No Cover Image

Journal article 782 views 309 downloads

The falling sphere problem and capturing enhanced drag with Boger fluids

I.E. Garduño, H.R. Tamaddon-Jahromi, M.F. Webster, Michael Webster Orcid Logo, Hamid Tamaddon Jahromi

Journal of Non-Newtonian Fluid Mechanics, Volume: 231, Pages: 26 - 48

Swansea University Authors: Michael Webster Orcid Logo, Hamid Tamaddon Jahromi

Abstract

In this computational study, the ability of an extensional White–Metzner construction with the FENE-CR model is considered to reflect experimental enhanced drag data of Jones et al. [1]. The numerical drag predictions for three different aspect ratios of sphere:tube radii {0.5, 0.4, 0.2} are obtaine...

Full description

Published in: Journal of Non-Newtonian Fluid Mechanics
ISSN: 0377-0257
Published: 2016
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa26749
first_indexed 2016-03-15T02:01:43Z
last_indexed 2018-02-09T05:09:04Z
id cronfa26749
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2017-11-23T11:27:08.3456456</datestamp><bib-version>v2</bib-version><id>26749</id><entry>2016-03-14</entry><title>The falling sphere problem and capturing enhanced drag with Boger fluids</title><swanseaauthors><author><sid>b6a811513b34d56e66489512fc2c6c61</sid><ORCID>0000-0002-7722-821X</ORCID><firstname>Michael</firstname><surname>Webster</surname><name>Michael Webster</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>b3a1417ca93758b719acf764c7ced1c5</sid><firstname>Hamid</firstname><surname>Tamaddon Jahromi</surname><name>Hamid Tamaddon Jahromi</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2016-03-14</date><abstract>In this computational study, the ability of an extensional White&#x2013;Metzner construction with the FENE-CR model is considered to reflect experimental enhanced drag data of Jones et al. [1]. The numerical drag predictions for three different aspect ratios of sphere:tube radii {0.5, 0.4, 0.2} are obtained with a hybrid finite element/volume (fe/fv) algorithm. Excellent agreement is extracted for all three aspect ratios against the experimental measurements, and at any specified rate, the tighter-fitting the aspect ratio the lower the resulting drag. Moreover, as the Weissenberg number is increased, the transition between steady-state and oscillatory flow is recognised from the instantaneous pressure data, prior to numerical divergence. A main realisation in this study is that it is important to select the same procedure of Wi-continuation across experimental and computational protocols, to extract comparable levels of drag. Clearly the -increase mode (common computational form), is more involved than the Q-increase mode (usual experimental form), and as such, less robust as a reliable method for accurate drag prediction and enhanced drag capture. In general, flow-rate increase (Q-increase) conditions generate larger drag enhancement, when compared to fluid-relaxation time increase ( -increase), at comparable levels of dissipative-factor ( ). The investigation also follows parametric variation in solvent fraction ( ) in one particular geometric aspect-ratio instance. This reveals that at any specific fixed elasticity level, there is an increase in drag observed with rise in . In addition, high solute/low-solvent fractions at low dissipative-factor, were only found to generate drag reduction, consistent with the literature. New and key facets to this fe/fv implementation are summarised, in appealing to: an improved velocity gradient boundary conditions imposed at the centreline (VGR-correction); continuity correction; absolute value of the stress-trace function (ABS-f-correction); increasing flow-rate solution continuation; alongside advanced techniques in fv-time discretisation, discrete treatment of pressure terms, and compatible stress/velocity-gradient representation.