Conference Paper/Proceeding/Abstract 1099 views
Antihydrogen formation by autoresonant excitation of antiproton plasmas
William Alan Bertsche,
G. B Andresen,
M. D Ashkezari,
M Baquero-Ruiz,
P. D Bowe,
P. T Carpenter,
E Butler,
C. L Cesar,
S. F Chapman,
M Charlton,
S Eriksson,
J Fajans,
T Friesen,
M. C Fujiwara,
D. R Gill,
A Gutierrez,
J. S Hangst,
W. N Hardy,
R. S Hayano,
M. E Hayden,
A. J Humphries,
J. L Hurt,
R Hydomako,
S Jonsell,
L Kurchaninov,
N Madsen,
S Menary,
P Nolan,
K Olchanski,
A Olin,
A Povilus,
P Pusa,
F Robicheaux,
E Sarid,
D. M Silveira,
C So,
J. W Storey,
R. I Thompson,
D. P. van der Werf,
J. S Wurtele,
Y Yamazaki,
Niels Madsen
LEAP 2011, Pages: 61 - 67
Swansea University Author: Niels Madsen
Full text not available from this repository: check for access using links below.
DOI (Published version): 10.1007/978-94-007-5530-7_7
Abstract
In efforts to trap antihydrogen, a key problem is the vast disparity between the neutral trap energy scale (˜ 50 \upmueV), and the energy scales associated with plasma confinement and space charge ( 1 eV). In order to merge charged particle species for direct recombination, the larger energy scale m...
Published in: | LEAP 2011 |
---|---|
Published: |
Vancouver
Springer
2013
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa15091 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
first_indexed |
2013-07-23T12:13:49Z |
---|---|
last_indexed |
2018-02-09T04:46:48Z |
id |
cronfa15091 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2013-06-18T09:46:34.5451580</datestamp><bib-version>v2</bib-version><id>15091</id><entry>2013-06-14</entry><title>Antihydrogen formation by autoresonant excitation of antiproton plasmas</title><swanseaauthors><author><sid>e348e4d768ee19c1d0c68ce3a66d6303</sid><ORCID>0000-0002-7372-0784</ORCID><firstname>Niels</firstname><surname>Madsen</surname><name>Niels Madsen</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2013-06-14</date><deptcode>SPH</deptcode><abstract>In efforts to trap antihydrogen, a key problem is the vast disparity between the neutral trap energy scale (˜ 50 \upmueV), and the energy scales associated with plasma confinement and space charge ( 1 eV). In order to merge charged particle species for direct recombination, the larger energy scale must be overcome in a manner that minimizes the initial antihydrogen kinetic energy. This issue motivated the development of a novel injection technique utilizing the inherent nonlinear nature of particle oscillations in our traps. We demonstrated controllable excitation of the center-of-mass longitudinal motion of a thermal antiproton plasma using a swept-frequency autoresonant drive. When the plasma is cold, dense and highly collective in nature, we observe that the entire system behaves as a single-particle nonlinear oscillator, as predicted by a recent theory. In contrast, only a fraction of the antiprotons in a warm or tenuous plasma can be similarly excited. Antihydrogen was produced and trapped by using this technique to drive antiprotons into a positron plasma, thereby initiating atomic recombination. The nature of this injection overcomes some of the difficulties associated with matching the energies of the charged species used to produce antihydrogen.</abstract><type>Conference Paper/Proceeding/Abstract</type><journal>LEAP 2011</journal><volume></volume><journalNumber></journalNumber><paginationStart>61</paginationStart><paginationEnd>67</paginationEnd><publisher>Springer</publisher><placeOfPublication>Vancouver</placeOfPublication><issnPrint/><issnElectronic/><keywords/><publishedDay>31</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2013</publishedYear><publishedDate>2013-12-31</publishedDate><doi>10.1007/978-94-007-5530-7_7</doi><url/><notes/><college>COLLEGE NANME</college><department>Physics</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>SPH</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2013-06-18T09:46:34.5451580</lastEdited><Created>2013-06-14T13:07:25.5180119</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Biosciences, Geography and Physics - Physics</level></path><authors><author><firstname>William