No Cover Image

Journal article 1324 views 526 downloads

Quantum computations on a topologically encoded qubit

D. Nigg, M. Muller, E. A. Martinez, P. Schindler, M. Hennrich, T. Monz, M. A. Martin-Delgado, R. Blatt, Markus Muller

Science, Volume: 345, Issue: 6194, Pages: 302 - 305

Swansea University Author: Markus Muller

DOI (Published version): 10.1126/science.1253742

Abstract

The construction of a quantum computer remains a fundamental scientific and technological challenge, in particular due to unavoidable noise. Quantum states and operations can be protected from errors using protocols for fault-tolerant quantum computing (FTQC). Here we present a step towards this by...

Full description

Published in: Science
Published: 2014
URI: https://cronfa.swan.ac.uk/Record/cronfa28335
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2016-05-26T18:15:52Z
last_indexed 2019-08-09T15:25:30Z
id cronfa28335
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2019-08-04T21:42:54.5947517</datestamp><bib-version>v2</bib-version><id>28335</id><entry>2016-05-26</entry><title>Quantum computations on a topologically encoded qubit</title><swanseaauthors><author><sid>9b2ac559af27c967ece69db08b83762a</sid><firstname>Markus</firstname><surname>Muller</surname><name>Markus Muller</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2016-05-26</date><deptcode>FGSEN</deptcode><abstract>The construction of a quantum computer remains a fundamental scientific and technological challenge, in particular due to unavoidable noise. Quantum states and operations can be protected from errors using protocols for fault-tolerant quantum computing (FTQC). Here we present a step towards this by implementing a quantum error correcting code, encoding one qubit in entangled states distributed over 7 trapped-ion qubits. We demonstrate the capability of the code to detect one bit flip, phase flip or a combined error of both, regardless on which of the qubits they occur. Furthermore, we apply combinations of the entire set of logical single-qubit Clifford gates on the encoded qubit to explore its computational capabilities. The implemented 7-qubit code is the first realization of a complete Calderbank-Shor-Steane (CSS) code and constitutes a central building block for FTQC schemes based on concatenated elementary quantum codes. It also represents the smallest fully functional instance of the color code, opening a route towards topological FTQC.</abstract><type>Journal Article</type><journal>Science</journal><volume>345</volume><journalNumber>6194</journalNumber><paginationStart>302</paginationStart><paginationEnd>305</paginationEnd><publisher/><keywords>Quantum Computation</keywords><publishedDay>31</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2014</publishedYear><publishedDate>2014-12-31</publishedDate><doi>10.1126/science.1253742</doi><url/><notes/><college>COLLEGE NANME</college><department>Science and Engineering - Faculty</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>FGSEN</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2019-08-04T21:42:54.5947517</lastEdited><Created>2016-05-26T15:07:49.9699287</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Biosciences, Geography and Physics - Physics</level></path><authors><author><firstname>D.</firstname><surname>Nigg</surname><order>1</order></author><author><firstname>M.</firstname><surname>Muller</surname><order>2</order></author><author><firstname>E. A.</firstname><surname>Martinez</surname><order>3</order></author><author><firstname>P.</firstname><surname>Schindler</surname><order>4</order></author><author><firstname>M.</firstname><surname>Hennrich</surname><order>5</order></author><author><firstname>T.</firstname><surname>Monz</surname><order>6</order></author><author><firstname>M. A.</firstname><surname>Martin-Delgado</surname><order>7</order></author><author><firstname>R.</firstname><surname>Blatt</surname><order>8</order></author><author><firstname>Markus</firstname><surname>Muller</surname><order>9</order></author></authors><documents><document><filename>0028335-05062016105831.pdf</filename><originalFilename>Mueller_Science_2014.pdf</originalFilename><uploaded>2016-06-05T10:58:31.8230000</uploaded><type>Output</type><contentLength>3798018</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2016-06-05T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect></document></documents><OutputDurs/></rfc1807>