</abstract><type>Journal Article</type><journal>Journal of Non-Newtonian Fluid Mechanics</journal><volume>231</volume><paginationStart>26</paginationStart><paginationEnd>48</paginationEnd><publisher/><issnPrint>0377-0257</issnPrint><keywords>Viscoelastic fluid; FENE-CR; Extensional White-Metzner model (swanINNFM); Flow past a sphere; Drag coefficient</keywords><publishedDay>31</publishedDay><publishedMonth>5</publishedMonth><publishedYear>2016</publishedYear><publishedDate>2016-05-31</publishedDate><doi>10.1016/j.jnnfm.2016.02.009</doi><url/><notes/><college>COLLEGE NANME</college><CollegeCode>COLLEGE CODE</CollegeCode><institution>Swansea University</institution><apcterm/><lastEdited>2017-11-23T11:27:08.3456456</lastEdited><Created>2016-03-14T16:51:02.0188170</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Uncategorised</level></path><authors><author><firstname>I.E.</firstname><surname>Gardu&#xF1;o</surname><order>1</order></author><author><firstname>H.R.</firstname><surname>Tamaddon-Jahromi</surname><order>2</order></author><author><firstname>M.F.</firstname><surname>Webster</surname><order>3</order></author><author><firstname>Michael</firstname><surname>Webster</surname><orcid>0000-0002-7722-821X</orcid><order>4</order></author><author><firstname>Hamid</firstname><surname>Tamaddon Jahromi</surname><order>5</order></author></authors><documents><document><filename>0026749-14032016165153.pdf</filename><originalFilename>GardunoFallingSphereProblem2016AM.pdf</originalFilename><uploaded>2016-03-14T16:51:53.4370000</uploaded><type>Output</type><contentLength>2825756</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2017-03-02T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect></document></documents><OutputDurs/></rfc1807>
spelling 2017-11-23T11:27:08.3456456 v2 26749 2016-03-14 The falling sphere problem and capturing enhanced drag with Boger fluids b6a811513b34d56e66489512fc2c6c61 0000-0002-7722-821X Michael Webster Michael Webster true false b3a1417ca93758b719acf764c7ced1c5 Hamid Tamaddon Jahromi Hamid Tamaddon Jahromi true false 2016-03-14 In this computational study, the ability of an extensional White–Metzner construction with the FENE-CR model is considered to reflect experimental enhanced drag data of Jones et al. [1]. The numerical drag predictions for three different aspect ratios of sphere:tube radii {0.5, 0.4, 0.2} are obtained with a hybrid finite element/volume (fe/fv) algorithm. Excellent agreement is extracted for all three aspect ratios against the experimental measurements, and at any specified rate, the tighter-fitting the aspect ratio the lower the resulting drag. Moreover, as the Weissenberg number is increased, the transition between steady-state and oscillatory flow is recognised from the instantaneous pressure data, prior to numerical divergence. A main realisation in this study is that it is important to select the same procedure of Wi-continuation across experimental and computational protocols, to extract comparable levels of drag. Clearly the -increase mode (common computational form), is more involved than the Q-increase mode (usual experimental form), and as such, less robust as a reliable method for accurate drag prediction and enhanced drag capture. In general, flow-rate increase (Q-increase) conditions generate larger drag enhancement, when compared to fluid-relaxation time increase ( -increase), at comparable levels of dissipative-factor ( ). The investigation also follows parametric variation in solvent fraction ( ) in one particular geometric aspect-ratio instance. This reveals that at any specific fixed elasticity level, there is an increase in drag observed with rise in . In addition, high solute/low-solvent fractions at low dissipative-factor, were only found to generate drag reduction, consistent with the literature. New and key facets to this fe/fv implementation are summarised, in appealing to: an improved velocity gradient boundary conditions imposed at the centreline (VGR-correction); continuity correction; absolute value of the stress-trace function (ABS-f-correction); increasing flow-rate solution continuation; alongside advanced techniques in fv-time discretisation, discrete treatment of pressure terms, and compatible stress/velocity-gradient representation. Journal Article Journal of Non-Newtonian Fluid Mechanics 231 26 48 0377-0257 Viscoelastic fluid; FENE-CR; Extensional White-Metzner model (swanINNFM); Flow past a sphere; Drag coefficient 31 5 2016 2016-05-31 10.1016/j.jnnfm.2016.02.009 COLLEGE NANME COLLEGE CODE Swansea University 2017-11-23T11:27:08.3456456 2016-03-14T16:51:02.0188170 Faculty of Science and Engineering School of Engineering and Applied Sciences - Uncategorised I.E. Garduño 1 H.R. Tamaddon-Jahromi 2 M.F. Webster 3 Michael Webster 0000-0002-7722-821X 4 Hamid Tamaddon Jahromi 5 0026749-14032016165153.pdf GardunoFallingSphereProblem2016AM.pdf 2016-03-14T16:51:53.4370000 Output 2825756 application/pdf Accepted Manuscript true 2017-03-02T00:00:00.0000000 true
