No Cover Image

Journal article 670 views

Utility of a low-cost wireless force platform as a potential clinical test of balance recovery after neuraxial anaesthesia

N. Tweed, S. Williams, D. Williams, J. Dingley, John Dingley

International Journal of Obstetric Anesthesia, Volume: 23, Issue: 3, Pages: 227 - 232

Swansea University Author: John Dingley

Full text not available from this repository: check for access using links below.

Abstract

INTRODUCTION:Recovery of balance after neuraxial anaesthesia can remain delayed after simple clinical tests have demonstrated motor recovery. Dynamic posturography tracks the small movements or sway of a person standing as still as possible on a force platform and has been investigated as an objecti...

Full description

Published in: International Journal of Obstetric Anesthesia
ISSN: 0959289X
Published: 2014
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa27458
Abstract: INTRODUCTION:Recovery of balance after neuraxial anaesthesia can remain delayed after simple clinical tests have demonstrated motor recovery. Dynamic posturography tracks the small movements or sway of a person standing as still as possible on a force platform and has been investigated as an objective measure of the ability to walk following anaesthesia. These are expensive laboratory devices, limiting their clinical utility. One measured variable is path length, the cumulative distance travelled in the horizontal plane by the centre of pressure of a person standing on the platform over 1min. Path length might potentially be measured using the Nintendo® Wii-Fit Balance Board™.METHODS:The feasibility of intercepting raw wireless data from a Wii-Fit Balance Board™ using custom software to calculate path length was explored. Subsequently, path lengths were measured using both this and a laboratory platform simultaneously. In a random order 20 volunteers (a) stood for 1min, feet together, eyes open (conventional baseline test); and (b) stood for 1min, feet together, eyes closed (simulating residual anaesthesia with increased sway). For each device, the ratio b:a was calculated as an index of performance reduction when eyes were closed.RESULTS:Path lengths ranged from 58.5 to 243cm, mean bias 9cm (Wii-Fit<laboratory platform) and 95% confidence limits of 2.5-15.4cm. Ratios ranged from 1.09 to 2.68, mean bias -0.04 (Wii-Fit>laboratory platform) and 95% confidence limits of 0.04 to -0.13.CONCLUSIONS:The path lengths were in close agreement and the Wii-Fit Balance Board™ may be worthy of further investigation as a tool to objectively assess readiness to ambulate following neuraxial anaesthesia.
Keywords: Anaesthesia; Neuraxial; Path length; Posturography; Wii-Fit Balance Board™
College: Faculty of Medicine, Health and Life Sciences
Issue: 3
Start Page: 227
End Page: 232