Alan</firstname><surname>Bertsche</surname><order>1</order></author><author><firstname>G. B</firstname><surname>Andresen</surname><order>2</order></author><author><firstname>M. D</firstname><surname>Ashkezari</surname><order>3</order></author><author><firstname>M</firstname><surname>Baquero-Ruiz</surname><order>4</order></author><author><firstname>P. D</firstname><surname>Bowe</surname><order>5</order></author><author><firstname>P. T</firstname><surname>Carpenter</surname><order>6</order></author><author><firstname>E</firstname><surname>Butler</surname><order>7</order></author><author><firstname>C. L</firstname><surname>Cesar</surname><order>8</order></author><author><firstname>S. F</firstname><surname>Chapman</surname><order>9</order></author><author><firstname>M</firstname><surname>Charlton</surname><order>10</order></author><author><firstname>S</firstname><surname>Eriksson</surname><order>11</order></author><author><firstname>J</firstname><surname>Fajans</surname><order>12</order></author><author><firstname>T</firstname><surname>Friesen</surname><order>13</order></author><author><firstname>M. C</firstname><surname>Fujiwara</surname><order>14</order></author><author><firstname>D. R</firstname><surname>Gill</surname><order>15</order></author><author><firstname>A</firstname><surname>Gutierrez</surname><order>16</order></author><author><firstname>J. S</firstname><surname>Hangst</surname><order>17</order></author><author><firstname>W. N</firstname><surname>Hardy</surname><order>18</order></author><author><firstname>R. S</firstname><surname>Hayano</surname><order>19</order></author><author><firstname>M. E</firstname><surname>Hayden</surname><order>20</order></author><author><firstname>A. J</firstname><surname>Humphries</surname><order>21</order></author><author><firstname>J. L</firstname><surname>Hurt</surname><order>22</order></author><author><firstname>R</firstname><surname>Hydomako</surname><order>23</order></author><author><firstname>S</firstname><surname>Jonsell</surname><order>24</order></author><author><firstname>L</firstname><surname>Kurchaninov</surname><order>25</order></author><author><firstname>N</firstname><surname>Madsen</surname><order>26</order></author><author><firstname>S</firstname><surname>Menary</surname><order>27</order></author><author><firstname>P</firstname><surname>Nolan</surname><order>28</order></author><author><firstname>K</firstname><surname>Olchanski</surname><order>29</order></author><author><firstname>A</firstname><surname>Olin</surname><order>30</order></author><author><firstname>A</firstname><surname>Povilus</surname><order>31</order></author><author><firstname>P</firstname><surname>Pusa</surname><order>32</order></author><author><firstname>F</firstname><surname>Robicheaux</surname><order>33</order></author><author><firstname>E</firstname><surname>Sarid</surname><order>34</order></author><author><firstname>D. M</firstname><surname>Silveira</surname><order>35</order></author><author><firstname>C</firstname><surname>So</surname><order>36</order></author><author><firstname>J. W</firstname><surname>Storey</surname><order>37</order></author><author><firstname>R. I</firstname><surname>Thompson</surname><order>38</order></author><author><firstname>D. P. van der</firstname><surname>Werf</surname><order>39</order></author><author><firstname>J. S</firstname><surname>Wurtele</surname><order>40</order></author><author><firstname>Y</firstname><surname>Yamazaki</surname><order>41</order></author><author><firstname>Niels</firstname><surname>Madsen</surname><orcid>0000-0002-7372-0784</orcid><order>42</order></author></authors><documents/><OutputDurs/></rfc1807> |
spelling |
2013-06-18T09:46:34.5451580 v2 15091 2013-06-14 Antihydrogen formation by autoresonant excitation of antiproton plasmas e348e4d768ee19c1d0c68ce3a66d6303 0000-0002-7372-0784 Niels Madsen Niels Madsen true false 2013-06-14 SPH In efforts to trap antihydrogen, a key problem is the vast disparity between the neutral trap energy scale (˜ 50 \upmueV), and the energy scales associated with plasma confinement and space charge ( 1 eV). In order to merge charged particle species for direct recombination, the larger energy scale must be overcome in a manner that minimizes the initial antihydrogen kinetic energy. This issue motivated the development of a novel injection technique utilizing the inherent nonlinear nature of particle oscillations in our traps. We demonstrated controllable excitation of the center-of-mass longitudinal motion of a thermal antiproton plasma using a swept-frequency autoresonant drive. When the plasma is cold, dense and highly collective in nature, we observe that the entire system behaves as a single-particle nonlinear oscillator, as predicted by a recent theory. In contrast, only a fraction of the