No Cover Image

Journal article 974 views 306 downloads

Computational aerodynamic optimisation of vertical axis wind turbine blades / Matt Kear; Ben Evans; Rob Ellis; Sam Rolland

Applied Mathematical Modelling, Volume: 40, Issue: 2, Pages: 1038 - 1051

Swansea University Authors: Ben, Evans, Sam, Rolland

Abstract

The approach and results of a parametric aerodynamic optimisation study is presented to develop the blade design for a novel implementation of a vertical axis wind turbine. It was applied to optimise the two-dimensional cross-sectional geometry of the blades comprising the turbine. Unsteady viscous...

Full description

Published in: Applied Mathematical Modelling
ISSN: 0307-904X
Published: 2016
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa22343
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2015-07-14T02:04:09Z
last_indexed 2020-07-01T18:33:34Z
id cronfa22343
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2020-07-01T16:17:01.0128995</datestamp><bib-version>v2</bib-version><id>22343</id><entry>2015-07-13</entry><title>Computational aerodynamic optimisation of vertical axis wind turbine blades</title><swanseaauthors><author><sid>3d273fecc8121fe6b53b8fe5281b9c97</sid><ORCID>0000-0003-3662-9583</ORCID><firstname>Ben</firstname><surname>Evans</surname><name>Ben Evans</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>c14ac34a71e9c058d1d2a353b44a24cd</sid><ORCID>0000-0003-0455-5620</ORCID><firstname>Sam</firstname><surname>Rolland</surname><name>Sam Rolland</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2015-07-13</date><deptcode>EEN</deptcode><abstract>The approach and results of a parametric aerodynamic optimisation study is presented to develop the blade design for a novel implementation of a vertical axis wind turbine. It was applied to optimise the two-dimensional cross-sectional geometry of the blades comprising the turbine. Unsteady viscous computational fluid dynamic simulations were used to evaluate blade performance. To compare geometries, the non-dimensional Coefficient of Power was used as a fitness function. Moving meshes were used to study the transient nature of the physical process. A new parameterisation approach using circular arcs has been developed for the blade cross sections. The optimisation process was conducted in two stages: firstly a Design of Experiments based response surface fitting was used to explore the parametric design space followed by the use of a Nelder-Mead simplex gradient-based optimisation procedure. The outcome of the optimisation study is a new blade design that is currently being tested in full-scale concept trials by a partnering wind energy company.</abstract><type>Journal Article</type><journal>Applied Mathematical Modelling</journal><volume>40</volume><journalNumber>2</journalNumber><paginationStart>1038</paginationStart><paginationEnd>1051</paginationEnd><publisher/><issnPrint>0307-904X</issnPrint><keywords/><publishedDay>15</publishedDay><publishedMonth>1</publishedMonth><publishedYear>2016</publishedYear><publishedDate>2016-01-15</publishedDate><doi>10.1016/j.apm.2015.07.001</doi><url/><notes>Available online 21 July 2015</notes><college>COLLEGE NANME</college><department>Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>EEN</DepartmentCode><institution>Swansea University</institution><lastEdited>2020-07-01T16:17:01.0128995</lastEdited><Created>2015-07-13T10:03:25.6160071</Created><path><level id="1">College of Engineering</level><level id="2">Engineering</level></path><authors><author><firstname>Matt</firstname><surname>Kear</surname><order>1</order></author><author><firstname>Ben</firstname><surname>Evans</surname><orcid>0000-0003-3662-9583</orcid><order>2</order></author><author><firstname>Rob</firstname><surname>Ellis</surname><order>3</order></author><author><firstname>Sam</firstname><surname>Rolland</surname><orcid>0000-0003-0455-5620</orcid><order>4</order></author></authors><documents><document><filename>0022343-225201662353PM.pdf</filename><originalFilename>JonesComputationalaerodynamicoptimisation2015AM.pdf</originalFilename><uploaded>2016-02-25T18:23:53.3900000</uploaded><type>Output</type><contentLength>1802363</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><action/><embargoDate>2016-07-21T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect></document></documents><OutputDurs/></rfc1807>