title The falling sphere problem and capturing enhanced drag with Boger fluids
spellingShingle The falling sphere problem and capturing enhanced drag with Boger fluids
Michael Webster
Hamid Tamaddon Jahromi
title_short The falling sphere problem and capturing enhanced drag with Boger fluids
title_full The falling sphere problem and capturing enhanced drag with Boger fluids
title_fullStr The falling sphere problem and capturing enhanced drag with Boger fluids
title_full_unstemmed The falling sphere problem and capturing enhanced drag with Boger fluids
title_sort The falling sphere problem and capturing enhanced drag with Boger fluids
author_id_str_mv b6a811513b34d56e66489512fc2c6c61
b3a1417ca93758b719acf764c7ced1c5
author_id_fullname_str_mv b6a811513b34d56e66489512fc2c6c61_***_Michael Webster
b3a1417ca93758b719acf764c7ced1c5_***_Hamid Tamaddon Jahromi
author Michael Webster
Hamid Tamaddon Jahromi
author2 I.E. Garduño
H.R. Tamaddon-Jahromi
M.F. Webster
Michael Webster
Hamid Tamaddon Jahromi
format Journal article
container_title Journal of Non-Newtonian Fluid Mechanics
container_volume 231
container_start_page 26
publishDate 2016
institution Swansea University
issn 0377-0257
doi_str_mv 10.1016/j.jnnfm.2016.02.009
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Engineering and Applied Sciences - Uncategorised{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Uncategorised
document_store_str 1
active_str 0
description In this computational study, the ability of an extensional White–Metzner construction with the FENE-CR model is considered to reflect experimental enhanced drag data of Jones et al. [1]. The numerical drag predictions for three different aspect ratios of sphere:tube radii {0.5, 0.4, 0.2} are obtained with a hybrid finite element/volume (fe/fv) algorithm. Excellent agreement is extracted for all three aspect ratios against the experimental measurements, and at any specified rate, the tighter-fitting the aspect ratio the lower the resulting drag. Moreover, as the Weissenberg number is increased, the transition between steady-state and oscillatory flow is recognised from the instantaneous pressure data, prior to numerical divergence. A main realisation in this study is that it is important to select the same procedure of Wi-continuation across experimental and computational protocols, to extract comparable levels of drag. Clearly the -increase mode (common computational form), is more involved than the Q-increase mode (usual experimental form), and as such, less robust as a reliable method for accurate drag prediction and enhanced drag capture. In general, flow-rate increase (Q-increase) conditions generate larger drag enhancement, when compared to fluid-relaxation time increase ( -increase), at comparable levels of dissipative-factor ( ). The investigation also follows parametric variation in solvent fraction ( ) in one particular geometric aspect-ratio instance. This reveals that at any specific fixed elasticity level, there is an increase in drag observed with rise in . In addition, high solute/low-solvent fractions at low dissipative-factor, were only found to generate drag reduction, consistent with the literature. New and key facets to this fe/fv implementation are summarised, in appealing to: an improved velocity gradient boundary conditions imposed at the centreline (VGR-correction); continuity correction; absolute value of the stress-trace function (ABS-f-correction); increasing flow-rate solution continuation; alongside advanced techniques in fv-time discretisation, discrete treatment of pressure terms, and compatible stress/velocity-gradient representation.
published_date 2016-05-31T01:06:30Z
_version_ 1821456193884782592
score 11.064692