No Cover Image

Journal article 1530 views

Foundation species' overlap enhances biodiversity and multifunctionality from the patch to landscape scale in southeastern United States salt marshes

Christine Angelini, Tjisse van der Heide, John Griffin Orcid Logo, Joseph P. Morton, Marlous Derksen-Hooijberg, Leon P. M. Lamers, Alfons J. P. Smolders, Brian R. Silliman

Proceedings of the Royal Society B: Biological Sciences, Volume: 282, Issue: 1811, Start page: 20150421

Swansea University Author: John Griffin Orcid Logo

Full text not available from this repository: check for access using links below.

DOI (Published version): 10.1098/rspb.2015.0421

Abstract

Although there is mounting evidence that biodiversity is an important and widespread driver of ecosystem multifunctionality, much of this research has focused on small-scale biodiversity manipulations. Hence, which mechanisms maintain patches of enhanced biodiversity in natural systems and if these...

Full description

Published in: Proceedings of the Royal Society B: Biological Sciences
Published: 2015
URI: https://cronfa.swan.ac.uk/Record/cronfa23636
first_indexed 2015-10-09T02:08:15Z
last_indexed 2018-02-09T05:02:39Z
id cronfa23636
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2017-10-25T17:08:27.0305019</datestamp><bib-version>v2</bib-version><id>23636</id><entry>2015-10-08</entry><title>Foundation species' overlap enhances biodiversity and multifunctionality from the patch to landscape scale in southeastern United States salt marshes</title><swanseaauthors><author><sid>9814fbffa76dd9c9a207166354cd0b2f</sid><ORCID>0000-0003-3295-6480</ORCID><firstname>John</firstname><surname>Griffin</surname><name>John Griffin</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2015-10-08</date><deptcode>BGPS</deptcode><abstract>Although there is mounting evidence that biodiversity is an important and widespread driver of ecosystem multifunctionality, much of this research has focused on small-scale biodiversity manipulations. Hence, which mechanisms maintain patches of enhanced biodiversity in natural systems and if these patches elevate ecosystem multifunctionality at both local and landscape scales remain outstanding questions. In a 17 month experiment conducted within southeastern United States salt marshes, we found that patches of enhanced biodiversity and multifunctionality arise only where habitat-forming foundation species overlap&#x2014;i.e. where aggregations of ribbed mussels (Geukensia demissa) form around cordgrass (Spartina alterniflora) stems. By empirically scaling up our experimental results to the marsh platform at 12 sites, we further show that mussels&#x2014;despite covering only approximately 1% of the marsh surface&#x2014;strongly enhance five distinct ecosystem functions, including decomposition, primary production and water infiltration rate, at the landscape scale. Thus, mussels create conditions that support the co-occurrence of high densities of functionally distinct organisms within cordgrass and, in doing so, elevate salt marsh multifunctionality from the patch to landscape scale. Collectively, these findings suggest that patterns in foundation species' overlap drive variation in biodiversity and ecosystem functioning within and across natural ecosystems. We therefore argue that foundation species should be integrated in our conceptual understanding of forces that moderate biodiversity&#x2013;ecosystem functioning relationships, approaches for conserving species diversity and strategies to improve the multifunctionality of degraded ecosystems.</abstract><type>Journal Article</type><journal>Proceedings of the Royal Society B: Biological Sciences</journal><volume>282</volume><journalNumber>1811</journalNumber><paginationStart>20150421</paginationStart><publisher/><keywords/><publishedDay>1</publishedDay><publishedMonth>7</publishedMonth><publishedYear>2015</publishedYear><publishedDate>2015-07-01</publishedDate><doi>10.1098/rspb.2015.0421</doi><url/><notes/><college>COLLEGE NANME</college><department>Biosciences Geography and Physics School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>BGPS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2017-10-25T17:08:27.0305019</lastEdited><Created>2015-10-08T19:50:20.5618335</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Biosciences, Geography and Physics - Biosciences</level></path><authors><author><firstname>Christine</firstname><surname>Angelini</surname><order>1</order></author><author><firstname>Tjisse</firstname><surname>van der Heide</surname><order>2</order></author><author><firstname>John</firstname><surname>Griffin</surname><orcid>0000-0003-3295-6480</orcid><order>3</order></author><author><firstname>Joseph P.</firstname><surname>Morton</surname><order>4</order></author><author><firstname>Marlous</firstname><surname>Derksen-Hooijberg</surname><order>5</order></author><author><firstname>Leon P. M.</firstname><surname>Lamers</surname><order>6</order></author><author><firstname>Alfons J. P.</firstname><surname>Smolders</surname><order>7</order></author><author><firstname>Brian R.</firstname><surname>Silliman</surname><order>8</order></author></authors><documents/><OutputDurs/></rfc1807>
