No Cover Image

Journal article 727 views 264 downloads

Label-free cell cycle analysis for high-throughput imaging flow cytometry

Thomas Blasi, Holger Hennig, Huw Summers Orcid Logo, Fabian J. Theis, Joana Cerveira, James O. Patterson, Derek Davies, Andrew Filby, Anne E. Carpenter, Paul Rees Orcid Logo

Nature Communications, Volume: 7

Swansea University Authors: Huw Summers Orcid Logo, Paul Rees Orcid Logo

  • ReesLabelFreeCycleAnalysis2016.pdf

    PDF | Version of Record

    Released under the terms of a Creative Commons Attribution License (CC-BY).

    Download (1.93MB)

Check full text

DOI (Published version): 10.1038/ncomms10256

Abstract

Imaging flow cytometry combines the high-throughput capabilities of conventional flow cytometry with single-cell imaging. Here we demonstrate label-free prediction of DNA content and quantification of the mitotic cell cycle phases by applying supervised machine learning to morphological features ext...

Full description

Published in: Nature Communications
ISSN: 2041-1723 2041-1723
Published: 2016
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa26064
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2016-02-03T01:56:18Z
last_indexed 2020-12-18T03:41:11Z
id cronfa26064
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2020-12-17T10:37:21.3817828</datestamp><bib-version>v2</bib-version><id>26064</id><entry>2016-02-02</entry><title>Label-free cell cycle analysis for high-throughput imaging flow cytometry</title><swanseaauthors><author><sid>a61c15e220837ebfa52648c143769427</sid><ORCID>0000-0002-0898-5612</ORCID><firstname>Huw</firstname><surname>Summers</surname><name>Huw Summers</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>537a2fe031a796a3bde99679ee8c24f5</sid><ORCID>0000-0002-7715-6914</ORCID><firstname>Paul</firstname><surname>Rees</surname><name>Paul Rees</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2016-02-02</date><deptcode>MEDE</deptcode><abstract>Imaging flow cytometry combines the high-throughput capabilities of conventional flow cytometry with single-cell imaging. Here we demonstrate label-free prediction of DNA content and quantification of the mitotic cell cycle phases by applying supervised machine learning to morphological features extracted from brightfield and the typically ignored darkfield images of cells from an imaging flow cytometer. This method facilitates non-destructive monitoring of cells avoiding potentially confounding effects of fluorescent stains while maximizing available fluorescence channels. The method is effective in cell cycle analysis for mammalian cells, both fixed and live, and accurately assesses the impact of a cell cycle mitotic phase blocking agent. As the same method is effective in predicting the DNA content of fission yeast, it is likely to have a broad application to other cell types.</abstract><type>Journal Article</type><journal>Nature Communications</journal><volume>7</volume><journalNumber/><paginationStart/><paginationEnd/><publisher/><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>2041-1723</issnPrint><issnElectronic>2041-1723</issnElectronic><keywords/><publishedDay>7</publishedDay><publishedMonth>1</publishedMonth><publishedYear>2016</publishedYear><publishedDate>2016-01-07</publishedDate><doi>10.1038/ncomms10256</doi><url/><notes/><college>COLLEGE NANME</college><department>Biomedical Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MEDE</DepartmentCode><institution>Swansea University</institution><degreesponsorsfunders>RCUK</degreesponsorsfunders><apcterm/><lastEdited>2020-12-17T10:37:21.3817828</lastEdited><Created>2016-02-02T16:50:07.4613343</Created><path><level id="1">College of Engineering</level><level id="2">Engineering</level></path><authors><author><firstname>Thomas</firstname><surname>Blasi</surname><order>1</order></author><author><firstname>Holger</firstname><surname>Hennig</surname><order>2</order></author><author><firstname>Huw</firstname><surname>Summers</surname><orcid>0000-0002-0898-5612</orcid><order>3</order></author><author><firstname>Fabian J.</firstname><surname>Theis</surname><order>4</order></author><author><firstname>Joana</firstname><surname>Cerveira</surname><order>5</order></author><author><firstname>James O.</firstname><surname>Patterson</surname><order>6</order></author><author><firstname>Derek</firstname><surname>Davies</surname><order>7</order></author><author><firstname>Andrew</firstname><surname>Filby</surname><order>8</order></author><author><firstname>Anne E.</firstname><surname>Carpenter</surname><order>9</order></author><author><firstname>Paul</firstname><surname>Rees</surname><orcid>0000-0002-7715-6914</orcid><order>10</order></author></authors><documents><document><filename>0026064-02022016140251.pdf</filename><originalFilename>ReesLabelFreeCycleAnalysis2016.pdf</originalFilename><uploaded>2016-02-02T14:02:51.1430000</uploaded><type>Output</type><contentLength>2035125</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>Released under the terms of a Creative Commons Attribution License (CC-BY).</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807>
