Journal article 798 views
Comparative Analysis and Fusion of Spatiotemporal Information for Footstep Recognition
Ruben Vera-Rodriguez,
John Mason,
Julian Fierrez,
Javier Ortega-Garcia
IEEE Transactions on Pattern Analysis and Machine Intelligence, Volume: 35, Issue: 4, Pages: 823 - 834
Swansea University Author: John Mason
Full text not available from this repository: check for access using links below.
DOI (Published version): 10.1109/tpami.2012.164
Abstract
Comparative Analysis and Fusion of Spatiotemporal Information for Footstep Recognition
Published in: | IEEE Transactions on Pattern Analysis and Machine Intelligence |
---|---|
ISSN: | 0162-8828 2160-9292 |
Published: |
2013
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa12735 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
first_indexed |
2013-07-23T12:08:39Z |
---|---|
last_indexed |
2018-02-09T04:43:07Z |
id |
cronfa12735 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2016-08-17T13:51:58.9032591</datestamp><bib-version>v2</bib-version><id>12735</id><entry>2013-09-03</entry><title>Comparative Analysis and Fusion of Spatiotemporal Information for Footstep Recognition</title><swanseaauthors><author><sid>284b34c63a5cbc71055047daf2ee1392</sid><firstname>John</firstname><surname>Mason</surname><name>John Mason</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2013-09-03</date><deptcode>EEN</deptcode><abstract></abstract><type>Journal Article</type><journal>IEEE Transactions on Pattern Analysis and Machine Intelligence</journal><volume>35</volume><journalNumber>4</journalNumber><paginationStart>823</paginationStart><paginationEnd>834</paginationEnd><publisher/><issnPrint>0162-8828</issnPrint><issnElectronic>2160-9292</issnElectronic><keywords/><publishedDay>31</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2013</publishedYear><publishedDate>2013-12-31</publishedDate><doi>10.1109/tpami.2012.164</doi><url/><notes>Footstep recognition is a relatively new biometric, which aims to discriminate persons using walking characteristics extracted from floor-based sensors. This paper reports for the first time a comparative assessment of the spatio-temporal information contained in the footstep signals for person recognition. Experiments are carried out on the largest footstep database collected to date, with almost 20,000 valid footstep signals and more than 120 persons. Results show very similar performance for both spatial and temporal approaches (5% to 15% EER depending on the experimental setup), and a significant improvement is achieved for their fusion (2.5% to 10% EER). The assessment protocol is focused on the influence of the quantity of data used in the reference models, which serves to simulate conditions of different potential applications such as smart homes or security access scenarios.</notes><college>COLLEGE NANME</college><department>Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>EEN</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2016-08-17T13:51:58.9032591</lastEdited><Created>2013-09-03T06:00:26.0000000</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Uncategorised</level></path><authors><author><firstname>Ruben</firstname><surname>Vera-Rodriguez</surname><order>1</order></author><author><firstname>John</firstname><surname>Mason</surname><order>2</order></author><author><firstname>Julian</firstname><surname>Fierrez</surname><order>3</order></author><author><firstname>Javier</firstname><surname>Ortega-Garcia</surname><order>4</order></author></authors><documents/><OutputDurs/></rfc1807> |
spelling |
2016-08-17T13:51:58.9032591 v2 12735 2013-09-03 Comparative Analysis and Fusion of Spatiotemporal Information for Footstep Recognition 284b34c63a5cbc71055047daf2ee1392 John Mason John Mason true false 2013-09-03 EEN Journal Article IEEE Transactions on Pattern Analysis and Machine Intelligence 35 4 823 834 0162-8828 2160-9292 31 12 2013 2013-12-31 10.1109/tpami.2012.164 Footstep recognition is a relatively new biometric, which aims to discriminate persons using walking characteristics extracted from floor-based sensors. This paper reports for the first time a comparative assessment of the spatio-temporal information contained in the footstep signals for person recognition. Experiments are carried out on the largest footstep database collected to date, with almost 20,000 valid footstep signals and more than 120 persons. Results show very similar performance for both spatial and temporal approaches (5% to 15% EER depending on the experimental setup), and a significant improvement is achieved for their fusion (2.5% to 10% EER). The assessment protocol is focused on the influence of the quantity of data used in the reference models, which serves to simulate conditions of different potential applications such as smart homes or security access scenarios. COLLEGE NANME Engineering COLLEGE CODE EEN Swansea University 2016-08-17T13:51:58.9032591 2013-09-03T06:00:26.0000000 Faculty of Science and Engineering School of Engineering and Applied Sciences - Uncategorised Ruben Vera-Rodriguez 1 John Mason 2 Julian Fierrez 3 Javier Ortega-Garcia 4 |
title |
Comparative Analysis and Fusion of Spatiotemporal Information for Footstep Recognition |
spellingShingle |
Comparative Analysis and Fusion of Spatiotemporal Information for Footstep Recognition John Mason |
title_short |
Comparative Analysis and Fusion of Spatiotemporal Information for Footstep Recognition |
title_full |
Comparative Analysis and Fusion of Spatiotemporal Information for Footstep Recognition |
title_fullStr |
Comparative Analysis and Fusion of Spatiotemporal Information for Footstep Recognition |
title_full_unstemmed |
Comparative Analysis and Fusion of Spatiotemporal Information for Footstep Recognition |
title_sort |
Comparative Analysis and Fusion of Spatiotemporal Information for Footstep Recognition |
author_id_str_mv |
284b34c63a5cbc71055047daf2ee1392 |
author_id_fullname_str_mv |
284b34c63a5cbc71055047daf2ee1392_***_John Mason |
author |
John Mason |
author2 |
Ruben Vera-Rodriguez John Mason Julian Fierrez Javier Ortega-Garcia |
format |
Journal article |
container_title |
IEEE Transactions on Pattern Analysis and Machine Intelligence |
container_volume |
35 |
container_issue |
4 |
container_start_page |
823 |
publishDate |
2013 |
institution |
Swansea University |
issn |
0162-8828 2160-9292 |
doi_str_mv |
10.1109/tpami.2012.164 |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Engineering and Applied Sciences - Uncategorised{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Uncategorised |
document_store_str |
0 |
active_str |
0 |
published_date |
2013-12-31T03:14:38Z |
_version_ |
1763750213049122816 |
score |
11.036116 |