spelling 2017-10-25T17:08:27.0305019 v2 23636 2015-10-08 Foundation species' overlap enhances biodiversity and multifunctionality from the patch to landscape scale in southeastern United States salt marshes 9814fbffa76dd9c9a207166354cd0b2f 0000-0003-3295-6480 John Griffin John Griffin true false 2015-10-08 BGPS Although there is mounting evidence that biodiversity is an important and widespread driver of ecosystem multifunctionality, much of this research has focused on small-scale biodiversity manipulations. Hence, which mechanisms maintain patches of enhanced biodiversity in natural systems and if these patches elevate ecosystem multifunctionality at both local and landscape scales remain outstanding questions. In a 17 month experiment conducted within southeastern United States salt marshes, we found that patches of enhanced biodiversity and multifunctionality arise only where habitat-forming foundation species overlap—i.e. where aggregations of ribbed mussels (Geukensia demissa) form around cordgrass (Spartina alterniflora) stems. By empirically scaling up our experimental results to the marsh platform at 12 sites, we further show that mussels—despite covering only approximately 1% of the marsh surface—strongly enhance five distinct ecosystem functions, including decomposition, primary production and water infiltration rate, at the landscape scale. Thus, mussels create conditions that support the co-occurrence of high densities of functionally distinct organisms within cordgrass and, in doing so, elevate salt marsh multifunctionality from the patch to landscape scale. Collectively, these findings suggest that patterns in foundation species' overlap drive variation in biodiversity and ecosystem functioning within and across natural ecosystems. We therefore argue that foundation species should be integrated in our conceptual understanding of forces that moderate biodiversity–ecosystem functioning relationships, approaches for conserving species diversity and strategies to improve the multifunctionality of degraded ecosystems. Journal Article Proceedings of the Royal Society B: Biological Sciences 282 1811 20150421 1 7 2015 2015-07-01 10.1098/rspb.2015.0421 COLLEGE NANME Biosciences Geography and Physics School COLLEGE CODE BGPS Swansea University 2017-10-25T17:08:27.0305019 2015-10-08T19:50:20.5618335 Faculty of Science and Engineering School of Biosciences, Geography and Physics - Biosciences Christine Angelini 1 Tjisse van der Heide 2 John Griffin 0000-0003-3295-6480 3 Joseph P. Morton 4 Marlous Derksen-Hooijberg 5 Leon P. M. Lamers 6 Alfons J. P. Smolders 7 Brian R. Silliman 8
title Foundation species' overlap enhances biodiversity and multifunctionality from the patch to landscape scale in southeastern United States salt marshes
spellingShingle Foundation species' overlap enhances biodiversity and multifunctionality from the patch to landscape scale in southeastern United States salt marshes
John Griffin
title_short Foundation species' overlap enhances biodiversity and multifunctionality from the patch to landscape scale in southeastern United States salt marshes
title_full Foundation species' overlap enhances biodiversity and multifunctionality from the patch to landscape scale in southeastern United States salt marshes
title_fullStr Foundation species' overlap enhances biodiversity and multifunctionality from the patch to landscape scale in southeastern United States salt marshes
title_full_unstemmed Foundation species' overlap enhances biodiversity and multifunctionality from the patch to landscape scale in southeastern United States salt marshes
title_sort Foundation species' overlap enhances biodiversity and multifunctionality from the patch to landscape scale in southeastern United States salt marshes
author_id_str_mv 9814fbffa76dd9c9a207166354cd0b2f
author_id_fullname_str_mv 9814fbffa76dd9c9a207166354cd0b2f_***_John Griffin
author John Griffin
author2 Christine Angelini
Tjisse van der Heide
John Griffin
Joseph P. Morton
Marlous Derksen-Hooijberg
Leon P. M. Lamers
Alfons J. P. Smolders
Brian R. Silliman
format Journal article
container_title Proceedings of the Royal Society B: Biological Sciences
container_volume 282
container_issue 1811
container_start_page 20150421
publishDate 2015
institution Swansea University
doi_str_mv 10.1098/rspb.2015.0421
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Biosciences, Geography and Physics - Biosciences{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Biosciences, Geography and Physics - Biosciences
document_store_str 0
active_str 0
description Although there is mounting evidence that biodiversity is an important and widespread driver of ecosystem multifunctionality, much of this research has focused on small-scale biodiversity manipulations. Hence, which mechanisms maintain patches of enhanced biodiversity in natural systems and if these patches elevate ecosystem multifunctionality at both local and landscape scales remain outstanding questions. In a 17 month experiment conducted within southeastern United States salt marshes, we found that patches of enhanced biodiversity and multifunctionality arise only where habitat-forming foundation species overlap—i.e. where aggregations of ribbed mussels (Geukensia demissa) form around cordgrass (Spartina alterniflora) stems. By empirically scaling up our experimental results to the marsh platform at 12 sites, we further show that mussels—despite covering only approximately 1% of the marsh surface—strongly enhance five distinct ecosystem functions, including decomposition, primary production and water infiltration rate, at the landscape scale. Thus, mussels create conditions that support the co-occurrence of high densities of functionally distinct organisms within cordgrass and, in doing so, elevate salt marsh multifunctionality from the patch to landscape scale. Collectively, these findings suggest that patterns in foundation species' overlap drive variation in biodiversity and ecosystem functioning within and across natural ecosystems. We therefore argue that foundation species should be integrated in our conceptual understanding of forces that moderate biodiversity–ecosystem functioning relationships, approaches for conserving species diversity and strategies to improve the multifunctionality of degraded ecosystems.
published_date 2015-07-01T03:51:56Z
_version_ 1822281975026679808
score 11.048453