOCT of
70% to 91% for different lesions, and 78.1% for TCFA,
and noninferior to an expert OCT reader (P<0.025 for all
plaque-types; Table 2).

AutoOCT External Validation Against Core
Laboratory: Drug Efficacy

Although AutoOCT performed well on selected images
matched with histology, Al-based OCT studies in clini-
cally relevant scenarios and real trial data are limited. We
therefore undertook external validation against external
core laboratories using frame-based comparison from
2 clinical trials. The IBIS-4 OCT substudy showed that
13 m of high-intensity statin treatment increased FCT__,
reduced lipid arc, and 5.8% of lesions and 69.2% TCFA
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Table 1. Histological, AutoOCT, and Expert Reader OCT Features for Each Plaque Subtype

Al-Derived Analysis of Intracoronary OCT

Histological classification

ThCFA (n=47)

TCFA (n=22)

Fibrocalcific (n=8)

Histology

Lumen area, mm?

3.89 (2.47-6.65)

4.09 (1.97-5.64)

4.17 (3.20-4.76)

Min lumen diam, mm

1.77 (1.43-2.40)

1.85 (1.07-2.07)

1.83 (1.52-2.14)

Max lumen diam

2.69 (2.37-3.59)

2.76 (2.26-3.26)

2.73 (2.52-3.05)

Lipid arc, °

140.7 (109.6-165.6)

156.9 (118.4-222.8)

n/a

FCT ., um

113.3 (85.0-140.0)

58.3 (50.0-65.8)

n/a

Calcium arc, °©

34.5 (33.1-101.3)

97.3 (87.1-112.6)

41.0 (34.0-90.3)

AutoOCT

Lumen area, (mm?)

4.42 (2.98-6.62)

4.25 (2.98-5.73)

4.85 (3.39-5.09)

=0.0002

P=0.674

P=0.648 =0.383 F=0.078

Min lumen diam, mm 2.01 (1.54-2.51) 1.85 (1.67-2.25) 2.16 (1.89-2.24)
P=0.325 P=0.742 F=0.078

Max lumen diam 2.83 (2.31-3.57) 2.83 (2.21-3.36) 2.79 (2.26-2.98)
P=0.676 F=0.109 F=0.232

Lipid arc, ° 143.4 (111.0-204.2) 181.8 (122.9-248.7) n/a
P=0.290 F=0.945

FCT ., um 145.0 (99.0-233.0) 48.0 (40.0-60.3) n/a

Calcium arc, °©

45.6 (40.4-71.8)
P=1.000

52.1 (45.050-66.6)
F=0.250

55.6 (46.9-87.5)
F=0.938

Expert OCT reader

Lumen area, mm?

4.41 (3.05-7.48)

3.24 (2.39-4.47)

4.85 (3.46-5.28)

P=0.394 F=0.0313 F=0.0547

Min lumen diam, mm 2.11 (1.63-2.56) 1.67 (1.28-1.88) 2.26 (2.03-2.43)
P=0.181 =0.297 P=0.0234

Max lumen diam 2.85 (2.31-3.60) 2.66 (2.23,2.91) 2.56 (2.20-2.89)
P=0.966 P=0.469 P=0.0781

Lipid arc, ° 226.1 (176.2-303.0) 304.5 (258.9-360.0) n/a
<0.0001 F=0.0156

FCT ., um 118.2 (65.2-208.0) 50.0 (32.3-52.5) n/a
P=0.203 F=0.469

Calcium arc, ° 98.7 (49.1-157.2 66.7 (61.1-72.2) 149.8 (55.0-151.8)
P=0.500 F=1.000 P=0.0625

Data presented are median (interquartile range), Wilcoxon signed-rank test P value against histology for histology-
defined ThCFA and fibrocalclific lesions and against histology for AutoOCT and histology-defined TCFA (n=8) and expert
and histology-defined TCFA (n=T7), respectively. AutoOCT indicates artificial intelligence-based OCT analysis; FCT, fibrous
cap thickness; n/a, not applicable; OCT, optical coherence tomography; TCFA, thin cap fibroatheroma; and ThCFA, thick

cap fibroatheroma.

