Conference Paper/Proceeding/Abstract 839 views
An optimum framework for entities tracking in populations
Pages: 602 - 605
Swansea University Author:
Pavel Loskot
Full text not available from this repository: check for access using links below.
DOI (Published version): 10.1109/ISCCSP.2014.6877947
Abstract
An optimum framework for entities tracking in populations
| Published: |
2014
|
|---|---|
| URI: | https://cronfa.swan.ac.uk/Record/cronfa21292 |
| first_indexed |
2015-05-11T02:10:43Z |
|---|---|
| last_indexed |
2018-02-09T04:58:41Z |
| id |
cronfa21292 |
| recordtype |
SURis |
| fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2015-05-10T20:57:34.8516044</datestamp><bib-version>v2</bib-version><id>21292</id><entry>2015-05-10</entry><title>An optimum framework for entities tracking in populations</title><swanseaauthors><author><sid>bc7cba9ef306864239b9348c3aea4c3e</sid><ORCID>0000-0002-2773-2186</ORCID><firstname>Pavel</firstname><surname>Loskot</surname><name>Pavel Loskot</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2015-05-10</date><abstract/><type>Conference Paper/Proceeding/Abstract</type><journal/><paginationStart>602</paginationStart><paginationEnd>605</paginationEnd><publisher/><keywords/><publishedDay>31</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2014</publishedYear><publishedDate>2014-12-31</publishedDate><doi>10.1109/ISCCSP.2014.6877947</doi><url/><notes/><college>COLLEGE NANME</college><CollegeCode>COLLEGE CODE</CollegeCode><institution>Swansea University</institution><apcterm/><lastEdited>2015-05-10T20:57:34.8516044</lastEdited><Created>2015-05-10T20:56:48.4716152</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Uncategorised</level></path><authors><author><firstname>Pavel</firstname><surname>Loskot</surname><orcid>0000-0002-2773-2186</orcid><order>1</order></author></authors><documents/><OutputDurs/></rfc1807> |
| spelling |
2015-05-10T20:57:34.8516044 v2 21292 2015-05-10 An optimum framework for entities tracking in populations bc7cba9ef306864239b9348c3aea4c3e 0000-0002-2773-2186 Pavel Loskot Pavel Loskot true false 2015-05-10 Conference Paper/Proceeding/Abstract 602 605 31 12 2014 2014-12-31 10.1109/ISCCSP.2014.6877947 COLLEGE NANME COLLEGE CODE Swansea University 2015-05-10T20:57:34.8516044 2015-05-10T20:56:48.4716152 Faculty of Science and Engineering School of Engineering and Applied Sciences - Uncategorised Pavel Loskot 0000-0002-2773-2186 1 |
| title |
An optimum framework for entities tracking in populations |
| spellingShingle |
An optimum framework for entities tracking in populations Pavel Loskot |
| title_short |
An optimum framework for entities tracking in populations |
| title_full |
An optimum framework for entities tracking in populations |
| title_fullStr |
An optimum framework for entities tracking in populations |
| title_full_unstemmed |
An optimum framework for entities tracking in populations |
| title_sort |
An optimum framework for entities tracking in populations |
| author_id_str_mv |
bc7cba9ef306864239b9348c3aea4c3e |
| author_id_fullname_str_mv |
bc7cba9ef306864239b9348c3aea4c3e_***_Pavel Loskot |
| author |
Pavel Loskot |
| author2 |
Pavel Loskot |
| format |
Conference Paper/Proceeding/Abstract |
| container_start_page |
602 |
| publishDate |
2014 |
| institution |
Swansea University |
| doi_str_mv |
10.1109/ISCCSP.2014.6877947 |
| college_str |
Faculty of Science and Engineering |
| hierarchytype |
|
| hierarchy_top_id |
facultyofscienceandengineering |
| hierarchy_top_title |
Faculty of Science and Engineering |
| hierarchy_parent_id |
facultyofscienceandengineering |
| hierarchy_parent_title |
Faculty of Science and Engineering |
| department_str |
School of Engineering and Applied Sciences - Uncategorised{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Uncategorised |
| document_store_str |
0 |
| active_str |
0 |
| published_date |
2014-12-31T11:44:06Z |
| _version_ |
1850668531601899520 |
| score |
11.088971 |

