No Cover Image

Journal article 1230 views 185 downloads

Spectral triples from bimodule connections and Chern connections

Edwin Beggs Orcid Logo, Shahn Majid

Journal of Noncommutative Geometry, Volume: 11, Issue: 2, Pages: 669 - 701

Swansea University Author: Edwin Beggs Orcid Logo

Check full text

DOI (Published version): 10.4171/jncg/11-2-7

Abstract

We consider the construction of Dirac operators from bimodule connections and a Clifford action. We also consider Chern connections in the presence of a noncommutative complex structure.

Published in: Journal of Noncommutative Geometry
ISSN: 1661-6952
Published: European Mathematical Society Publishing House 2017
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa29146
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2016-07-07T12:19:27Z
last_indexed 2020-08-03T12:45:38Z
id cronfa29146
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2020-08-03T12:34:42.2049401</datestamp><bib-version>v2</bib-version><id>29146</id><entry>2016-07-07</entry><title>Spectral triples from bimodule connections and Chern connections</title><swanseaauthors><author><sid>a0062e7cf6d68f05151560cdf9d14e75</sid><ORCID>0000-0002-3139-0983</ORCID><firstname>Edwin</firstname><surname>Beggs</surname><name>Edwin Beggs</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2016-07-07</date><deptcode>SMA</deptcode><abstract>We consider the construction of Dirac operators from bimodule connections and a Clifford action. We also consider Chern connections in the presence of a noncommutative complex structure.</abstract><type>Journal Article</type><journal>Journal of Noncommutative Geometry</journal><volume>11</volume><journalNumber>2</journalNumber><paginationStart>669</paginationStart><paginationEnd>701</paginationEnd><publisher>European Mathematical Society Publishing House</publisher><issnPrint>1661-6952</issnPrint><keywords>Spectral triples, noncommutative differential geometry, Chern connections</keywords><publishedDay>29</publishedDay><publishedMonth>6</publishedMonth><publishedYear>2017</publishedYear><publishedDate>2017-06-29</publishedDate><doi>10.4171/jncg/11-2-7</doi><url/><notes/><college>COLLEGE NANME</college><department>Mathematics</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>SMA</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2020-08-03T12:34:42.2049401</lastEdited><Created>2016-07-07T10:33:18.0588390</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Mathematics</level></path><authors><author><firstname>Edwin</firstname><surname>Beggs</surname><orcid>0000-0002-3139-0983</orcid><order>1</order></author><author><firstname>Shahn</firstname><surname>Majid</surname><order>2</order></author></authors><documents><document><filename>0029146-07072016104735.pdf</filename><originalFilename>Dirac.pdf</originalFilename><uploaded>2016-07-07T10:47:35.9230000</uploaded><type>Output</type><contentLength>418797</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2017-06-29T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807>
spelling 2020-08-03T12:34:42.2049401 v2 29146 2016-07-07 Spectral triples from bimodule connections and Chern connections a0062e7cf6d68f05151560cdf9d14e75 0000-0002-3139-0983 Edwin Beggs Edwin Beggs true false 2016-07-07 SMA We consider the construction of Dirac operators from bimodule connections and a Clifford action. We also consider Chern connections in the presence of a noncommutative complex structure. Journal Article Journal of Noncommutative Geometry 11 2 669 701 European Mathematical Society Publishing House 1661-6952 Spectral triples, noncommutative differential geometry, Chern connections 29 6 2017 2017-06-29 10.4171/jncg/11-2-7 COLLEGE NANME Mathematics COLLEGE CODE SMA Swansea University 2020-08-03T12:34:42.2049401 2016-07-07T10:33:18.0588390 Faculty of Science and Engineering School of Mathematics and Computer Science - Mathematics Edwin Beggs 0000-0002-3139-0983 1 Shahn Majid 2 0029146-07072016104735.pdf Dirac.pdf 2016-07-07T10:47:35.9230000 Output 418797 application/pdf Accepted Manuscript true 2017-06-29T00:00:00.0000000 true eng
title Spectral triples from bimodule connections and Chern connections
spellingShingle Spectral triples from bimodule connections and Chern connections
Edwin Beggs
title_short Spectral triples from bimodule connections and Chern connections
title_full Spectral triples from bimodule connections and Chern connections
title_fullStr Spectral triples from bimodule connections and Chern connections
title_full_unstemmed Spectral triples from bimodule connections and Chern connections
title_sort Spectral triples from bimodule connections and Chern connections
author_id_str_mv a0062e7cf6d68f05151560cdf9d14e75
author_id_fullname_str_mv a0062e7cf6d68f05151560cdf9d14e75_***_Edwin Beggs
author Edwin Beggs
author2 Edwin Beggs
Shahn Majid
format Journal article
container_title Journal of Noncommutative Geometry
container_volume 11
container_issue 2
container_start_page 669
publishDate 2017
institution Swansea University
issn 1661-6952
doi_str_mv 10.4171/jncg/11-2-7
publisher European Mathematical Society Publishing House
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Mathematics and Computer Science - Mathematics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Mathematics
document_store_str 1
active_str 0
description We consider the construction of Dirac operators from bimodule connections and a Clifford action. We also consider Chern connections in the presence of a noncommutative complex structure.
published_date 2017-06-29T03:35:32Z
_version_ 1763751528147976192
score 11.035634