Journal article 1132 views
Differential smoothness of affine Hopf algebras of Gelfand-Kirillov dimension two
COLLOQUIUM MATHEMATICUM, Volume: 139, Issue: 1, Pages: 111 - 119
Swansea University Author: Tomasz Brzezinski
Full text not available from this repository: check for access using links below.
DOI (Published version): 10.4064/cm139-1-6
Abstract
Two-dimensional integrable differential calculi for classes of Ore extensions of the polynomial ring and the Laurent polynomial ring in one variable are constructed. Thus it is concluded that all affine pointed Hopf domains of Gelfand-Kirillov dimension two which are not polynomial identity rings ar...
Published in: | COLLOQUIUM MATHEMATICUM |
---|---|
Published: |
2015
|
Online Access: |
http://arxiv.org/abs/1412.6669 |
URI: | https://cronfa.swan.ac.uk/Record/cronfa20514 |
first_indexed |
2015-03-26T03:06:11Z |
---|---|
last_indexed |
2018-02-09T04:57:07Z |
id |
cronfa20514 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2015-03-25T14:05:28.8285373</datestamp><bib-version>v2</bib-version><id>20514</id><entry>2015-03-25</entry><title>Differential smoothness of affine Hopf algebras of Gelfand-Kirillov dimension two</title><swanseaauthors><author><sid>30466d840b59627325596fbbb2c82754</sid><ORCID>0000-0001-6270-3439</ORCID><firstname>Tomasz</firstname><surname>Brzezinski</surname><name>Tomasz Brzezinski</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2015-03-25</date><deptcode>MACS</deptcode><abstract>Two-dimensional integrable differential calculi for classes of Ore extensions of the polynomial ring and the Laurent polynomial ring in one variable are constructed. Thus it is concluded that all affine pointed Hopf domains of Gelfand-Kirillov dimension two which are not polynomial identity rings are differentially smooth.</abstract><type>Journal Article</type><journal>COLLOQUIUM MATHEMATICUM</journal><volume>139</volume><journalNumber>1</journalNumber><paginationStart>111</paginationStart><paginationEnd>119</paginationEnd><publisher/><keywords/><publishedDay>31</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2015</publishedYear><publishedDate>2015-12-31</publishedDate><doi>10.4064/cm139-1-6</doi><url>http://arxiv.org/abs/1412.6669</url><notes></notes><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2015-03-25T14:05:28.8285373</lastEdited><Created>2015-03-25T09:27:39.3157351</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Mathematics</level></path><authors><author><firstname>Tomasz</firstname><surname>Brzezinski</surname><orcid>0000-0001-6270-3439</orcid><order>1</order></author></authors><documents/><OutputDurs/></rfc1807> |
spelling |
2015-03-25T14:05:28.8285373 v2 20514 2015-03-25 Differential smoothness of affine Hopf algebras of Gelfand-Kirillov dimension two 30466d840b59627325596fbbb2c82754 0000-0001-6270-3439 Tomasz Brzezinski Tomasz Brzezinski true false 2015-03-25 MACS Two-dimensional integrable differential calculi for classes of Ore extensions of the polynomial ring and the Laurent polynomial ring in one variable are constructed. Thus it is concluded that all affine pointed Hopf domains of Gelfand-Kirillov dimension two which are not polynomial identity rings are differentially smooth. Journal Article COLLOQUIUM MATHEMATICUM 139 1 111 119 31 12 2015 2015-12-31 10.4064/cm139-1-6 http://arxiv.org/abs/1412.6669 COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University 2015-03-25T14:05:28.8285373 2015-03-25T09:27:39.3157351 Faculty of Science and Engineering School of Mathematics and Computer Science - Mathematics Tomasz Brzezinski 0000-0001-6270-3439 1 |
title |
Differential smoothness of affine Hopf algebras of Gelfand-Kirillov dimension two |
spellingShingle |
Differential smoothness of affine Hopf algebras of Gelfand-Kirillov dimension two Tomasz Brzezinski |
title_short |
Differential smoothness of affine Hopf algebras of Gelfand-Kirillov dimension two |
title_full |
Differential smoothness of affine Hopf algebras of Gelfand-Kirillov dimension two |
title_fullStr |
Differential smoothness of affine Hopf algebras of Gelfand-Kirillov dimension two |
title_full_unstemmed |
Differential smoothness of affine Hopf algebras of Gelfand-Kirillov dimension two |
title_sort |
Differential smoothness of affine Hopf algebras of Gelfand-Kirillov dimension two |
author_id_str_mv |
30466d840b59627325596fbbb2c82754 |
author_id_fullname_str_mv |
30466d840b59627325596fbbb2c82754_***_Tomasz Brzezinski |
author |
Tomasz Brzezinski |
author2 |
Tomasz Brzezinski |
format |
Journal article |
container_title |
COLLOQUIUM MATHEMATICUM |
container_volume |
139 |
container_issue |
1 |
container_start_page |
111 |
publishDate |
2015 |
institution |
Swansea University |
doi_str_mv |
10.4064/cm139-1-6 |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Mathematics and Computer Science - Mathematics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Mathematics |
url |
http://arxiv.org/abs/1412.6669 |
document_store_str |
0 |
active_str |
0 |
description |
Two-dimensional integrable differential calculi for classes of Ore extensions of the polynomial ring and the Laurent polynomial ring in one variable are constructed. Thus it is concluded that all affine pointed Hopf domains of Gelfand-Kirillov dimension two which are not polynomial identity rings are differentially smooth. |
published_date |
2015-12-31T12:38:26Z |
_version_ |
1821952711816380416 |
score |
11.048149 |