No Cover Image

Conference Paper/Proceeding/Abstract 535 views

Evaluating the Quality of Clustering Algorithms Using Cluster Path Lengths / F. Zaidi; D. Archambault; G. Melançon; Daniel Archambault

Advances in Data Mining. Applications and Theoretical Aspects, Volume: 6171 LNAI, Pages: 42 - 56

Swansea University Author: Daniel, Archambault

Full text not available from this repository: check for access using links below.

DOI (Published version): 10.1007/978-3-642-14400-4_4

Published in: Advances in Data Mining. Applications and Theoretical Aspects
ISBN: 978-3-642-14399-1 978-3-642-14400-4
Published: 2010
Online Access: http://www.scopus.com/inward/record.url?eid=2-s2.0-77954867692&partnerID=MN8TOARS
URI: https://cronfa.swan.ac.uk/Record/cronfa23049
Tags: Add Tag
No Tags, Be the first to tag this record!
Item Description: @article archambault2010,title = Evaluating the quality of clustering algorithms using cluster path lengths,journal = Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),year = 2010,volume = 6171 LNAI,pages = 42-56,author = Zaidi, F. and Archambault, D. and Melançon, G.
College: College of Science
Start Page: 42
End Page: 56