regressed to more stable plaque phenotypes. Of all 83
patients (153 arteries), 27 patients (31 arteries) had
ThCFA or TCFA at both time points. AutoOCT lipid arc
measurements demonstrated good correlation with core
laboratory measurements (ICCa, 0.75 [95% Cl, 0.68-
0.80]; A<0.001) with clinically acceptable average differ-
ences 18.31£58.8° (A<0.001) and 93.6% (1140/1218)
measurements within 95% CI (Figure 4A). AutoOCT
FCT  also correlated well with core laboratory measure-
ments (ICCa, 0.66 [95% Cl, 0.62-0.70]; £<0.001), with
a nonsignificant and subpixel-level average difference
(8.1£94.6 pm [P=0.241]), and 93.7% (1297/1384)
measurements within 95% CI (Figure 4B). Both whole-
vessel AutoOCT FCT_  and lipid arc showed a similar

Circ Cardiovasc Imaging. 2025;18:¢018133. DOI: 10.1161/CIRCIMAGING.125.018133

increase or decrease respectively to core laboratory
analysis (FCT 62.9£28.4 um to 81.8£33.4 um, A<0.001
versus 64.88+19.89 pym to 87.88+38.08 ym, A=0.008;
lipid arc 63.11£21.7° to 49.8120.3°, A<0.001 versus
55.94+31.04° to 43.46+3.48° P=0.013; Figure 5C and
5D; Table S3).

IBIS-4 also reported changes in plaque types with
drug treatment, so we compared AutoOCT-based clas-
sification against core laboratory definitions. Changes
in AutoOCT lesion mean FCT_ was similar to the core
laboratory (76.7+£36.1 ym to 83.0+35.3 pm versus
74.0£32.3 pm to 94.2+39.9 pym), mostly driven by TCFA
(Figure 5E). AutoOCT increased FCT_  occurred in
82.0% TCFA (92.3% by core laboratory) compared with
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Figure 4. Artificial intelligence-based OCT analysis (AutoOCT) performance in high-risk lesions.

Left to right, Plaque components for higher-risk plaque-types measured on histology sections, coregistered optical coherence tomography
(OCT) frames by AutoOCT, and expert OCT reader, and attention map output from the plaque classification system. Lipid and calcium arcs
are labeled in yellow and blue respectively as degrees, and fibrous cap thickness (FCT) by red line in microns. TCFA indicates thin cap

fibroatheroma; and ThCFA, thick cap fibroatheroma.

58.3% of ThCFA (52.2% by core laboratory; Figure 5F),
suggesting that high-intensity statin treatment increases
FCT . mostly in TCFA.

AutoOCT External Validation Against Core
Laboratory: High-Risk Plaque Features

The CLIMA study® of untreated proximal left anterior
descending arteries showed that minimum lumen area
<35 mm? FCT <75 pm, and lipid arc >180° on OCT were
associated with 1-year MACE (composite end point of
cardiac death and target segment myocardial infarction.
We studied 62 participants (31 MACE and 31 controls),
with similar patient and lesion features (Supplemental
Material, Table S4). AutoOCT showed that more MACE
patients had minimum lumen area <3.5 mm? (38.7% ver-
sus 19.4%; A<0.001), FCT <75 pm (29.0% versus 12.9%;
P<0.001), and maximum lipid arc >180° (54.8% versus
41.9%; F<0.001), similar to core laboratory analysis of our
subset (Table Sb). Although the sensitivity and specificity
of different OCT criteria to predict MACE varied, AutoOCT
and core laboratory positive predictive value, negative
predictive value, and diagnostic accuracy of each vari-
able were similar (Figure 6 and Table S6), suggesting that
AutoOCT can identify features of plaque vulnerability.

Circ Cardiovasc Imaging. 2025;18:¢018133. DOI: 10.1161/CIRCIMAGING.125.018133

DISCUSSION

We designed and tested a modular deep learning Al-
based image analysis system for intracoronary OCT,
including correction of segmentation errors induced by
common artifacts and both internal and external valida-
tion to detect and measure multiple markers of disease
progression/regression and higher-risk plaques. Impor-
tantly, AutoOCT was trained using whole pullbacks from
unselected patients, representative of real-world clinical
practice, and not only perfect, artifact-free images with
classical architecture features and known measurements.
Our key findings are (1) AutoOCT could recover images
containing common artifacts; (2) AutoOCT-derived plaque
classification correlated well with histology; (3) AutoOCT-
derived identification and measurement of higher-risk
features such as FCT and lipid arc were comparable to
histopathology, correlated well with an expert reader, and
accurately identified TCFA; (4) AutoOCT replicated core
laboratory findings consistent with plaque stabilization
after high-intensity statins and features of plaque vulner-
ability that predict MACE, including minimum lumen area
<3.6 mm?, FCT <75 pm, and lipid arc >180°.

