Journal article 1021 views 415 downloads
Knowledge-Assisted Ranking: A Visual Analytic Application for Sport Event Data
David Chung,
Philip Legg,
Matthew Parry,
Rhodri Bown,
Iwan Griffiths,
Robert Laramee,
Min Chen,
Bob Laramee
IEEE Computer Graphics and Applications, Pages: 1 - 1
Swansea University Authors: Iwan Griffiths, Bob Laramee
-
PDF | Author's Original
Download (5.93MB)
DOI (Published version): 10.1109/MCG.2015.25
Abstract
Organizing sport video data for performance analysis can be challenging, especially when this involvesmultiple attributes, and the criteria for sorting frequently changes depending on the user’s task. In thiswork, we propose a visual analytic system to convert a user’s knowledge on rankings to suppo...
Published in: | IEEE Computer Graphics and Applications |
---|---|
Published: |
2015
|
Online Access: |
http://cs.swan.ac.uk/~csbob/research/ |
URI: | https://cronfa.swan.ac.uk/Record/cronfa22327 |
first_indexed |
2015-07-09T02:07:18Z |
---|---|
last_indexed |
2021-01-29T03:37:15Z |
id |
cronfa22327 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2021-01-28T13:08:28.1002292</datestamp><bib-version>v2</bib-version><id>22327</id><entry>2015-07-08</entry><title>Knowledge-Assisted Ranking: A Visual Analytic Application for Sport Event Data</title><swanseaauthors><author><sid>2ed2cc8d3dff635184def8d15afa21a9</sid><firstname>Iwan</firstname><surname>Griffiths</surname><name>Iwan Griffiths</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>7737f06e2186278a925f6119c48db8b1</sid><ORCID>0000-0002-3874-6145</ORCID><firstname>Bob</firstname><surname>Laramee</surname><name>Bob Laramee</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2015-07-08</date><deptcode>EAAS</deptcode><abstract>Organizing sport video data for performance analysis can be challenging, especially when this involvesmultiple attributes, and the criteria for sorting frequently changes depending on the user’s task. In thiswork, we propose a visual analytic system to convert a user’s knowledge on rankings to support such aprocess. The system enables users to specify a sort requirement in a flexible manner without dependingon specific knowledge about individual sort keys. We use regression techniques to train different analyticalmodels for different types of sorting requirements. We use visualization to facilitate the discovery ofknowledge at different stages of the visual analytic process. This includes visualizing the parameters of theranking model, visualizing the results of a sort query for interactive exploration, and the playback of sortedvideo clips. We demonstrate the system with a case study in rugby to find key instances for analyzing teamand player performance.</abstract><type>Journal Article</type><journal>IEEE Computer Graphics and Applications</journal><volume/><journalNumber/><paginationStart>1</paginationStart><paginationEnd>1</paginationEnd><publisher/><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint/><issnElectronic/><keywords>data visualization, visual analytics</keywords><publishedDay>31</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2015</publishedYear><publishedDate>2015-12-31</publishedDate><doi>10.1109/MCG.2015.25</doi><url>http://cs.swan.ac.uk/~csbob/research/</url><notes/><college>COLLEGE NANME</college><department>Engineering and Applied Sciences School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>EAAS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2021-01-28T13:08:28.1002292</lastEdited><Created>2015-07-08T15:26:11.2271740</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Computer Science</level></path><authors><author><firstname>David</firstname><surname>Chung</surname><order>1</order></author><author><firstname>Philip</firstname><surname>Legg</surname><order>2</order></author><author><firstname>Matthew</firstname><surname>Parry</surname><order>3</order></author><author><firstname>Rhodri</firstname><surname>Bown</surname><order>4</order></author><author><firstname>Iwan</firstname><surname>Griffiths</surname><order>5</order></author><author><firstname>Robert</firstname><surname>Laramee</surname><order>6</order></author><author><firstname>Min</firstname><surname>Chen</surname><order>7</order></author><author><firstname>Bob</firstname><surname>Laramee</surname><orcid>0000-0002-3874-6145</orcid><order>8</order></author></authors><documents><document><filename>0022327-07122015102607.pdf</filename><originalFilename>chung15knowledge.pdf</originalFilename><uploaded>2015-12-07T10:26:07.2500000</uploaded><type>Output</type><contentLength>6162703</contentLength><contentType>application/pdf</contentType><version>Author's Original</version><cronfaStatus>true</cronfaStatus><embargoDate>2015-12-07T00:00:00.0000000</embargoDate><copyrightCorrect>false</copyrightCorrect></document></documents><OutputDurs/></rfc1807> |
