No Cover Image

Journal article 866 views

Multi-instanton calculus and the AdS/CFT correspondence in superconformal field theory

Valentin V. Khoze, Stefan Vandoren, Nicholas Dorey, Michael P. Mattis, Timothy Hollowood Orcid Logo

Nuclear Physics B, Volume: "B552", Issue: 1-2, Pages: 88 - 168

Swansea University Author: Timothy Hollowood Orcid Logo

Full text not available from this repository: check for access using links below.

Abstract

We present a self-contained study of ADHM multi-instantons in SU(N) gauge theory, especially the novel interplay with supersymmetry and the large-N limit. We give both field- and string-theoretic derivations of the N=4 supersymmetric multi-instanton action and collective coordinate integration measu...

Full description

Published in: Nuclear Physics B
ISSN: 05503213
Published: 1999
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa28564
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract: We present a self-contained study of ADHM multi-instantons in SU(N) gauge theory, especially the novel interplay with supersymmetry and the large-N limit. We give both field- and string-theoretic derivations of the N=4 supersymmetric multi-instanton action and collective coordinate integration measure. As a central application, we focus on certain n-point functions G_n, n=16, 8 or 4, in N=4 SU(N) gauge theory at the conformal point (as well as on related higher-partial-wave correlators); these are correlators in which the 16 exact supersymmetric and superconformal fermion zero modes are saturated. In the large-N limit, for the first time in any 4-dimensional theory, we are able to evaluate all leading-order multi-instanton contributions exactly. We find compelling evidence for Maldacena's conjecture: (1) The large-N k-instanton collective coordinate space has the geometry of a single copy of AdS_5 x S^5. (2) The integration measure on this space includes the partition function of 10-dimensional N=1 SU(k) gauge theory dimensionally reduced to 0 dimensions, matching the description of D-instantons in Type IIB string theory. (3) In exact agreement with Type IIB string calculations, at the k-instanton level, G_n = \sqrt{N} g^8 k^{n-7/2} e^{2\pi ik\tau} \sum_{d|k} d^{-2} F_n(x_1,...,x_n), where F_n is identical to a convolution of n bulk-to-boundary supergravity
College: Faculty of Science and Engineering
Issue: 1-2
Start Page: 88
End Page: 168