Despite reported success of deep-learning models for
intracoronary OCT imaging, many models are trained and
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Table 2. Accuracy of AutoOCT and Expert Reader Plaque
Classification Compared With Histology

Histological classification
Low risk ThCFA TCFA Fibrocalcific
AutoOCT
Sensitivity, % | 72.6 70.2 27.3 125
Specificity, % | 88.3 70.4 88.7 96.7
PPV, % 80.4 579 33.4 20.1
NPV, % 83.0 80.3 85.4 94.3
Diagnostic 82.0 70.3 78.1 91.4 (<0.001)
accuracy, % (0.012) (0.001) (0.001)
Expert OCT reader
Sensitivity, % | 72.7 53.2 31.8 50.0
Specificity, % | 87.8 72.8 84.0 91.7
PPV, % 76.9 53.2 29.2 28.6
NPV, % 85.2 72.9 85.6 96.5
Diagnostic 82.4 65.6 75.0 89.1
accuracy, %

Wald-type asymptotic tests of noninferiority P values shown in brackets
demonstrate noninferiority between AutoOCT and expert reader for each plaque-
type. Low risk defined as normal vessel, adaptive intimal thickening (AIT), or
pathological intimal thickening (PIT). AutoOCT indicates artificial intelligence-
based OCT analysis; NPV, negative predictive value; PPV, positive predictive
value; TCFA, thin cap fibroatheroma; and ThCFA, thick cap fibroatheroma

tested with small, curated data sets with limited disease
diversity and highly selected frames that exclude com-
mon artifacts from stents, poor image quality, thrombus,
plaque rupture, dissection, and bifurcations that may not
represent real-world algorithm performance.®® In con-
trast, AutoOCT was trained with whole unselected pull-
backs (average 285 frames/patient), which is crucial for
generalizability and real-world application, and used pre-
processing to mitigate effects of artifacts, optimize poor-
quality images, and allow analysis of all available data.
Many studies report identification of lumen or individual
plague components rather than the overall plaque phe-
notype through collating multiple features.?5?8 In contrast,
AutoOCT derives binary segmentations for tissues fol-
lowed by a measurement pipeline which combines labels,
allowing multiple tissue types to be identified and mea-
sured to identify lower versus higher-risk plaques (adap-
tive intimal thickening and pathological intimal thickening
versus TCFA, ThCFA, and fibrocalcific). Finally, many
studies lack validation against histopathology, and most
lack validation against core laboratory analyses of indi-
vidual frames. We used a well-curated database of real-
world clinical OCT pullbacks from 3 centers for training,
a separate data set for internal validation, and externally
validated AutoOCT against core laboratory analysis of 2
large-scale landmark clinical trials. While improvements
continue, the current algorithm replicated core laboratory
performance.

Our study demonstrates that Al-based OCT analysis
may aid drug and device development, and trial design
and analysis for natural history studies. For example,

Circ Cardiovasc Imaging. 2025;18:¢018133. DOI: 10.1161/CIRCIMAGING.125.018133
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increased FCT, reduced lipid arc, TCFA regression, and
reduced ThCFA progression can represent a signature of
a drug/device likely to reduce MACE. AutoOCT of coreg-
istered baseline and follow-up images showed accurate
and reproducible vessel and frame-based analysis of
these features, and gave similar results to the IBIS-4
study core laboratory. AutoOCT may therefore allow fast,
automated identification of features of drug efficacy
and changes in plague morphology in small numbers of
patients over short time-frames.

Histopathology and multiple imaging studies have
identified the substrate underlying many MACE."534-38
However, studies to identify features predictive of MACE
show a high prevalence of vulnerable plaque features
but low positive predictive values'®2° and require large
patient numbers often studied for 3 to 5 years. Further-
more, study analysis is labor-intensive, time-consuming,
and requires expert interpretation. AutoOCT had a
frame-level accuracy to detect TCFA of 78.1% ex vivo
and FCT negative predictive value of >97% for MACE in
vivo. While AutoOCT positive predictive value for MACE
was low and similar to core laboratory analysis in vivo,
AutoOCT positive predictive value for detecting TCFA ex
vivo was 33.4%, representing noninferior performance
compared with an expert-reader. While Al-based OCT
analysis may not replace core laboratories, whole ves-
sel and frame-based analysis in minutes/pullback may
greatly speed up the analysis process.

