No Cover Image

Conference Paper/Proceeding/Abstract 1391 views

Variations on Image Reconstruction:Weighted Back Projection and Fourier Expectation Maximization

Andrew Ryan, Benjamin Mora Orcid Logo

Computer Graphics and Visual Computing

Swansea University Author: Benjamin Mora Orcid Logo

Full text not available from this repository: check for access using links below.

DOI (Published version): 10.2312/cgvc.20141201

Abstract

Expectation Maximization and Filtered Back Projection are two different techniques for Tomographic reconstruction. The paper combines both techniques by making use of the Fourier slice projection theorem.

Published in: Computer Graphics and Visual Computing
ISBN: 9783905674705
Published: The Eurographics Association 2014
Online Access: https://diglib.eg.org/handle/10.2312/cgvc.20141201.009-016
URI: https://cronfa.swan.ac.uk/Record/cronfa21545
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2016-06-09T12:08:03Z
last_indexed 2023-01-31T03:27:50Z
id cronfa21545
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2023-01-30T14:55:46.0724266</datestamp><bib-version>v2</bib-version><id>21545</id><entry>2015-05-19</entry><title>Variations on Image Reconstruction:Weighted Back Projection and Fourier Expectation Maximization</title><swanseaauthors><author><sid>557f93dfae240600e5bd4398bf203821</sid><ORCID>0000-0002-2945-3519</ORCID><firstname>Benjamin</firstname><surname>Mora</surname><name>Benjamin Mora</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2015-05-19</date><deptcode>SCS</deptcode><abstract>Expectation Maximization and Filtered Back Projection are two different techniques for Tomographic reconstruction. The paper combines both techniques by making use of the Fourier slice projection theorem.</abstract><type>Conference Paper/Proceeding/Abstract</type><journal>Computer Graphics and Visual Computing</journal><volume/><journalNumber/><paginationStart/><paginationEnd/><publisher>The Eurographics Association</publisher><placeOfPublication/><isbnPrint>9783905674705</isbnPrint><isbnElectronic/><issnPrint/><issnElectronic/><keywords>Expectation maximization, filtered backprojection</keywords><publishedDay>1</publishedDay><publishedMonth>9</publishedMonth><publishedYear>2014</publishedYear><publishedDate>2014-09-01</publishedDate><doi>10.2312/cgvc.20141201</doi><url>https://diglib.eg.org/handle/10.2312/cgvc.20141201.009-016</url><notes/><college>COLLEGE NANME</college><department>Computer Science</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>SCS</DepartmentCode><institution>Swansea University</institution><apcterm/><funders/><projectreference/><lastEdited>2023-01-30T14:55:46.0724266</lastEdited><Created>2015-05-19T14:07:41.2268323</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Computer Science</level></path><authors><author><firstname>Andrew</firstname><surname>Ryan</surname><order>1</order></author><author><firstname>Benjamin</firstname><surname>Mora</surname><orcid>0000-0002-2945-3519</orcid><order>2</order></author></authors><documents/><OutputDurs/></rfc1807>
spelling 2023-01-30T14:55:46.0724266 v2 21545 2015-05-19 Variations on Image Reconstruction:Weighted Back Projection and Fourier Expectation Maximization 557f93dfae240600e5bd4398bf203821 0000-0002-2945-3519 Benjamin Mora Benjamin Mora true false 2015-05-19 SCS Expectation Maximization and Filtered Back Projection are two different techniques for Tomographic reconstruction. The paper combines both techniques by making use of the Fourier slice projection theorem. Conference Paper/Proceeding/Abstract Computer Graphics and Visual Computing The Eurographics Association 9783905674705 Expectation maximization, filtered backprojection 1 9 2014 2014-09-01 10.2312/cgvc.20141201 https://diglib.eg.org/handle/10.2312/cgvc.20141201.009-016 COLLEGE NANME Computer Science COLLEGE CODE SCS Swansea University 2023-01-30T14:55:46.0724266 2015-05-19T14:07:41.2268323 Faculty of Science and Engineering School of Mathematics and Computer Science - Computer Science Andrew Ryan 1 Benjamin Mora 0000-0002-2945-3519 2
title Variations on Image Reconstruction:Weighted Back Projection and Fourier Expectation Maximization
spellingShingle Variations on Image Reconstruction:Weighted Back Projection and Fourier Expectation Maximization
Benjamin Mora
title_short Variations on Image Reconstruction:Weighted Back Projection and Fourier Expectation Maximization
title_full Variations on Image Reconstruction:Weighted Back Projection and Fourier Expectation Maximization
title_fullStr Variations on Image Reconstruction:Weighted Back Projection and Fourier Expectation Maximization
title_full_unstemmed Variations on Image Reconstruction:Weighted Back Projection and Fourier Expectation Maximization
title_sort Variations on Image Reconstruction:Weighted Back Projection and Fourier Expectation Maximization
author_id_str_mv 557f93dfae240600e5bd4398bf203821
author_id_fullname_str_mv 557f93dfae240600e5bd4398bf203821_***_Benjamin Mora
author Benjamin Mora
author2 Andrew Ryan
Benjamin Mora
format Conference Paper/Proceeding/Abstract
container_title Computer Graphics and Visual Computing
publishDate 2014
institution Swansea University
isbn 9783905674705
doi_str_mv 10.2312/cgvc.20141201
publisher The Eurographics Association
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Mathematics and Computer Science - Computer Science{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Computer Science
url https://diglib.eg.org/handle/10.2312/cgvc.20141201.009-016
document_store_str 0
active_str 0
description Expectation Maximization and Filtered Back Projection are two different techniques for Tomographic reconstruction. The paper combines both techniques by making use of the Fourier slice projection theorem.
published_date 2014-09-01T03:25:35Z
_version_ 1763750901611233280
score 11.035634