Book chapter 959 views
Chapter 8: Antihydrogen Formation and Trapping
Physics with Trapped Charged Particles
Swansea University Author: Niels Madsen
Full text not available from this repository: check for access using links below.
DOI (Published version): 10.1142/9781783264063_0008
Abstract
Antihydrogen, the bound state of a positron and an antiproton, is the only neutral pure antimatter system available to date, and as such provides an excellent testbed for probing fundamental symmetries between matter and antimatter.In this chapter we will concentrate on the physics issues that were...
Published in: | Physics with Trapped Charged Particles |
---|---|
ISBN: | 978-1-78326-404-9978-1-78326-406-3 |
Published: |
London
Imperial College Press
2014
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa17823 |
Abstract: |
Antihydrogen, the bound state of a positron and an antiproton, is the only neutral pure antimatter system available to date, and as such provides an excellent testbed for probing fundamental symmetries between matter and antimatter.In this chapter we will concentrate on the physics issues that were addressed in order to achieve the first trapping of antihydrogen. Antihydrogen can be created by merging antiprotons and positrons in a Penning–Malmberg trap. However, traps for antihydrogen are at best about ∼50 μeV deep and, as no readily available cooling techniques exist, the antihydrogen must be formed trapped. Antiprotons are sourced from an accelerator and arrive with a typical energy of 5.3 MeV. The large numbers of positrons needed means that the self-potential of the positrons are of order 2–5 V. With such energetic ingredients a range of plasma control and diagnostic techniques must be brought to bear on the particles to succeed in making any antihydrogen cold enough to be trapped. |
---|---|
College: |
Faculty of Science and Engineering |
End Page: |
238 |