spelling 2020-12-17T10:37:21.3817828 v2 26064 2016-02-02 Label-free cell cycle analysis for high-throughput imaging flow cytometry a61c15e220837ebfa52648c143769427 0000-0002-0898-5612 Huw Summers Huw Summers true false 537a2fe031a796a3bde99679ee8c24f5 0000-0002-7715-6914 Paul Rees Paul Rees true false 2016-02-02 MEDE Imaging flow cytometry combines the high-throughput capabilities of conventional flow cytometry with single-cell imaging. Here we demonstrate label-free prediction of DNA content and quantification of the mitotic cell cycle phases by applying supervised machine learning to morphological features extracted from brightfield and the typically ignored darkfield images of cells from an imaging flow cytometer. This method facilitates non-destructive monitoring of cells avoiding potentially confounding effects of fluorescent stains while maximizing available fluorescence channels. The method is effective in cell cycle analysis for mammalian cells, both fixed and live, and accurately assesses the impact of a cell cycle mitotic phase blocking agent. As the same method is effective in predicting the DNA content of fission yeast, it is likely to have a broad application to other cell types. Journal Article Nature Communications 7 2041-1723 2041-1723 7 1 2016 2016-01-07 10.1038/ncomms10256 COLLEGE NANME Biomedical Engineering COLLEGE CODE MEDE Swansea University RCUK 2020-12-17T10:37:21.3817828 2016-02-02T16:50:07.4613343 College of Engineering Engineering Thomas Blasi 1 Holger Hennig 2 Huw Summers 0000-0002-0898-5612 3 Fabian J. Theis 4 Joana Cerveira 5 James O. Patterson 6 Derek Davies 7 Andrew Filby 8 Anne E. Carpenter 9 Paul Rees 0000-0002-7715-6914 10 0026064-02022016140251.pdf ReesLabelFreeCycleAnalysis2016.pdf 2016-02-02T14:02:51.1430000 Output 2035125 application/pdf Version of Record true Released under the terms of a Creative Commons Attribution License (CC-BY). true eng http://creativecommons.org/licenses/by/4.0/
title Label-free cell cycle analysis for high-throughput imaging flow cytometry
spellingShingle Label-free cell cycle analysis for high-throughput imaging flow cytometry
Huw, Summers
Paul, Rees
title_short Label-free cell cycle analysis for high-throughput imaging flow cytometry
title_full Label-free cell cycle analysis for high-throughput imaging flow cytometry
title_fullStr Label-free cell cycle analysis for high-throughput imaging flow cytometry
title_full_unstemmed Label-free cell cycle analysis for high-throughput imaging flow cytometry
title_sort Label-free cell cycle analysis for high-throughput imaging flow cytometry
author_id_str_mv a61c15e220837ebfa52648c143769427
537a2fe031a796a3bde99679ee8c24f5
author_id_fullname_str_mv a61c15e220837ebfa52648c143769427_***_Huw, Summers_***_0000-0002-0898-5612
537a2fe031a796a3bde99679ee8c24f5_***_Paul, Rees_***_0000-0002-7715-6914
author Huw, Summers
Paul, Rees
author2 Thomas Blasi
Holger Hennig
Huw Summers
Fabian J. Theis
Joana Cerveira
James O. Patterson
Derek Davies
Andrew Filby
Anne E. Carpenter
Paul Rees
format Journal article
container_title Nature Communications
container_volume 7
publishDate 2016
institution Swansea University
issn 2041-1723
2041-1723
doi_str_mv 10.1038/ncomms10256
college_str College of Engineering
hierarchytype
hierarchy_top_id collegeofengineering
hierarchy_top_title College of Engineering
hierarchy_parent_id collegeofengineering
hierarchy_parent_title College of Engineering
department_str Engineering{{{_:::_}}}College of Engineering{{{_:::_}}}Engineering
document_store_str 1
active_str 0
description Imaging flow cytometry combines the high-throughput capabilities of conventional flow cytometry with single-cell imaging. Here we demonstrate label-free prediction of DNA content and quantification of the mitotic cell cycle phases by applying supervised machine learning to morphological features extracted from brightfield and the typically ignored darkfield images of cells from an imaging flow cytometer. This method facilitates non-destructive monitoring of cells avoiding potentially confounding effects of fluorescent stains while maximizing available fluorescence channels. The method is effective in cell cycle analysis for mammalian cells, both fixed and live, and accurately assesses the impact of a cell cycle mitotic phase blocking agent. As the same method is effective in predicting the DNA content of fission yeast, it is likely to have a broad application to other cell types.
published_date 2016-01-07T03:45:32Z
_version_ 1723077893804785664
score 10.854061