Journal article 1324 views 526 downloads
Quantum computations on a topologically encoded qubit
D. Nigg,
M. Muller,
E. A. Martinez,
P. Schindler,
M. Hennrich,
T. Monz,
M. A. Martin-Delgado,
R. Blatt,
Markus Muller
Science, Volume: 345, Issue: 6194, Pages: 302 - 305
Swansea University Author: Markus Muller
-
PDF | Accepted Manuscript
Download (3.66MB)
DOI (Published version): 10.1126/science.1253742
Abstract
The construction of a quantum computer remains a fundamental scientific and technological challenge, in particular due to unavoidable noise. Quantum states and operations can be protected from errors using protocols for fault-tolerant quantum computing (FTQC). Here we present a step towards this by...
Published in: | Science |
---|---|
Published: |
2014
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa28335 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
first_indexed |
2016-05-26T18:15:52Z |
---|---|
last_indexed |
2019-08-09T15:25:30Z |
id |
cronfa28335 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2019-08-04T21:42:54.5947517</datestamp><bib-version>v2</bib-version><id>28335</id><entry>2016-05-26</entry><title>Quantum computations on a topologically encoded qubit</title><swanseaauthors><author><sid>9b2ac559af27c967ece69db08b83762a</sid><firstname>Markus</firstname><surname>Muller</surname><name>Markus Muller</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2016-05-26</date><deptcode>FGSEN</deptcode><abstract>The construction of a quantum computer remains a fundamental scientific and technological challenge, in particular due to unavoidable noise. Quantum states and operations can be protected from errors using protocols for fault-tolerant quantum computing (FTQC). Here we present a step towards this by implementing a quantum error correcting code, encoding one qubit in entangled states distributed over 7 trapped-ion qubits. We demonstrate the capability of the code to detect one bit flip, phase flip or a combined error of both, regardless on which of the qubits they occur. Furthermore, we apply combinations of the entire set of logical single-qubit Clifford gates on the encoded qubit to explore its computational capabilities. The implemented 7-qubit code is the first realization of a complete Calderbank-Shor-Steane (CSS) code and constitutes a central building block for FTQC schemes based on concatenated elementary quantum codes. It also represents the smallest fully functional instance of the color code, opening a route towards topological FTQC.</abstract><type>Journal Article</type><journal>Science</journal><volume>345</volume><journalNumber>6194</journalNumber><paginationStart>302</paginationStart><paginationEnd>305</paginationEnd><publisher/><keywords>Quantum Computation</keywords><publishedDay>31</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2014</publishedYear><publishedDate>2014-12-31</publishedDate><doi>10.1126/science.1253742</doi><url/><notes/><college>COLLEGE NANME</college><department>Science and Engineering - Faculty</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>FGSEN</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2019-08-04T21:42:54.5947517</lastEdited><Created>2016-05-26T15:07:49.9699287</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Biosciences, Geography and Physics - Physics</level></path><authors><author><firstname>D.</firstname><surname>Nigg</surname><order>1</order></author><author><firstname>M.</firstname><surname>Muller</surname><order>2</order></author><author><firstname>E. A.</firstname><surname>Martinez</surname><order>3</order></author><author><firstname>P.</firstname><surname>Schindler</surname><order>4</order></author><author><firstname>M.</firstname><surname>Hennrich</surname><order>5</order></author><author><firstname>T.</firstname><surname>Monz</surname><order>6</order></author><author><firstname>M. A.</firstname><surname>Martin-Delgado</surname><order>7</order></author><author><firstname>R.</firstname><surname>Blatt</surname><order>8</order></author><author><firstname>Markus</firstname><surname>Muller</surname><order>9</order></author></authors><documents><document><filename>0028335-05062016105831.pdf</filename><originalFilename>Mueller_Science_2014.pdf</originalFilename><uploaded>2016-06-05T10:58:31.8230000</uploaded><type>Output</type><contentLength>3798018</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2016-06-05T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect></document></documents><OutputDurs/></rfc1807> |