spelling |
2021-01-28T13:08:28.1002292 v2 22327 2015-07-08 Knowledge-Assisted Ranking: A Visual Analytic Application for Sport Event Data 2ed2cc8d3dff635184def8d15afa21a9 Iwan Griffiths Iwan Griffiths true false 7737f06e2186278a925f6119c48db8b1 0000-0002-3874-6145 Bob Laramee Bob Laramee true false 2015-07-08 EAAS Organizing sport video data for performance analysis can be challenging, especially when this involvesmultiple attributes, and the criteria for sorting frequently changes depending on the user’s task. In thiswork, we propose a visual analytic system to convert a user’s knowledge on rankings to support such aprocess. The system enables users to specify a sort requirement in a flexible manner without dependingon specific knowledge about individual sort keys. We use regression techniques to train different analyticalmodels for different types of sorting requirements. We use visualization to facilitate the discovery ofknowledge at different stages of the visual analytic process. This includes visualizing the parameters of theranking model, visualizing the results of a sort query for interactive exploration, and the playback of sortedvideo clips. We demonstrate the system with a case study in rugby to find key instances for analyzing teamand player performance. Journal Article IEEE Computer Graphics and Applications 1 1 data visualization, visual analytics 31 12 2015 2015-12-31 10.1109/MCG.2015.25 http://cs.swan.ac.uk/~csbob/research/ COLLEGE NANME Engineering and Applied Sciences School COLLEGE CODE EAAS Swansea University 2021-01-28T13:08:28.1002292 2015-07-08T15:26:11.2271740 Faculty of Science and Engineering School of Mathematics and Computer Science - Computer Science David Chung 1 Philip Legg 2 Matthew Parry 3 Rhodri Bown 4 Iwan Griffiths 5 Robert Laramee 6 Min Chen 7 Bob Laramee 0000-0002-3874-6145 8 0022327-07122015102607.pdf chung15knowledge.pdf 2015-12-07T10:26:07.2500000 Output 6162703 application/pdf Author's Original true 2015-12-07T00:00:00.0000000 false |
title |
Knowledge-Assisted Ranking: A Visual Analytic Application for Sport Event Data |
spellingShingle |
Knowledge-Assisted Ranking: A Visual Analytic Application for Sport Event Data Iwan Griffiths Bob Laramee |
title_short |
Knowledge-Assisted Ranking: A Visual Analytic Application for Sport Event Data |
title_full |
Knowledge-Assisted Ranking: A Visual Analytic Application for Sport Event Data |
title_fullStr |
Knowledge-Assisted Ranking: A Visual Analytic Application for Sport Event Data |
title_full_unstemmed |
Knowledge-Assisted Ranking: A Visual Analytic Application for Sport Event Data |
title_sort |
Knowledge-Assisted Ranking: A Visual Analytic Application for Sport Event Data |
author_id_str_mv |
2ed2cc8d3dff635184def8d15afa21a9 7737f06e2186278a925f6119c48db8b1 |
author_id_fullname_str_mv |
2ed2cc8d3dff635184def8d15afa21a9_***_Iwan Griffiths 7737f06e2186278a925f6119c48db8b1_***_Bob Laramee |
author |
Iwan Griffiths Bob Laramee |
author2 |
David Chung Philip Legg Matthew Parry Rhodri Bown Iwan Griffiths Robert Laramee Min Chen Bob Laramee |
format |
Journal article |
container_title |
IEEE Computer Graphics and Applications |
container_start_page |
1 |
publishDate |
2015 |
institution |
Swansea University |
doi_str_mv |
10.1109/MCG.2015.25 |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Mathematics and Computer Science - Computer Science{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Computer Science |
url |
http://cs.swan.ac.uk/~csbob/research/ |
document_store_str |
1 |
active_str |
0 |
description |
Organizing sport video data for performance analysis can be challenging, especially when this involvesmultiple attributes, and the criteria for sorting frequently changes depending on the user’s task. In thiswork, we propose a visual analytic system to convert a user’s knowledge on rankings to support such aprocess. The system enables users to specify a sort requirement in a flexible manner without dependingon specific knowledge about individual sort keys. We use regression techniques to train different analyticalmodels for different types of sorting requirements. We use visualization to facilitate the discovery ofknowledge at different stages of the visual analytic process. This includes visualizing the parameters of theranking model, visualizing the results of a sort query for interactive exploration, and the playback of sortedvideo clips. We demonstrate the system with a case study in rugby to find key instances for analyzing teamand player performance. |
published_date |
2015-12-31T12:45:17Z |
_version_ |
1821318963980664832 |
score |
11.048042 |