No Cover Image

Journal article 1150 views

Facile self-assembly and stabilization of metal oxide nanoparticles

Cecile Charbonneau Orcid Logo, Peter Holliman Orcid Logo, Matthew Davies Orcid Logo, Trystan Watson Orcid Logo, David Worsley Orcid Logo

Journal of Colloid and Interface Science, Volume: 442, Pages: 110 - 119

Swansea University Authors: Cecile Charbonneau Orcid Logo, Peter Holliman Orcid Logo, Matthew Davies Orcid Logo, Trystan Watson Orcid Logo, David Worsley Orcid Logo

Full text not available from this repository: check for access using links below.

Abstract

This paper describes a facile method of self-assembling different metal oxide nanoparticles into nanostructured materials via di-carboxylate linkers (oxalic acid) using TiO2 as an example. In this method, the di-carboxylate linkers react with surface hydroxyls on metal oxide nanoparticles forming co...

Full description

Published in: Journal of Colloid and Interface Science
ISSN: 0021-9797
Published: 2015
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa21103
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2015-05-07T02:10:08Z
last_indexed 2020-12-19T03:34:47Z
id cronfa21103
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2020-12-18T09:34:41.7806592</datestamp><bib-version>v2</bib-version><id>21103</id><entry>2015-05-06</entry><title>Facile self-assembly and stabilization of metal oxide nanoparticles</title><swanseaauthors><author><sid>4dc059714847cb22ed922ab058950560</sid><ORCID>0000-0001-9887-2007</ORCID><firstname>Cecile</firstname><surname>Charbonneau</surname><name>Cecile Charbonneau</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>c8f52394d776279c9c690dc26066ddf9</sid><ORCID>0000-0002-9911-8513</ORCID><firstname>Peter</firstname><surname>Holliman</surname><name>Peter Holliman</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>4ad478e342120ca3434657eb13527636</sid><ORCID>0000-0003-2595-5121</ORCID><firstname>Matthew</firstname><surname>Davies</surname><name>Matthew Davies</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>a210327b52472cfe8df9b8108d661457</sid><ORCID>0000-0002-8015-1436</ORCID><firstname>Trystan</firstname><surname>Watson</surname><name>Trystan Watson</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>c426b1c1b0123d7057c1b969083cea69</sid><ORCID>0000-0002-9956-6228</ORCID><firstname>David</firstname><surname>Worsley</surname><name>David Worsley</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2015-05-06</date><deptcode>MTLS</deptcode><abstract>This paper describes a facile method of self-assembling different metal oxide nanoparticles into nanostructured materials via di-carboxylate linkers (oxalic acid) using TiO2 as an example. In this method, the di-carboxylate linkers react with surface hydroxyls on metal oxide nanoparticles forming covalent, ester-like bonds, which enable the binding of two metal oxide particles, one at either end of the linker and facilitates efficient self-assembly of one group of metal oxide nanoparticles homogeneously distributed onto the surface of another group. The oxalate linkers can then be removed by thermal decomposition. This approach is shown to be effective using differently-sized TiO2 nanoparticles, namely in-house synthesized 3&#x2013;5 nm anatase nanocrystals and Degussa P25 titania particles (mean 21 nm particle size). Our data show that the application of a high temperature heat treatment (450 &#xB0;C for 30 min), conventionally applied to achieve a stable porous structure by thermal decomposition of the linker molecules and by inducing inter-particle necking, damages the surface area of the nanostructured material. However, here we show that sintering at 300 &#xB0;C for 30 min or by flash near infrared radiation sintering for 12 s efficiently decomposes the oxalate linkers and stabilizes the nanostructure of the material whilst maintaining its high surface area.</abstract><type>Journal Article</type><journal>Journal of Colloid and Interface Science</journal><volume>442</volume><journalNumber/><paginationStart>110</paginationStart><paginationEnd>119</paginationEnd><publisher/><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0021-9797</issnPrint><issnElectronic/><keywords>Self-assembly, Nanoparticles, Titanium dioxide, Oxalate, Near infrared</keywords><publishedDay>15</publishedDay><publishedMonth>3</publishedMonth><publishedYear>2015</publishedYear><publishedDate>2015-03-15</publishedDate><doi>10.1016/j.jcis.2014.11.042</doi><url/><notes/><college>COLLEGE NANME</college><department>Materials Science and Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MTLS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2020-12-18T09:34:41.7806592</lastEdited><Created>2015-05-06T13:05:22.6373820</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Materials Science and Engineering</level></path><authors><author><firstname>Cecile</firstname><surname>Charbonneau</surname><orcid>0000-0001-9887-2007</orcid><order>1</order></author><author><firstname>Peter</firstname><surname>Holliman</surname><orcid>0000-0002-9911-8513</orcid><order>2</order></author><author><firstname>Matthew</firstname><surname>Davies</surname><orcid>0000-0003-2595-5121</orcid><order>3</order></author><author><firstname>Trystan</firstname><surname>Watson</surname><orcid>0000-0002-8015-1436</orcid><order>4</order></author><author><firstname>David</firstname><surname>Worsley</surname><orcid>0000-0002-9956-6228</orcid><order>5</order></author></authors><documents/><OutputDurs/></rfc1807>