spelling 2019-08-04T21:42:54.5947517 v2 28335 2016-05-26 Quantum computations on a topologically encoded qubit 9b2ac559af27c967ece69db08b83762a Markus Muller Markus Muller true false 2016-05-26 FGSEN The construction of a quantum computer remains a fundamental scientific and technological challenge, in particular due to unavoidable noise. Quantum states and operations can be protected from errors using protocols for fault-tolerant quantum computing (FTQC). Here we present a step towards this by implementing a quantum error correcting code, encoding one qubit in entangled states distributed over 7 trapped-ion qubits. We demonstrate the capability of the code to detect one bit flip, phase flip or a combined error of both, regardless on which of the qubits they occur. Furthermore, we apply combinations of the entire set of logical single-qubit Clifford gates on the encoded qubit to explore its computational capabilities. The implemented 7-qubit code is the first realization of a complete Calderbank-Shor-Steane (CSS) code and constitutes a central building block for FTQC schemes based on concatenated elementary quantum codes. It also represents the smallest fully functional instance of the color code, opening a route towards topological FTQC. Journal Article Science 345 6194 302 305 Quantum Computation 31 12 2014 2014-12-31 10.1126/science.1253742 COLLEGE NANME Science and Engineering - Faculty COLLEGE CODE FGSEN Swansea University 2019-08-04T21:42:54.5947517 2016-05-26T15:07:49.9699287 Faculty of Science and Engineering School of Biosciences, Geography and Physics - Physics D. Nigg 1 M. Muller 2 E. A. Martinez 3 P. Schindler 4 M. Hennrich 5 T. Monz 6 M. A. Martin-Delgado 7 R. Blatt 8 Markus Muller 9 0028335-05062016105831.pdf Mueller_Science_2014.pdf 2016-06-05T10:58:31.8230000 Output 3798018 application/pdf Accepted Manuscript true 2016-06-05T00:00:00.0000000 true
title Quantum computations on a topologically encoded qubit
spellingShingle Quantum computations on a topologically encoded qubit
Markus Muller
title_short Quantum computations on a topologically encoded qubit
title_full Quantum computations on a topologically encoded qubit
title_fullStr Quantum computations on a topologically encoded qubit
title_full_unstemmed Quantum computations on a topologically encoded qubit
title_sort Quantum computations on a topologically encoded qubit
author_id_str_mv 9b2ac559af27c967ece69db08b83762a
author_id_fullname_str_mv 9b2ac559af27c967ece69db08b83762a_***_Markus Muller
author Markus Muller
author2 D. Nigg
M. Muller
E. A. Martinez
P. Schindler
M. Hennrich
T. Monz
M. A. Martin-Delgado
R. Blatt
Markus Muller
format Journal article
container_title Science
container_volume 345
container_issue 6194
container_start_page 302
publishDate 2014
institution Swansea University
doi_str_mv 10.1126/science.1253742
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Biosciences, Geography and Physics - Physics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Biosciences, Geography and Physics - Physics
document_store_str 1
active_str 0
description The construction of a quantum computer remains a fundamental scientific and technological challenge, in particular due to unavoidable noise. Quantum states and operations can be protected from errors using protocols for fault-tolerant quantum computing (FTQC). Here we present a step towards this by implementing a quantum error correcting code, encoding one qubit in entangled states distributed over 7 trapped-ion qubits. We demonstrate the capability of the code to detect one bit flip, phase flip or a combined error of both, regardless on which of the qubits they occur. Furthermore, we apply combinations of the entire set of logical single-qubit Clifford gates on the encoded qubit to explore its computational capabilities. The implemented 7-qubit code is the first realization of a complete Calderbank-Shor-Steane (CSS) code and constitutes a central building block for FTQC schemes based on concatenated elementary quantum codes. It also represents the smallest fully functional instance of the color code, opening a route towards topological FTQC.
published_date 2014-12-31T03:34:28Z
_version_ 1763751460555718656
score 11.035874