No Cover Image

Journal article 818 views

New Source of Dense, Cryogenic Positron Plasmas

L Jørgensen, M Amoretti, G Bonomi, P Bowe, C Canali, C Carraro, C Cesar, M Charlton, M Doser, A Fontana, M Fujiwara, R Funakoshi, P Genova, J Hangst, R Hayano, A Kellerbauer, V Lagomarsino, R Landua, E. Lodi Rizzini, M Macrì, N Madsen, D Mitchard, P Montagna, A Rotondi, G Testera, A Variola, L Venturelli, D. van der Werf, Y Yamazaki, Dirk van der Werf Orcid Logo

Physical Review Letters, Volume: 95, Issue: 2

Swansea University Author: Dirk van der Werf Orcid Logo

Full text not available from this repository: check for access using links below.

Abstract

We have developed a new method, based on the ballistic transfer of preaccumulated plasmas, to obtain large and dense positron plasmas in a cryogenic environment. The method involves transferring plasmas emanating from a region with a low magnetic field (0.14 T) and relatively high pressure (10^{-9}...

Full description

Published in: Physical Review Letters
ISSN: 0031-9007 1079-7114
Published: 2005
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa1555
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2013-07-23T11:47:41Z
last_indexed 2018-02-09T04:28:54Z
id cronfa1555
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2013-09-15T11:32:27.0844603</datestamp><bib-version>v2</bib-version><id>1555</id><entry>2011-10-01</entry><title>New Source of Dense, Cryogenic Positron Plasmas</title><swanseaauthors><author><sid>4a4149ebce588e432f310f4ab44dd82a</sid><ORCID>0000-0001-5436-5214</ORCID><firstname>Dirk</firstname><surname>van der Werf</surname><name>Dirk van der Werf</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2011-10-01</date><deptcode>SPH</deptcode><abstract>We have developed a new method, based on the ballistic transfer of preaccumulated plasmas, to obtain large and dense positron plasmas in a cryogenic environment. The method involves transferring plasmas emanating from a region with a low magnetic field (0.14 T) and relatively high pressure (10^{-9} mbar) into a 15 K Penning-Malmberg trap immersed in a 3 T magnetic field with a base pressure better than 10^{-13} mbar. The achieved positron accumulation rate in the high field cryogenic trap is more than one and a half orders of magnitude higher than the previous most efficient UHV compatible scheme. Subsequent stacking resulted in a plasma containing more than 1.2 \times 10^9 positrons, which is a factor 4 higher than previously reported. Using a rotating wall electric field, plasmas containing about 2 \times 10^6 positrons were compressed to a density of 2.6 \times 10^{10} cm^3. This is a factor of 6 improvement over earlier measurements.</abstract><type>Journal Article</type><journal>Physical Review Letters</journal><volume>95</volume><journalNumber>2</journalNumber><paginationStart/><paginationEnd/><publisher/><placeOfPublication/><issnPrint>0031-9007</issnPrint><issnElectronic>1079-7114</issnElectronic><keywords/><publishedDay>7</publishedDay><publishedMonth>7</publishedMonth><publishedYear>2005</publishedYear><publishedDate>2005-07-07</publishedDate><doi>10.1103/PhysRevLett.95.025002</doi><url/><notes>This paper describes the development of a new method to obtain large, dense positron plasmas in a cryogenic environment. Van der Werf was the project leader for the positron accumulator and implemented the positron transfer from the low field, room temperature, region to the high field, cryogenic temperature area.</notes><college>COLLEGE NANME</college><department>Physics</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>SPH</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2013-09-15T11:32:27.0844603</lastEdited><Created>2011-10-01T00:00:00.0000000</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Biosciences, Geography and Physics - Physics</level></path><authors><author><firstname>L</firstname><surname>J&#xF8;rgensen</surname><order>1</order></author><author><firstname>M</firstname><surname>Amoretti</surname><order>2</order></author><author><firstname>G</firstname><surname>Bonomi</surname><order>3</order></author><author><firstname>P</firstname><surname>Bowe</surname><order>4</order></author><author><firstname>C</firstname><surname>Canali</surname><order>5</order></author><author><firstname>C</firstname><surname>Carraro</surname><order>6</order></author><author><firstname>C</firstname><surname>Cesar</surname><order>7</order></author><author><firstname>M</firstname><surname>Charlton</surname><order>8</order></author><author><firstname>M</firstname><surname>Doser</surname><order>9</order></author><author><firstname>A</firstname><surname>Fontana</surname><order>10</order></author><author><firstname>M</firstname><surname>Fujiwara</surname><order>11</order></author><author><firstname>R</firstname><surname>Funakoshi</surname><order>12</order></author><author><firstname>P</firstname><surname>Genova</surname><order>13</order></author><author><firstname>J</firstname><surname>Hangst</surname><order>14</order></author><author><firstname>R</firstname><surname>Hayano</surname><order>15</order></author><author><firstname>A</firstname><surname>Kellerbauer</surname><order>16</order></author><author><firstname>V</firstname><surname>Lagomarsino</surname><order>17</order></author><author><firstname>R</firstname><surname>Landua</surname><order>18</order></author><author><firstname>E. Lodi</firstname><surname>Rizzini</surname><order>19</order></author><author><firstname>M</firstname><surname>Macr&#xEC;</surname><order>20</order></author><author><firstname>N</firstname><surname>Madsen</surname><order>21</order></author><author><firstname>D</firstname><surname>Mitchard</surname><order>22</order></author><author><firstname>P</firstname><surname>Montagna</surname><order>23</order></author><author><firstname>A</firstname><surname>Rotondi</surname><order>24</order></author><author><firstname>G</firstname><surname>Testera</surname><order>25</order></author><author><firstname>A</firstname><surname>Variola</surname><order>26</order></author><author><firstname>L</firstname><surname>Venturelli</surname><order>27</order></author><author><firstname>D. van