No Cover Image

Journal article 1489 views

Line bundles and the Thom construction in noncommutative geometry

Edwin Beggs Orcid Logo, Tomasz Brzeziński, Tomasz Brzezinski Orcid Logo

Journal of Noncommutative Geometry, Volume: 8, Issue: 1, Pages: 61 - 105

Swansea University Authors: Edwin Beggs Orcid Logo, Tomasz Brzezinski Orcid Logo

Full text not available from this repository: check for access using links below.

Check full text

DOI (Published version): 10.4171/JNCG/149

Abstract

The idea of Morita context is used to define a line module (equivalent of a line bundle in noncommutative geometry). Two algebras are constructed from Morita contexts: The first is integer graded, and is a Hopf Galios extension of the original algebra. Given a star structure on the line module, we c...

Full description

Published in: Journal of Noncommutative Geometry
ISSN: 1661-6952 1661-6960
Published: 2014
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa13888
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2013-07-23T12:11:15Z
last_indexed 2018-02-09T04:44:56Z
id cronfa13888
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2015-07-31T16:33:52.6322321</datestamp><bib-version>v2</bib-version><id>13888</id><entry>2013-01-15</entry><title>Line bundles and the Thom construction in noncommutative geometry</title><swanseaauthors><author><sid>a0062e7cf6d68f05151560cdf9d14e75</sid><ORCID>0000-0002-3139-0983</ORCID><firstname>Edwin</firstname><surname>Beggs</surname><name>Edwin Beggs</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>30466d840b59627325596fbbb2c82754</sid><ORCID>0000-0001-6270-3439</ORCID><firstname>Tomasz</firstname><surname>Brzezinski</surname><name>Tomasz Brzezinski</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2013-01-15</date><deptcode>SMA</deptcode><abstract>The idea of Morita context is used to define a line module (equivalent of a line bundle in noncommutative geometry). Two algebras are constructed from Morita contexts: The first is integer graded, and is a Hopf Galios extension of the original algebra. Given a star structure on the line module, we construct a positive integer graded module. This corresponds to the topological Thom construction and associated circle bundle for a line bundle. In the case that the original algebra is a C* algebra, with some positivity assumptions, the Thom construction gives another C* algebra.The paper ends by a study of the de Rham characteristic classes of a NC line module using the methods of Kobayashi and Nomizu.</abstract><type>Journal Article</type><journal>Journal of Noncommutative Geometry</journal><volume>8</volume><journalNumber>1</journalNumber><paginationStart>61</paginationStart><paginationEnd>105</paginationEnd><publisher/><issnPrint>1661-6952</issnPrint><issnElectronic>1661-6960</issnElectronic><keywords>Noncommutative geometry, line bundle, Chern class, Thom construction</keywords><publishedDay>31</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2014</publishedYear><publishedDate>2014-12-31</publishedDate><doi>10.4171/JNCG/149</doi><url>http://www.ems-ph.org/journals/journal.php?jrn=JNCG</url><notes>Accepted for publication May 2012.</notes><college>COLLEGE NANME</college><department>Mathematics</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>SMA</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2015-07-31T16:33:52.6322321</lastEdited><Created>2013-01-15T09:36:46.5773307</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Mathematics</level></path><authors><author><firstname>Edwin</firstname><surname>Beggs</surname><orcid>0000-0002-3139-0983</orcid><order>1</order></author><author><firstname>Tomasz</firstname><surname>Brzezi&#x144;ski</surname><order>2</order></author><author><firstname>Tomasz</firstname><surname>Brzezinski</surname><orcid>0000-0001-6270-3439</orcid><order>3</order></author></authors><documents/><OutputDurs/></rfc1807>
spelling 2015-07-31T16:33:52.6322321 v2 13888 2013-01-15 Line bundles and the Thom construction in noncommutative geometry a0062e7cf6d68f05151560cdf9d14e75 0000-0002-3139-0983 Edwin Beggs Edwin Beggs true false 30466d840b59627325596fbbb2c82754 0000-0001-6270-3439 Tomasz Brzezinski Tomasz Brzezinski true false 2013-01-15 SMA The idea of Morita context is used to define a line module (equivalent of a line bundle in noncommutative geometry). Two algebras are constructed from Morita contexts: The first is integer graded, and is a Hopf Galios extension of the original algebra. Given a star structure on the line module, we construct a positive integer graded module. This corresponds to the topological Thom construction and associated circle bundle for a line bundle. In the case that the original algebra is a C* algebra, with some positivity assumptions, the Thom construction gives another C* algebra.The paper ends by a study of the de Rham characteristic classes of a NC line module using the methods of Kobayashi and Nomizu. Journal Article Journal of Noncommutative Geometry 8 1 61 105 1661-6952 1661-6960 Noncommutative geometry, line bundle, Chern class, Thom construction 31 12 2014 2014-12-31 10.4171/JNCG/149 http://www.ems-ph.org/journals/journal.php?jrn=JNCG Accepted for publication May 2012. COLLEGE NANME Mathematics COLLEGE CODE SMA Swansea University 2015-07-31T16:33:52.6322321 2013-01-15T09:36:46.5773307 Faculty of Science and Engineering School of Mathematics and Computer Science - Mathematics Edwin Beggs 0000-0002-3139-0983 1 Tomasz Brzeziński 2 Tomasz Brzezinski 0000-0001-6270-3439 3
title Line bundles and the Thom construction in noncommutative geometry
spellingShingle Line bundles and the Thom construction in noncommutative geometry
Edwin Beggs
Tomasz Brzezinski
title_short Line bundles and the Thom construction in noncommutative geometry
title_full Line bundles and the Thom construction in noncommutative geometry
title_fullStr Line bundles and the Thom construction in noncommutative geometry
title_full_unstemmed Line bundles and the Thom construction in noncommutative geometry
title_sort Line bundles and the Thom construction in noncommutative geometry
author_id_str_mv a0062e7cf6d68f05151560cdf9d14e75
30466d840b59627325596fbbb2c82754
author_id_fullname_str_mv a0062e7cf6d68f05151560cdf9d14e75_***_Edwin Beggs
30466d840b59627325596fbbb2c82754_***_Tomasz Brzezinski
author Edwin Beggs
Tomasz Brzezinski
author2 Edwin Beggs
Tomasz Brzeziński
Tomasz Brzezinski
format Journal article
container_title Journal of Noncommutative Geometry
container_volume 8
container_issue 1
container_start_page 61
publishDate 2014
institution Swansea University
issn 1661-6952
1661-6960
doi_str_mv 10.4171/JNCG/149
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Mathematics and Computer Science - Mathematics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Mathematics
url http://www.ems-ph.org/journals/journal.php?jrn=JNCG
document_store_str 0
active_str 0
description The idea of Morita context is used to define a line module (equivalent of a line bundle in noncommutative geometry). Two algebras are constructed from Morita contexts: The first is integer graded, and is a Hopf Galios extension of the original algebra. Given a star structure on the line module, we construct a positive integer graded module. This corresponds to the topological Thom construction and associated circle bundle for a line bundle. In the case that the original algebra is a C* algebra, with some positivity assumptions, the Thom construction gives another C* algebra.The paper ends by a study of the de Rham characteristic classes of a NC line module using the methods of Kobayashi and Nomizu.
published_date 2014-12-31T03:15:52Z
_version_ 1763750290811518976
score 11.029921