spelling 2020-07-01T16:17:01.0128995 v2 22343 2015-07-13 Computational aerodynamic optimisation of vertical axis wind turbine blades 3d273fecc8121fe6b53b8fe5281b9c97 0000-0003-3662-9583 Ben Evans Ben Evans true false c14ac34a71e9c058d1d2a353b44a24cd 0000-0003-0455-5620 Sam Rolland Sam Rolland true false 2015-07-13 EEN The approach and results of a parametric aerodynamic optimisation study is presented to develop the blade design for a novel implementation of a vertical axis wind turbine. It was applied to optimise the two-dimensional cross-sectional geometry of the blades comprising the turbine. Unsteady viscous computational fluid dynamic simulations were used to evaluate blade performance. To compare geometries, the non-dimensional Coefficient of Power was used as a fitness function. Moving meshes were used to study the transient nature of the physical process. A new parameterisation approach using circular arcs has been developed for the blade cross sections. The optimisation process was conducted in two stages: firstly a Design of Experiments based response surface fitting was used to explore the parametric design space followed by the use of a Nelder-Mead simplex gradient-based optimisation procedure. The outcome of the optimisation study is a new blade design that is currently being tested in full-scale concept trials by a partnering wind energy company. Journal Article Applied Mathematical Modelling 40 2 1038 1051 0307-904X 15 1 2016 2016-01-15 10.1016/j.apm.2015.07.001 Available online 21 July 2015 COLLEGE NANME Engineering COLLEGE CODE EEN Swansea University 2020-07-01T16:17:01.0128995 2015-07-13T10:03:25.6160071 College of Engineering Engineering Matt Kear 1 Ben Evans 0000-0003-3662-9583 2 Rob Ellis 3 Sam Rolland 0000-0003-0455-5620 4 0022343-225201662353PM.pdf JonesComputationalaerodynamicoptimisation2015AM.pdf 2016-02-25T18:23:53.3900000 Output 1802363 application/pdf Accepted Manuscript true 2016-07-21T00:00:00.0000000 true
title Computational aerodynamic optimisation of vertical axis wind turbine blades
spellingShingle Computational aerodynamic optimisation of vertical axis wind turbine blades
Ben, Evans
Sam, Rolland
title_short Computational aerodynamic optimisation of vertical axis wind turbine blades
title_full Computational aerodynamic optimisation of vertical axis wind turbine blades
title_fullStr Computational aerodynamic optimisation of vertical axis wind turbine blades
title_full_unstemmed Computational aerodynamic optimisation of vertical axis wind turbine blades
title_sort Computational aerodynamic optimisation of vertical axis wind turbine blades
author_id_str_mv 3d273fecc8121fe6b53b8fe5281b9c97
c14ac34a71e9c058d1d2a353b44a24cd
author_id_fullname_str_mv 3d273fecc8121fe6b53b8fe5281b9c97_***_Ben, Evans
c14ac34a71e9c058d1d2a353b44a24cd_***_Sam, Rolland
author Ben, Evans
Sam, Rolland
author2 Matt Kear
Ben Evans
Rob Ellis
Sam Rolland
format Journal article
container_title Applied Mathematical Modelling
container_volume 40
container_issue 2
container_start_page 1038
publishDate 2016
institution Swansea University
issn 0307-904X
doi_str_mv 10.1016/j.apm.2015.07.001
college_str College of Engineering
hierarchytype
hierarchy_top_id collegeofengineering
hierarchy_top_title College of Engineering
hierarchy_parent_id collegeofengineering
hierarchy_parent_title College of Engineering
department_str Engineering{{{_:::_}}}College of Engineering{{{_:::_}}}Engineering
document_store_str 1
active_str 0
description The approach and results of a parametric aerodynamic optimisation study is presented to develop the blade design for a novel implementation of a vertical axis wind turbine. It was applied to optimise the two-dimensional cross-sectional geometry of the blades comprising the turbine. Unsteady viscous computational fluid dynamic simulations were used to evaluate blade performance. To compare geometries, the non-dimensional Coefficient of Power was used as a fitness function. Moving meshes were used to study the transient nature of the physical process. A new parameterisation approach using circular arcs has been developed for the blade cross sections. The optimisation process was conducted in two stages: firstly a Design of Experiments based response surface fitting was used to explore the parametric design space followed by the use of a Nelder-Mead simplex gradient-based optimisation procedure. The outcome of the optimisation study is a new blade design that is currently being tested in full-scale concept trials by a partnering wind energy company.
published_date 2016-01-15T03:31:48Z
_version_ 1682036603601551360
score 10.75878