der</firstname><surname>Werf</surname><order>28</order></author><author><firstname>Y</firstname><surname>Yamazaki</surname><order>29</order></author><author><firstname>Dirk</firstname><surname>van der Werf</surname><orcid>0000-0001-5436-5214</orcid><order>30</order></author></authors><documents/><OutputDurs/></rfc1807>
spelling 2013-09-15T11:32:27.0844603 v2 1555 2011-10-01 New Source of Dense, Cryogenic Positron Plasmas 4a4149ebce588e432f310f4ab44dd82a 0000-0001-5436-5214 Dirk van der Werf Dirk van der Werf true false 2011-10-01 SPH We have developed a new method, based on the ballistic transfer of preaccumulated plasmas, to obtain large and dense positron plasmas in a cryogenic environment. The method involves transferring plasmas emanating from a region with a low magnetic field (0.14 T) and relatively high pressure (10^{-9} mbar) into a 15 K Penning-Malmberg trap immersed in a 3 T magnetic field with a base pressure better than 10^{-13} mbar. The achieved positron accumulation rate in the high field cryogenic trap is more than one and a half orders of magnitude higher than the previous most efficient UHV compatible scheme. Subsequent stacking resulted in a plasma containing more than 1.2 \times 10^9 positrons, which is a factor 4 higher than previously reported. Using a rotating wall electric field, plasmas containing about 2 \times 10^6 positrons were compressed to a density of 2.6 \times 10^{10} cm^3. This is a factor of 6 improvement over earlier measurements. Journal Article Physical Review Letters 95 2 0031-9007 1079-7114 7 7 2005 2005-07-07 10.1103/PhysRevLett.95.025002 This paper describes the development of a new method to obtain large, dense positron plasmas in a cryogenic environment. Van der Werf was the project leader for the positron accumulator and implemented the positron transfer from the low field, room temperature, region to the high field, cryogenic temperature area. COLLEGE NANME Physics COLLEGE CODE SPH Swansea University 2013-09-15T11:32:27.0844603 2011-10-01T00:00:00.0000000 Faculty of Science and Engineering School of Biosciences, Geography and Physics - Physics L Jørgensen 1 M Amoretti 2 G Bonomi 3 P Bowe 4 C Canali 5 C Carraro 6 C Cesar 7 M Charlton 8 M Doser 9 A Fontana 10 M Fujiwara 11 R Funakoshi 12 P Genova 13 J Hangst 14 R Hayano 15 A Kellerbauer 16 V Lagomarsino 17 R Landua 18 E. Lodi Rizzini 19 M Macrì 20 N Madsen 21 D Mitchard 22 P Montagna 23 A Rotondi 24 G Testera 25 A Variola 26 L Venturelli 27 D. van der Werf 28 Y Yamazaki 29 Dirk van der Werf 0000-0001-5436-5214 30
title New Source of Dense, Cryogenic Positron Plasmas
spellingShingle New Source of Dense, Cryogenic Positron Plasmas
Dirk van der Werf
title_short New Source of Dense, Cryogenic Positron Plasmas
title_full New Source of Dense, Cryogenic Positron Plasmas
title_fullStr New Source of Dense, Cryogenic Positron Plasmas
title_full_unstemmed New Source of Dense, Cryogenic Positron Plasmas
title_sort New Source of Dense, Cryogenic Positron Plasmas
author_id_str_mv 4a4149ebce588e432f310f4ab44dd82a
author_id_fullname_str_mv 4a4149ebce588e432f310f4ab44dd82a_***_Dirk van der Werf
author Dirk van der Werf
author2 L Jørgensen
M Amoretti
G Bonomi
P Bowe
C Canali
C Carraro
C Cesar
M Charlton
M Doser
A Fontana
M Fujiwara
R Funakoshi
P Genova
J Hangst
R Hayano
A Kellerbauer
V Lagomarsino
R Landua
E. Lodi Rizzini
M Macrì
N Madsen
D Mitchard
P Montagna
A Rotondi
G Testera
A Variola
L Venturelli
D. van der Werf
Y Yamazaki
Dirk van der Werf
format Journal article
container_title Physical Review Letters
container_volume 95
container_issue 2
publishDate 2005
institution Swansea University
issn 0031-9007
1079-7114
doi_str_mv 10.1103/PhysRevLett.95.025002
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Biosciences, Geography and Physics - Physics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Biosciences, Geography and Physics - Physics
document_store_str 0
active_str 0
description We have developed a new method, based on the ballistic transfer of preaccumulated plasmas, to obtain large and dense positron plasmas in a cryogenic environment. The method involves transferring plasmas emanating from a region with a low magnetic field (0.14 T) and relatively high pressure (10^{-9} mbar) into a 15 K Penning-Malmberg trap immersed in a 3 T magnetic field with a base pressure better than 10^{-13} mbar. The achieved positron accumulation rate in the high field cryogenic trap is more than one and a half orders of magnitude higher than the previous most efficient UHV compatible scheme. Subsequent stacking resulted in a plasma containing more than 1.2 \times 10^9 positrons, which is a factor 4 higher than previously reported. Using a rotating wall electric field, plasmas containing about 2 \times 10^6 positrons were compressed to a density of 2.6 \times 10^{10} cm^3. This is a factor of 6 improvement over earlier measurements.
published_date 2005-07-07T03:04:14Z
_version_ 1763749558516449280
score 11.012678