No Cover Image

Conference contribution 410 views

Variations on Image Reconstruction:Weighted Back Projection and Fourier Expectation Maximization / Andrew Ryan; Benjamin Mora

Computer Graphics & Visual Computing

Swansea University Author: Mora, Benjamin

Full text not available from this repository: check for access using links below.

DOI (Published version): 10.2312/cgvc.20141201

Abstract

Expectation Maximization and Filtered Back Projection are two different techniques for Tomographic reconstruction. The paper combines both techniques by making use of the Fourier slice projection theorem.

Published in: Computer Graphics & Visual Computing
Published: 2014
Online Access: http://www.eguk.org.uk/CGVC2014/programme.html
URI: https://cronfa.swan.ac.uk/Record/cronfa21545
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2016-06-09T12:08:03Z
last_indexed 2019-07-17T20:18:32Z
id cronfa21545
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2019-07-17T14:54:56Z</datestamp><bib-version>v2</bib-version><id>21545</id><entry>2015-05-19</entry><title>Variations on Image Reconstruction:Weighted Back Projection and Fourier Expectation Maximization</title><alternativeTitle></alternativeTitle><author>Benjamin Mora</author><firstname>Benjamin</firstname><surname>Mora</surname><active>true</active><ORCID>0000-0002-2945-3519</ORCID><ethesisStudent>false</ethesisStudent><sid>557f93dfae240600e5bd4398bf203821</sid><email>e14ba1d83e6749e191191237d163f4ff</email><emailaddr>QRmZSOtts1YrOVtSM+ZpbxbHhpNGhK+ZEf+BVPcHSeI=</emailaddr><date>2015-05-19</date><deptcode>SCS</deptcode><abstract>Expectation Maximization and Filtered Back Projection are two different techniques for Tomographic reconstruction. The paper combines both techniques by making use of the Fourier slice projection theorem.</abstract><type>Conference contribution</type><journal>Computer Graphics &amp; Visual Computing</journal><volume/><journalNumber/><paginationStart/><paginationEnd/><publisher></publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint/><issnElectronic/><keywords>Expectation maximization, filtered backprojection</keywords><publishedDay>1</publishedDay><publishedMonth>9</publishedMonth><publishedYear>2014</publishedYear><publishedDate>2014-09-01</publishedDate><doi>10.2312/cgvc.20141201</doi><url>http://www.eguk.org.uk/CGVC2014/programme.html</url><notes></notes><college>College of Science</college><department>Computer Science</department><CollegeCode>CSCI</CollegeCode><DepartmentCode>SCS</DepartmentCode><institution/><researchGroup>None</researchGroup><supervisor/><sponsorsfunders/><grantnumber/><degreelevel/><degreename>None</degreename><lastEdited>2019-07-17T14:54:56Z</lastEdited><Created>2015-05-19T14:07:41Z</Created><path><level id="1">College of Science</level><level id="2">Computer Science</level></path><authors><author><firstname>Andrew</firstname><surname>Ryan</surname><orcid/><order>1</order></author><author><firstname>Benjamin</firstname><surname>Mora</surname><orcid/><order>2</order></author></authors><documents/></rfc1807>
spelling 2019-07-17T14:54:56Z v2 21545 2015-05-19 Variations on Image Reconstruction:Weighted Back Projection and Fourier Expectation Maximization Benjamin Mora Benjamin Mora true 0000-0002-2945-3519 false 557f93dfae240600e5bd4398bf203821 e14ba1d83e6749e191191237d163f4ff QRmZSOtts1YrOVtSM+ZpbxbHhpNGhK+ZEf+BVPcHSeI= 2015-05-19 SCS Expectation Maximization and Filtered Back Projection are two different techniques for Tomographic reconstruction. The paper combines both techniques by making use of the Fourier slice projection theorem. Conference contribution Computer Graphics & Visual Computing Expectation maximization, filtered backprojection 1 9 2014 2014-09-01 10.2312/cgvc.20141201 http://www.eguk.org.uk/CGVC2014/programme.html College of Science Computer Science CSCI SCS None None 2019-07-17T14:54:56Z 2015-05-19T14:07:41Z College of Science Computer Science Andrew Ryan 1 Benjamin Mora 2
title Variations on Image Reconstruction:Weighted Back Projection and Fourier Expectation Maximization
spellingShingle Variations on Image Reconstruction:Weighted Back Projection and Fourier Expectation Maximization
Mora, Benjamin
title_short Variations on Image Reconstruction:Weighted Back Projection and Fourier Expectation Maximization
title_full Variations on Image Reconstruction:Weighted Back Projection and Fourier Expectation Maximization
title_fullStr Variations on Image Reconstruction:Weighted Back Projection and Fourier Expectation Maximization
title_full_unstemmed Variations on Image Reconstruction:Weighted Back Projection and Fourier Expectation Maximization
title_sort Variations on Image Reconstruction:Weighted Back Projection and Fourier Expectation Maximization
author_id_str_mv 557f93dfae240600e5bd4398bf203821
author_id_fullname_str_mv 557f93dfae240600e5bd4398bf203821_***_Mora, Benjamin
author Mora, Benjamin
author2 Andrew Ryan
Benjamin Mora
format Conference contribution
container_title Computer Graphics & Visual Computing
publishDate 2014
institution Swansea University
doi_str_mv 10.2312/cgvc.20141201
college_str College of Science
hierarchytype
hierarchy_top_id collegeofscience
hierarchy_top_title College of Science
hierarchy_parent_id collegeofscience
hierarchy_parent_title College of Science
department_str Computer Science{{{_:::_}}}College of Science{{{_:::_}}}Computer Science
url http://www.eguk.org.uk/CGVC2014/programme.html
document_store_str 0
active_str 1
description Expectation Maximization and Filtered Back Projection are two different techniques for Tomographic reconstruction. The paper combines both techniques by making use of the Fourier slice projection theorem.
published_date 2014-09-01T15:02:43Z
_version_ 1642485423386132480
score 10.836546