antiprotons in a warm or tenuous plasma can be similarly excited. Antihydrogen was produced and trapped by using this technique to drive antiprotons into a positron plasma, thereby initiating atomic recombination. The nature of this injection overcomes some of the difficulties associated with matching the energies of the charged species used to produce antihydrogen. Conference Paper/Proceeding/Abstract LEAP 2011 61 67 Springer Vancouver 31 12 2013 2013-12-31 10.1007/978-94-007-5530-7_7 COLLEGE NANME Physics COLLEGE CODE SPH Swansea University 2013-06-18T09:46:34.5451580 2013-06-14T13:07:25.5180119 Faculty of Science and Engineering School of Biosciences, Geography and Physics - Physics William Alan Bertsche 1 G. B Andresen 2 M. D Ashkezari 3 M Baquero-Ruiz 4 P. D Bowe 5 P. T Carpenter 6 E Butler 7 C. L Cesar 8 S. F Chapman 9 M Charlton 10 S Eriksson 11 J Fajans 12 T Friesen 13 M. C Fujiwara 14 D. R Gill 15 A Gutierrez 16 J. S Hangst 17 W. N Hardy 18 R. S Hayano 19 M. E Hayden 20 A. J Humphries 21 J. L Hurt 22 R Hydomako 23 S Jonsell 24 L Kurchaninov 25 N Madsen 26 S Menary 27 P Nolan 28 K Olchanski 29 A Olin 30 A Povilus 31 P Pusa 32 F Robicheaux 33 E Sarid 34 D. M Silveira 35 C So 36 J. W Storey 37 R. I Thompson 38 D. P. van der Werf 39 J. S Wurtele 40 Y Yamazaki 41 Niels Madsen 0000-0002-7372-0784 42 |
title |
Antihydrogen formation by autoresonant excitation of antiproton plasmas |
spellingShingle |
Antihydrogen formation by autoresonant excitation of antiproton plasmas Niels Madsen |
title_short |
Antihydrogen formation by autoresonant excitation of antiproton plasmas |
title_full |
Antihydrogen formation by autoresonant excitation of antiproton plasmas |
title_fullStr |
Antihydrogen formation by autoresonant excitation of antiproton plasmas |
title_full_unstemmed |
Antihydrogen formation by autoresonant excitation of antiproton plasmas |
title_sort |
Antihydrogen formation by autoresonant excitation of antiproton plasmas |
author_id_str_mv |
e348e4d768ee19c1d0c68ce3a66d6303 |
author_id_fullname_str_mv |
e348e4d768ee19c1d0c68ce3a66d6303_***_Niels Madsen |
author |
Niels Madsen |
author2 |
William Alan Bertsche G. B Andresen M. D Ashkezari M Baquero-Ruiz P. D Bowe P. T Carpenter E Butler C. L Cesar S. F Chapman M Charlton S Eriksson J Fajans T Friesen M. C Fujiwara D. R Gill A Gutierrez J. S Hangst W. N Hardy R. S Hayano M. E Hayden A. J Humphries J. L Hurt R Hydomako S Jonsell L Kurchaninov N Madsen S Menary P Nolan K Olchanski A Olin A Povilus P Pusa F Robicheaux E Sarid D. M Silveira C So J. W Storey R. I Thompson D. P. van der Werf J. S Wurtele Y Yamazaki Niels Madsen |
format |
Conference Paper/Proceeding/Abstract |
container_title |
LEAP 2011 |
container_start_page |
61 |
publishDate |
2013 |
institution |
Swansea University |
doi_str_mv |
10.1007/978-94-007-5530-7_7 |
publisher |
Springer |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Biosciences, Geography and Physics - Physics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Biosciences, Geography and Physics - Physics |
document_store_str |
0 |
active_str |
0 |
description |
In efforts to trap antihydrogen, a key problem is the vast disparity between the neutral trap energy scale (˜ 50 \upmueV), and the energy scales associated with plasma confinement and space charge ( 1 eV). In order to merge charged particle species for direct recombination, the larger energy scale must be overcome in a manner that minimizes the initial antihydrogen kinetic energy. This issue motivated the development of a novel injection technique utilizing the inherent nonlinear nature of particle oscillations in our traps. We demonstrated controllable excitation of the center-of-mass longitudinal motion of a thermal antiproton plasma using a swept-frequency autoresonant drive. When the plasma is cold, dense and highly collective in nature, we observe that the entire system behaves as a single-particle nonlinear oscillator, as predicted by a recent theory. In contrast, only a fraction of the antiprotons in a warm or tenuous plasma can be similarly excited. Antihydrogen was produced and trapped by using this technique to drive antiprotons into a positron plasma, thereby initiating atomic recombination. The nature of this injection overcomes some of the difficulties associated with matching the energies of the charged species used to produce antihydrogen. |
published_date |
2013-12-31T03:17:13Z |
_version_ |
1763750375819575296 |
score |
11.03559 |