Journal article 11674 views 187 downloads
Curved Rota-Baxter systems
Bulletin of the Belgian Mathematical Society - Simon Stevin, Volume: 23, Issue: 5, Pages: 713 - 720
Swansea University Author: Tomasz Brzezinski
-
PDF | Accepted Manuscript
Download (292.81KB)
Abstract
Rota-Baxter systems are modified by the inclusion of a curvature term. It is shown that, subject to specific properties of the curvature form, curved Rota- Baxter systems (A,R,S,ω) induce associative and (left) pre-Lie products on the algebra A. It is also shown that if both Rota-Baxter operators co...
Published in: | Bulletin of the Belgian Mathematical Society - Simon Stevin |
---|---|
ISSN: | 1370-1444 |
Published: |
2017
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa27393 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
first_indexed |
2016-04-23T01:11:41Z |
---|---|
last_indexed |
2018-07-26T13:10:46Z |
id |
cronfa27393 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2018-07-26T09:26:06.3756675</datestamp><bib-version>v2</bib-version><id>27393</id><entry>2016-04-22</entry><title>Curved Rota-Baxter systems</title><swanseaauthors><author><sid>30466d840b59627325596fbbb2c82754</sid><ORCID>0000-0001-6270-3439</ORCID><firstname>Tomasz</firstname><surname>Brzezinski</surname><name>Tomasz Brzezinski</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2016-04-22</date><deptcode>SMA</deptcode><abstract>Rota-Baxter systems are modified by the inclusion of a curvature term. It is shown that, subject to specific properties of the curvature form, curved Rota- Baxter systems (A,R,S,ω) induce associative and (left) pre-Lie products on the algebra A. It is also shown that if both Rota-Baxter operators coincide with each other and the curvature is A-bilinear, then the (modified by R) Hochschild coho- mology ring over A is a curved differential graded algebra.</abstract><type>Journal Article</type><journal>Bulletin of the Belgian Mathematical Society - Simon Stevin</journal><volume>23</volume><journalNumber>5</journalNumber><paginationStart>713</paginationStart><paginationEnd>720</paginationEnd><publisher/><issnPrint>1370-1444</issnPrint><keywords/><publishedDay>6</publishedDay><publishedMonth>1</publishedMonth><publishedYear>2017</publishedYear><publishedDate>2017-01-06</publishedDate><doi/><url>http://projecteuclid.org/euclid.bbms/1483671622</url><notes/><college>COLLEGE NANME</college><department>Mathematics</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>SMA</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2018-07-26T09:26:06.3756675</lastEdited><Created>2016-04-22T13:27:50.8062728</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Mathematics</level></path><authors><author><firstname>Tomasz</firstname><surname>Brzezinski</surname><orcid>0000-0001-6270-3439</orcid><order>1</order></author></authors><documents><document><filename>0027393-22042016133009.pdf</filename><originalFilename>c_rota_baxter.pdf</originalFilename><uploaded>2016-04-22T13:30:09.4970000</uploaded><type>Output</type><contentLength>251523</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2016-04-22T00:00:00.0000000</embargoDate><copyrightCorrect>false</copyrightCorrect></document></documents><OutputDurs/></rfc1807> |
spelling |
2018-07-26T09:26:06.3756675 v2 27393 2016-04-22 Curved Rota-Baxter systems 30466d840b59627325596fbbb2c82754 0000-0001-6270-3439 Tomasz Brzezinski Tomasz Brzezinski true false 2016-04-22 SMA Rota-Baxter systems are modified by the inclusion of a curvature term. It is shown that, subject to specific properties of the curvature form, curved Rota- Baxter systems (A,R,S,ω) induce associative and (left) pre-Lie products on the algebra A. It is also shown that if both Rota-Baxter operators coincide with each other and the curvature is A-bilinear, then the (modified by R) Hochschild coho- mology ring over A is a curved differential graded algebra. Journal Article Bulletin of the Belgian Mathematical Society - Simon Stevin 23 5 713 720 1370-1444 6 1 2017 2017-01-06 http://projecteuclid.org/euclid.bbms/1483671622 COLLEGE NANME Mathematics COLLEGE CODE SMA Swansea University 2018-07-26T09:26:06.3756675 2016-04-22T13:27:50.8062728 Faculty of Science and Engineering School of Mathematics and Computer Science - Mathematics Tomasz Brzezinski 0000-0001-6270-3439 1 0027393-22042016133009.pdf c_rota_baxter.pdf 2016-04-22T13:30:09.4970000 Output 251523 application/pdf Accepted Manuscript true 2016-04-22T00:00:00.0000000 false |
title |
Curved Rota-Baxter systems |
spellingShingle |
Curved Rota-Baxter systems Tomasz Brzezinski |
title_short |
Curved Rota-Baxter systems |
title_full |
Curved Rota-Baxter systems |
title_fullStr |
Curved Rota-Baxter systems |
title_full_unstemmed |
Curved Rota-Baxter systems |
title_sort |
Curved Rota-Baxter systems |
author_id_str_mv |
30466d840b59627325596fbbb2c82754 |
author_id_fullname_str_mv |
30466d840b59627325596fbbb2c82754_***_Tomasz Brzezinski |
author |
Tomasz Brzezinski |
author2 |
Tomasz Brzezinski |
format |
Journal article |
container_title |
Bulletin of the Belgian Mathematical Society - Simon Stevin |
container_volume |
23 |
container_issue |
5 |
container_start_page |
713 |
publishDate |
2017 |
institution |
Swansea University |
issn |
1370-1444 |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Mathematics and Computer Science - Mathematics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Mathematics |
url |
http://projecteuclid.org/euclid.bbms/1483671622 |
document_store_str |
1 |
active_str |
0 |
description |
Rota-Baxter systems are modified by the inclusion of a curvature term. It is shown that, subject to specific properties of the curvature form, curved Rota- Baxter systems (A,R,S,ω) induce associative and (left) pre-Lie products on the algebra A. It is also shown that if both Rota-Baxter operators coincide with each other and the curvature is A-bilinear, then the (modified by R) Hochschild coho- mology ring over A is a curved differential graded algebra. |
published_date |
2017-01-06T03:33:12Z |
_version_ |
1763751381326364672 |
score |
11.035634 |