Journal article 1445 views
A quantile double AR model: estimation and forecasting
Journal of Forecasting, Volume: 32
Swansea University Author: Yuzhi Cai
Abstract
We develop a novel quantile double autoregressive model for modelling financial time series. This is done byspecifying a generalized lambda distribution to the quantile function of the location-scale double autoregressive modeldeveloped by Ling (2004, 2007). Parameter estimation uses Markov chain Mo...
Published in: | Journal of Forecasting |
---|---|
Published: |
2013
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa15289 |
first_indexed |
2013-08-22T01:57:36Z |
---|---|
last_indexed |
2018-02-09T04:47:07Z |
id |
cronfa15289 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2016-10-31T11:01:35.9341600</datestamp><bib-version>v2</bib-version><id>15289</id><entry>2013-07-30</entry><title>A quantile double AR model: estimation and forecasting</title><swanseaauthors><author><sid>eff7b8626ab4cc6428eef52516fda7d6</sid><ORCID>0000-0003-3509-9787</ORCID><firstname>Yuzhi</firstname><surname>Cai</surname><name>Yuzhi Cai</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2013-07-30</date><deptcode>CBAE</deptcode><abstract>We develop a novel quantile double autoregressive model for modelling financial time series. This is done byspecifying a generalized lambda distribution to the quantile function of the location-scale double autoregressive modeldeveloped by Ling (2004, 2007). Parameter estimation uses Markov chain Monte Carlo Bayesian methods. A simulationtechnique is introduced for forecasting the conditional distribution of financial returns m periods ahead, and henceany for predictive quantities of interest. The application to forecasting value-at-risk at different time horizons andcoverage probabilities for Dow Jones Industrial Average shows that our method works very well in practice. Copyright© 2013 John Wiley & Sons, Ltd.</abstract><type>Journal Article</type><journal>Journal of Forecasting</journal><volume>32</volume><paginationEnd>560</paginationEnd><publisher/><keywords>Bayesian methods; density forecasts; generalized lambda distribution; quantile function;</keywords><publishedDay>31</publishedDay><publishedMonth>7</publishedMonth><publishedYear>2013</publishedYear><publishedDate>2013-07-31</publishedDate><doi/><url/><notes/><college>COLLEGE NANME</college><department>Management School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>CBAE</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2016-10-31T11:01:35.9341600</lastEdited><Created>2013-07-30T10:12:24.4884007</Created><path><level id="1">Faculty of Humanities and Social Sciences</level><level id="2">School of Management - Accounting and Finance</level></path><authors><author><firstname>Yuzhi</firstname><surname>Cai</surname><orcid>0000-0003-3509-9787</orcid><order>1</order></author><author><firstname>Gabriel</firstname><surname>Montes-Rojas</surname><order>2</order></author><author><firstname>Jose</firstname><surname>Olmo</surname><order>3</order></author></authors><documents/><OutputDurs/></rfc1807> |
spelling |
2016-10-31T11:01:35.9341600 v2 15289 2013-07-30 A quantile double AR model: estimation and forecasting eff7b8626ab4cc6428eef52516fda7d6 0000-0003-3509-9787 Yuzhi Cai Yuzhi Cai true false 2013-07-30 CBAE We develop a novel quantile double autoregressive model for modelling financial time series. This is done byspecifying a generalized lambda distribution to the quantile function of the location-scale double autoregressive modeldeveloped by Ling (2004, 2007). Parameter estimation uses Markov chain Monte Carlo Bayesian methods. A simulationtechnique is introduced for forecasting the conditional distribution of financial returns m periods ahead, and henceany for predictive quantities of interest. The application to forecasting value-at-risk at different time horizons andcoverage probabilities for Dow Jones Industrial Average shows that our method works very well in practice. Copyright© 2013 John Wiley & Sons, Ltd. Journal Article Journal of Forecasting 32 560 Bayesian methods; density forecasts; generalized lambda distribution; quantile function; 31 7 2013 2013-07-31 COLLEGE NANME Management School COLLEGE CODE CBAE Swansea University 2016-10-31T11:01:35.9341600 2013-07-30T10:12:24.4884007 Faculty of Humanities and Social Sciences School of Management - Accounting and Finance Yuzhi Cai 0000-0003-3509-9787 1 Gabriel Montes-Rojas 2 Jose Olmo 3 |
title |
A quantile double AR model: estimation and forecasting |
spellingShingle |
A quantile double AR model: estimation and forecasting Yuzhi Cai |
title_short |
A quantile double AR model: estimation and forecasting |
title_full |
A quantile double AR model: estimation and forecasting |
title_fullStr |
A quantile double AR model: estimation and forecasting |
title_full_unstemmed |
A quantile double AR model: estimation and forecasting |
title_sort |
A quantile double AR model: estimation and forecasting |
author_id_str_mv |
eff7b8626ab4cc6428eef52516fda7d6 |
author_id_fullname_str_mv |
eff7b8626ab4cc6428eef52516fda7d6_***_Yuzhi Cai |
author |
Yuzhi Cai |
author2 |
Yuzhi Cai Gabriel Montes-Rojas Jose Olmo |
format |
Journal article |
container_title |
Journal of Forecasting |
container_volume |
32 |
publishDate |
2013 |
institution |
Swansea University |
college_str |
Faculty of Humanities and Social Sciences |
hierarchytype |
|
hierarchy_top_id |
facultyofhumanitiesandsocialsciences |
hierarchy_top_title |
Faculty of Humanities and Social Sciences |
hierarchy_parent_id |
facultyofhumanitiesandsocialsciences |
hierarchy_parent_title |
Faculty of Humanities and Social Sciences |
department_str |
School of Management - Accounting and Finance{{{_:::_}}}Faculty of Humanities and Social Sciences{{{_:::_}}}School of Management - Accounting and Finance |
document_store_str |
0 |
active_str |
0 |
description |
We develop a novel quantile double autoregressive model for modelling financial time series. This is done byspecifying a generalized lambda distribution to the quantile function of the location-scale double autoregressive modeldeveloped by Ling (2004, 2007). Parameter estimation uses Markov chain Monte Carlo Bayesian methods. A simulationtechnique is introduced for forecasting the conditional distribution of financial returns m periods ahead, and henceany for predictive quantities of interest. The application to forecasting value-at-risk at different time horizons andcoverage probabilities for Dow Jones Industrial Average shows that our method works very well in practice. Copyright© 2013 John Wiley & Sons, Ltd. |
published_date |
2013-07-31T06:30:24Z |
_version_ |
1821929556210089984 |
score |
11.048064 |