No Cover Image

Journal article 434 views

The exact mass-gap of the supersymmetric CPn−1 sigma model / Jonathan M. Evans, Timothy Hollowood

Physics Letters B, Volume: "B343", Issue: 1-4, Pages: 198 - 206

Swansea University Author: Timothy Hollowood

Full text not available from this repository: check for access using links below.

Abstract

A formula for the mass-gap of the supersymmetric $\CP~{n-1}$ sigma model ($n > 1$) in two dimensions is derived: $m/\Lambda_{\overline{\rm MS}}=\sin(\pi\Delta)/(\pi\Delta)$ where $\Delta=1/n$ and $m$ is the mass of the fundamental particle multiplet. This result is obtained by comparing two expre...

Full description

Published in: Physics Letters B
ISSN: 03702693
Published: 1994
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa28582
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2016-06-03T19:16:31Z
last_indexed 2018-02-09T05:12:53Z
id cronfa28582
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2016-06-03T14:36:57.5511289</datestamp><bib-version>v2</bib-version><id>28582</id><entry>2016-06-03</entry><title>The exact mass-gap of the supersymmetric CPn&#x2212;1 sigma model</title><swanseaauthors><author><sid>ea9ca59fc948276ff2ab547e91bdf0c2</sid><ORCID>0000-0002-3258-320X</ORCID><firstname>Timothy</firstname><surname>Hollowood</surname><name>Timothy Hollowood</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2016-06-03</date><deptcode>SPH</deptcode><abstract>A formula for the mass-gap of the supersymmetric $\CP~{n-1}$ sigma model ($n &gt; 1$) in two dimensions is derived: $m/\Lambda_{\overline{\rm MS}}=\sin(\pi\Delta)/(\pi\Delta)$ where $\Delta=1/n$ and $m$ is the mass of the fundamental particle multiplet. This result is obtained by comparing two expressions for the free-energy density in the presence of a coupling to a conserved charge; one expression is computed from the exact S-matrix of K\"oberle and Kurak via the thermodynamic Bethe ansatz and the other is computed using conventional perturbation theory. These calculations provide a stringent test of the S-matrix, showing that it correctly reproduces the universal part of the beta-function and resolving the problem of CDD</abstract><type>Journal Article</type><journal>Physics Letters B</journal><volume>"B343"</volume><journalNumber>1-4</journalNumber><paginationStart>198</paginationStart><paginationEnd>206</paginationEnd><publisher/><issnPrint>03702693</issnPrint><keywords/><publishedDay>30</publishedDay><publishedMonth>9</publishedMonth><publishedYear>1994</publishedYear><publishedDate>1994-09-30</publishedDate><doi>10.1016/0370-2693(94)01478-U</doi><url>http://inspirehep.net/record/377232</url><notes/><college>COLLEGE NANME</college><department>Physics</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>SPH</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2016-06-03T14:36:57.5511289</lastEdited><Created>2016-06-03T14:36:57.3015273</Created><path><level id="1">College of Science</level><level id="2">Physics</level></path><authors><author><firstname>Jonathan M.</firstname><surname>Evans</surname><order>1</order></author><author><firstname>Timothy</firstname><surname>Hollowood</surname><orcid>0000-0002-3258-320X</orcid><order>2</order></author></authors><documents/><OutputDurs/></rfc1807>
spelling 2016-06-03T14:36:57.5511289 v2 28582 2016-06-03 The exact mass-gap of the supersymmetric CPn−1 sigma model ea9ca59fc948276ff2ab547e91bdf0c2 0000-0002-3258-320X Timothy Hollowood Timothy Hollowood true false 2016-06-03 SPH A formula for the mass-gap of the supersymmetric $\CP~{n-1}$ sigma model ($n > 1$) in two dimensions is derived: $m/\Lambda_{\overline{\rm MS}}=\sin(\pi\Delta)/(\pi\Delta)$ where $\Delta=1/n$ and $m$ is the mass of the fundamental particle multiplet. This result is obtained by comparing two expressions for the free-energy density in the presence of a coupling to a conserved charge; one expression is computed from the exact S-matrix of K\"oberle and Kurak via the thermodynamic Bethe ansatz and the other is computed using conventional perturbation theory. These calculations provide a stringent test of the S-matrix, showing that it correctly reproduces the universal part of the beta-function and resolving the problem of CDD Journal Article Physics Letters B "B343" 1-4 198 206 03702693 30 9 1994 1994-09-30 10.1016/0370-2693(94)01478-U http://inspirehep.net/record/377232 COLLEGE NANME Physics COLLEGE CODE SPH Swansea University 2016-06-03T14:36:57.5511289 2016-06-03T14:36:57.3015273 College of Science Physics Jonathan M. Evans 1 Timothy Hollowood 0000-0002-3258-320X 2
title The exact mass-gap of the supersymmetric CPn−1 sigma model
spellingShingle The exact mass-gap of the supersymmetric CPn−1 sigma model
Timothy, Hollowood
title_short The exact mass-gap of the supersymmetric CPn−1 sigma model
title_full The exact mass-gap of the supersymmetric CPn−1 sigma model
title_fullStr The exact mass-gap of the supersymmetric CPn−1 sigma model
title_full_unstemmed The exact mass-gap of the supersymmetric CPn−1 sigma model
title_sort The exact mass-gap of the supersymmetric CPn−1 sigma model
author_id_str_mv ea9ca59fc948276ff2ab547e91bdf0c2
author_id_fullname_str_mv ea9ca59fc948276ff2ab547e91bdf0c2_***_Timothy, Hollowood
author Timothy, Hollowood
author2 Jonathan M. Evans
Timothy Hollowood
format Journal article
container_title Physics Letters B
container_volume "B343"
container_issue 1-4
container_start_page 198
publishDate 1994
institution Swansea University
issn 03702693
doi_str_mv 10.1016/0370-2693(94)01478-U
college_str College of Science
hierarchytype
hierarchy_top_id collegeofscience
hierarchy_top_title College of Science
hierarchy_parent_id collegeofscience
hierarchy_parent_title College of Science
department_str Physics{{{_:::_}}}College of Science{{{_:::_}}}Physics
url http://inspirehep.net/record/377232
document_store_str 0
active_str 0
description A formula for the mass-gap of the supersymmetric $\CP~{n-1}$ sigma model ($n > 1$) in two dimensions is derived: $m/\Lambda_{\overline{\rm MS}}=\sin(\pi\Delta)/(\pi\Delta)$ where $\Delta=1/n$ and $m$ is the mass of the fundamental particle multiplet. This result is obtained by comparing two expressions for the free-energy density in the presence of a coupling to a conserved charge; one expression is computed from the exact S-matrix of K\"oberle and Kurak via the thermodynamic Bethe ansatz and the other is computed using conventional perturbation theory. These calculations provide a stringent test of the S-matrix, showing that it correctly reproduces the universal part of the beta-function and resolving the problem of CDD
published_date 1994-09-30T03:43:42Z
_version_ 1711115203938091008
score 10.822061