spelling 2020-12-18T09:34:41.7806592 v2 21103 2015-05-06 Facile self-assembly and stabilization of metal oxide nanoparticles 4dc059714847cb22ed922ab058950560 0000-0001-9887-2007 Cecile Charbonneau Cecile Charbonneau true false c8f52394d776279c9c690dc26066ddf9 0000-0002-9911-8513 Peter Holliman Peter Holliman true false 4ad478e342120ca3434657eb13527636 0000-0003-2595-5121 Matthew Davies Matthew Davies true false a210327b52472cfe8df9b8108d661457 0000-0002-8015-1436 Trystan Watson Trystan Watson true false c426b1c1b0123d7057c1b969083cea69 0000-0002-9956-6228 David Worsley David Worsley true false 2015-05-06 MTLS This paper describes a facile method of self-assembling different metal oxide nanoparticles into nanostructured materials via di-carboxylate linkers (oxalic acid) using TiO2 as an example. In this method, the di-carboxylate linkers react with surface hydroxyls on metal oxide nanoparticles forming covalent, ester-like bonds, which enable the binding of two metal oxide particles, one at either end of the linker and facilitates efficient self-assembly of one group of metal oxide nanoparticles homogeneously distributed onto the surface of another group. The oxalate linkers can then be removed by thermal decomposition. This approach is shown to be effective using differently-sized TiO2 nanoparticles, namely in-house synthesized 3–5 nm anatase nanocrystals and Degussa P25 titania particles (mean 21 nm particle size). Our data show that the application of a high temperature heat treatment (450 °C for 30 min), conventionally applied to achieve a stable porous structure by thermal decomposition of the linker molecules and by inducing inter-particle necking, damages the surface area of the nanostructured material. However, here we show that sintering at 300 °C for 30 min or by flash near infrared radiation sintering for 12 s efficiently decomposes the oxalate linkers and stabilizes the nanostructure of the material whilst maintaining its high surface area. Journal Article Journal of Colloid and Interface Science 442 110 119 0021-9797 Self-assembly, Nanoparticles, Titanium dioxide, Oxalate, Near infrared 15 3 2015 2015-03-15 10.1016/j.jcis.2014.11.042 COLLEGE NANME Materials Science and Engineering COLLEGE CODE MTLS Swansea University 2020-12-18T09:34:41.7806592 2015-05-06T13:05:22.6373820 Faculty of Science and Engineering School of Engineering and Applied Sciences - Materials Science and Engineering Cecile Charbonneau 0000-0001-9887-2007 1 Peter Holliman 0000-0002-9911-8513 2 Matthew Davies 0000-0003-2595-5121 3 Trystan Watson 0000-0002-8015-1436 4 David Worsley 0000-0002-9956-6228 5
title Facile self-assembly and stabilization of metal oxide nanoparticles
spellingShingle Facile self-assembly and stabilization of metal oxide nanoparticles
Cecile Charbonneau
Peter Holliman
Matthew Davies
Trystan Watson
David Worsley
title_short Facile self-assembly and stabilization of metal oxide nanoparticles
title_full Facile self-assembly and stabilization of metal oxide nanoparticles
title_fullStr Facile self-assembly and stabilization of metal oxide nanoparticles
title_full_unstemmed Facile self-assembly and stabilization of metal oxide nanoparticles
title_sort Facile self-assembly and stabilization of metal oxide nanoparticles
author_id_str_mv 4dc059714847cb22ed922ab058950560
c8f52394d776279c9c690dc26066ddf9
4ad478e342120ca3434657eb13527636
a210327b52472cfe8df9b8108d661457
c426b1c1b0123d7057c1b969083cea69
author_id_fullname_str_mv 4dc059714847cb22ed922ab058950560_***_Cecile Charbonneau
c8f52394d776279c9c690dc26066ddf9_***_Peter Holliman
4ad478e342120ca3434657eb13527636_***_Matthew Davies
a210327b52472cfe8df9b8108d661457_***_Trystan Watson
c426b1c1b0123d7057c1b969083cea69_***_David Worsley
author Cecile Charbonneau
Peter Holliman
Matthew Davies
Trystan Watson
David Worsley
author2 Cecile Charbonneau
Peter Holliman
Matthew Davies
Trystan Watson
David Worsley
format Journal article
container_title Journal of Colloid and Interface Science
container_volume 442
container_start_page 110
publishDate 2015
institution Swansea University
issn 0021-9797
doi_str_mv 10.1016/j.jcis.2014.11.042
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Engineering and Applied Sciences - Materials Science and Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Materials Science and Engineering
document_store_str 0
active_str 0
description This paper describes a facile method of self-assembling different metal oxide nanoparticles into nanostructured materials via di-carboxylate linkers (oxalic acid) using TiO2 as an example. In this method, the di-carboxylate linkers react with surface hydroxyls on metal oxide nanoparticles forming covalent, ester-like bonds, which enable the binding of two metal oxide particles, one at either end of the linker and facilitates efficient self-assembly of one group of metal oxide nanoparticles homogeneously distributed onto the surface of another group. The oxalate linkers can then be removed by thermal decomposition. This approach is shown to be effective using differently-sized TiO2 nanoparticles, namely in-house synthesized 3–5 nm anatase nanocrystals and Degussa P25 titania particles (mean 21 nm particle size). Our data show that the application of a high temperature heat treatment (450 °C for 30 min), conventionally applied to achieve a stable porous structure by thermal decomposition of the linker molecules and by inducing inter-particle necking, damages the surface area of the nanostructured material. However, here we show that sintering at 300 °C for 30 min or by flash near infrared radiation sintering for 12 s efficiently decomposes the oxalate linkers and stabilizes the nanostructure of the material whilst maintaining its high surface area.
published_date 2015-03-15T03:24:59Z
_version_ 1763750864358473728
score 10.997956