Limitations

Our study has some limitations. We used all frames for
training, regardless of patient characteristics, image
quality, presence of artifacts, or plaque phenotype.
Having no exclusion criteria increases sensitivity, but
reduces specificity to detect plaque components. In
addition, all OCT data utilized was generated using
Abbott systems and formal validation of our findings on
other manufacturers' images is ongoing. Importantly,
our model was trained with data representative of real-
world clinical practice, and all data utilized has been
provided by researchers undertaking independent
studies or clinical work. In addition, all data was used
to validate AutoOCT to avoid selection bias and create
an OCT system trained and tested representative of
real-world OCT data. We have also demonstrated gen-
eralizability on 3 independent data sets, and showed
similar measurements to core laboratories, with metrics
within the published variability for OCT analysis.'5163940
Second, our postmortem study examined frames from
13 OCT pullbacks and findings should be validated in
larger data sets; however, 128 OCT frames with 128
ROl were coregistered with histology from the entire
pullback rather than just specific plaque types, sug-
gesting a robust applicability to clinical OCT. In addi-
tion, the validation of OCT measurements against
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Figure 5. Artificial intelligence-based OCT analysis (AutoOCT) validation of drug effects against core laboratory.

A and B, Bland-Altman plots of mean (x axis) and difference (y axis) with histograms of mean (top) and difference (right) for measurements of
lipid arc (n=1218; A) and minimum fibrous cap thickness (FCT; n=1384; B). C and D, Example fibroatheroma lesions that show regression of
thin cap fibroatheroma (TCFA; C) or progression of thick cap fibroatheroma (ThCFA; D) after statin therapy. Fibrous caps are outlined in red. E
and F, Graphs for minimum FCT at baseline and follow-up for individual fibroatheromas (E) or mean FCT (F) for TCFA and ThCFA (n=31).

histopathology is limited by very different resolutions,
nonuniform shrinkage, and tissue destruction, par-
ticularly affecting measurements such as FCT_ of
small structures, although every effort was made to
mitigate modality differences through perfusion fixa-
tion of specimens. Coregistration between OCT and
histology is also challenging, and small longitudinal
mismatches may also influence correlations. However,
an experienced imaging specialist (B.J.) performed all

Circ Cardiovasc Imaging. 2025;18:¢018133. DOI: 10.1161/CIRCIMAGING.125.018133

coregistration blinded to plaque classification. Similarly,
our study utilized a single expert OCT reader and expert
cardiovascular pathologist. However, all analysis was
performed blinded and while other groups have utilized
multiple readers or pathologists, even specialized core
laboratories with multiple readers differ in opinion both
internally and with other core laboratories.'*'” Third,
although preprocessing can correct segmentations
due to most imaging artifacts, it cannot restore some
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Figure 6. Validation of artificial intelligence-based OCT analysis (AutoOCT) to detect higher-risk plaque features against core

laboratory.

Upper: Vulnerable plaque features determined by core laboratory (left) and AutoOCT (right). Lower: AutoOCT diagnostic performance for
each plaque characteristic compared with the core laboratory. FCT indicates fibrous cap thickness; MLA, minimum lumen area; NPV, negative

predictive value; and PPV, positive predictive value.

artifacts that mimic TCFA including tangential signal
dropout.?” However, we report similar positive predic-
tive value and overall diagnostic accuracy for TCFA
compared with an expert reader. Fourthly, several anal-
ysis errors are due to technical limitations of OCT, such
as light shielding in dense fibrocalcific plaque and simi-
larity between tissues. These issues may explain both
differences between AutoOCT and expert analysis for
lipid and FCT, but are shared by both human and Al-
based systems (Figure S2). Fifth, while the current ver-
sion of AutoOCT can identify stent location, length and
size, at present the model is not trained to measure fea-
tures such as edge dissection and malposition. Finally,
although our subset of CLIMA patients was similar
to the entire cohort, the absolute prognostic value of
each AutoOCT-defined parameter will require analysis
of the whole 1003 patients over full follow-up. In addi-
tion, although both IBIS-4 and CLIMA are prospective
studies comparing baseline imaging and outcomes,
our analysis was retrospective and further prospective
studies utilizing prespecified AutoOCT-defined higher-
risk features at baseline would be informative.

Circ Cardiovasc Imaging. 2025;18:¢018133. DOI: 10.1161/CIRCIMAGING.125.018133

Conclusions

We developed and validated a highly generalizable
deep learning Al-based model utilizing real-world clini-
cal data for automatic coronary OCT plaque charac-
terization. Our model utilized image preprocessing to
correct segmentation errors and optimize poor-quality
OCT images containing artifacts and may thus reduce
subjectivity and increase reproducibility in image inter-
pretation. AutoOCT demonstrated the small changes
in plaque composition seen with pharmacotherapy and
identified features of plaque vulnerability, illustrating its
potential in research and real-time plaque classifica-
tion and identification of higher-risk lesions to inform
patient management.
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