spelling |
2019-08-04T21:42:54.5947517 v2 28335 2016-05-26 Quantum computations on a topologically encoded qubit 9b2ac559af27c967ece69db08b83762a Markus Muller Markus Muller true false 2016-05-26 FGSEN The construction of a quantum computer remains a fundamental scientific and technological challenge, in particular due to unavoidable noise. Quantum states and operations can be protected from errors using protocols for fault-tolerant quantum computing (FTQC). Here we present a step towards this by implementing a quantum error correcting code, encoding one qubit in entangled states distributed over 7 trapped-ion qubits. We demonstrate the capability of the code to detect one bit flip, phase flip or a combined error of both, regardless on which of the qubits they occur. Furthermore, we apply combinations of the entire set of logical single-qubit Clifford gates on the encoded qubit to explore its computational capabilities. The implemented 7-qubit code is the first realization of a complete Calderbank-Shor-Steane (CSS) code and constitutes a central building block for FTQC schemes based on concatenated elementary quantum codes. It also represents the smallest fully functional instance of the color code, opening a route towards topological FTQC. Journal Article Science 345 6194 302 305 Quantum Computation 31 12 2014 2014-12-31 10.1126/science.1253742 COLLEGE NANME Science and Engineering - Faculty COLLEGE CODE FGSEN Swansea University 2019-08-04T21:42:54.5947517 2016-05-26T15:07:49.9699287 Faculty of Science and Engineering School of Biosciences, Geography and Physics - Physics D. Nigg 1 M. Muller 2 E. A. Martinez 3 P. Schindler 4 M. Hennrich 5 T. Monz 6 M. A. Martin-Delgado 7 R. Blatt 8 Markus Muller 9 0028335-05062016105831.pdf Mueller_Science_2014.pdf 2016-06-05T10:58:31.8230000 Output 3798018 application/pdf Accepted Manuscript true 2016-06-05T00:00:00.0000000 true |
title |
Quantum computations on a topologically encoded qubit |
spellingShingle |
Quantum computations on a topologically encoded qubit Markus Muller |
title_short |
Quantum computations on a topologically encoded qubit |
title_full |
Quantum computations on a topologically encoded qubit |
title_fullStr |
Quantum computations on a topologically encoded qubit |
title_full_unstemmed |
Quantum computations on a topologically encoded qubit |
title_sort |
Quantum computations on a topologically encoded qubit |
author_id_str_mv |
9b2ac559af27c967ece69db08b83762a |
author_id_fullname_str_mv |
9b2ac559af27c967ece69db08b83762a_***_Markus Muller |
author |
Markus Muller |
author2 |
D. Nigg M. Muller E. A. Martinez P. Schindler M. Hennrich T. Monz M. A. Martin-Delgado R. Blatt Markus Muller |
format |
Journal article |
container_title |
Science |
container_volume |
345 |
container_issue |
6194 |
container_start_page |
302 |
publishDate |
2014 |
institution |
Swansea University |
doi_str_mv |
10.1126/science.1253742 |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Biosciences, Geography and Physics - Physics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Biosciences, Geography and Physics - Physics |
document_store_str |
1 |
active_str |
0 |
description |
The construction of a quantum computer remains a fundamental scientific and technological challenge, in particular due to unavoidable noise. Quantum states and operations can be protected from errors using protocols for fault-tolerant quantum computing (FTQC). Here we present a step towards this by implementing a quantum error correcting code, encoding one qubit in entangled states distributed over 7 trapped-ion qubits. We demonstrate the capability of the code to detect one bit flip, phase flip or a combined error of both, regardless on which of the qubits they occur. Furthermore, we apply combinations of the entire set of logical single-qubit Clifford gates on the encoded qubit to explore its computational capabilities. The implemented 7-qubit code is the first realization of a complete Calderbank-Shor-Steane (CSS) code and constitutes a central building block for FTQC schemes based on concatenated elementary quantum codes. It also represents the smallest fully functional instance of the color code, opening a route towards topological FTQC. |
published_date |
2014-12-31T03:34:28Z |
_version_ |
1763751460555718656 |
score |
11.035874 |