No Cover Image

Book chapter 949 views

Chapter 8: Antihydrogen Formation and Trapping

Niels Madsen Orcid Logo

Physics with Trapped Charged Particles

Swansea University Author: Niels Madsen Orcid Logo

Full text not available from this repository: check for access using links below.

DOI (Published version): 10.1142/9781783264063_0008

Abstract

Antihydrogen, the bound state of a positron and an antiproton, is the only neutral pure antimatter system available to date, and as such provides an excellent testbed for probing fundamental symmetries between matter and antimatter.In this chapter we will concentrate on the physics issues that were...

Full description

Published in: Physics with Trapped Charged Particles
ISBN: 978-1-78326-404-9978-1-78326-406-3
Published: London Imperial College Press 2014
URI: https://cronfa.swan.ac.uk/Record/cronfa17823
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract: Antihydrogen, the bound state of a positron and an antiproton, is the only neutral pure antimatter system available to date, and as such provides an excellent testbed for probing fundamental symmetries between matter and antimatter.In this chapter we will concentrate on the physics issues that were addressed in order to achieve the first trapping of antihydrogen. Antihydrogen can be created by merging antiprotons and positrons in a Penning–Malmberg trap. However, traps for antihydrogen are at best about ∼50 μeV deep and, as no readily available cooling techniques exist, the antihydrogen must be formed trapped. Antiprotons are sourced from an accelerator and arrive with a typical energy of 5.3 MeV. The large numbers of positrons needed means that the self-potential of the positrons are of order 2–5 V. With such energetic ingredients a range of plasma control and diagnostic techniques must be brought to bear on the particles to succeed in making any antihydrogen cold enough to be trapped.
College: Faculty of Science and Engineering
End Page: 238