No Cover Image

Journal article 1132 views

Differential smoothness of affine Hopf algebras of Gelfand-Kirillov dimension two

Tomasz Brzezinski Orcid Logo

COLLOQUIUM MATHEMATICUM, Volume: 139, Issue: 1, Pages: 111 - 119

Swansea University Author: Tomasz Brzezinski Orcid Logo

Full text not available from this repository: check for access using links below.

DOI (Published version): 10.4064/cm139-1-6

Abstract

Two-dimensional integrable differential calculi for classes of Ore extensions of the polynomial ring and the Laurent polynomial ring in one variable are constructed. Thus it is concluded that all affine pointed Hopf domains of Gelfand-Kirillov dimension two which are not polynomial identity rings ar...

Full description

Published in: COLLOQUIUM MATHEMATICUM
Published: 2015
Online Access: http://arxiv.org/abs/1412.6669
URI: https://cronfa.swan.ac.uk/Record/cronfa20514
first_indexed 2015-03-26T03:06:11Z
last_indexed 2018-02-09T04:57:07Z
id cronfa20514
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2015-03-25T14:05:28.8285373</datestamp><bib-version>v2</bib-version><id>20514</id><entry>2015-03-25</entry><title>Differential smoothness of affine Hopf algebras of Gelfand-Kirillov dimension two</title><swanseaauthors><author><sid>30466d840b59627325596fbbb2c82754</sid><ORCID>0000-0001-6270-3439</ORCID><firstname>Tomasz</firstname><surname>Brzezinski</surname><name>Tomasz Brzezinski</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2015-03-25</date><deptcode>MACS</deptcode><abstract>Two-dimensional integrable differential calculi for classes of Ore extensions of the polynomial ring and the Laurent polynomial ring in one variable are constructed. Thus it is concluded that all affine pointed Hopf domains of Gelfand-Kirillov dimension two which are not polynomial identity rings are differentially smooth.</abstract><type>Journal Article</type><journal>COLLOQUIUM MATHEMATICUM</journal><volume>139</volume><journalNumber>1</journalNumber><paginationStart>111</paginationStart><paginationEnd>119</paginationEnd><publisher/><keywords/><publishedDay>31</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2015</publishedYear><publishedDate>2015-12-31</publishedDate><doi>10.4064/cm139-1-6</doi><url>http://arxiv.org/abs/1412.6669</url><notes></notes><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2015-03-25T14:05:28.8285373</lastEdited><Created>2015-03-25T09:27:39.3157351</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Mathematics</level></path><authors><author><firstname>Tomasz</firstname><surname>Brzezinski</surname><orcid>0000-0001-6270-3439</orcid><order>1</order></author></authors><documents/><OutputDurs/></rfc1807>
spelling 2015-03-25T14:05:28.8285373 v2 20514 2015-03-25 Differential smoothness of affine Hopf algebras of Gelfand-Kirillov dimension two 30466d840b59627325596fbbb2c82754 0000-0001-6270-3439 Tomasz Brzezinski Tomasz Brzezinski true false 2015-03-25 MACS Two-dimensional integrable differential calculi for classes of Ore extensions of the polynomial ring and the Laurent polynomial ring in one variable are constructed. Thus it is concluded that all affine pointed Hopf domains of Gelfand-Kirillov dimension two which are not polynomial identity rings are differentially smooth. Journal Article COLLOQUIUM MATHEMATICUM 139 1 111 119 31 12 2015 2015-12-31 10.4064/cm139-1-6 http://arxiv.org/abs/1412.6669 COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University 2015-03-25T14:05:28.8285373 2015-03-25T09:27:39.3157351 Faculty of Science and Engineering School of Mathematics and Computer Science - Mathematics Tomasz Brzezinski 0000-0001-6270-3439 1
title Differential smoothness of affine Hopf algebras of Gelfand-Kirillov dimension two
spellingShingle Differential smoothness of affine Hopf algebras of Gelfand-Kirillov dimension two
Tomasz Brzezinski
title_short Differential smoothness of affine Hopf algebras of Gelfand-Kirillov dimension two
title_full Differential smoothness of affine Hopf algebras of Gelfand-Kirillov dimension two
title_fullStr Differential smoothness of affine Hopf algebras of Gelfand-Kirillov dimension two
title_full_unstemmed Differential smoothness of affine Hopf algebras of Gelfand-Kirillov dimension two
title_sort Differential smoothness of affine Hopf algebras of Gelfand-Kirillov dimension two
author_id_str_mv 30466d840b59627325596fbbb2c82754
author_id_fullname_str_mv 30466d840b59627325596fbbb2c82754_***_Tomasz Brzezinski
author Tomasz Brzezinski
author2 Tomasz Brzezinski
format Journal article
container_title COLLOQUIUM MATHEMATICUM
container_volume 139
container_issue 1
container_start_page 111
publishDate 2015
institution Swansea University
doi_str_mv 10.4064/cm139-1-6
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Mathematics and Computer Science - Mathematics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Mathematics
url http://arxiv.org/abs/1412.6669
document_store_str 0
active_str 0
description Two-dimensional integrable differential calculi for classes of Ore extensions of the polynomial ring and the Laurent polynomial ring in one variable are constructed. Thus it is concluded that all affine pointed Hopf domains of Gelfand-Kirillov dimension two which are not polynomial identity rings are differentially smooth.
published_date 2015-12-31T12:38:26Z
_version_ 1821952711816380416
score 11.048149