No Cover Image

Journal article 1175 views 311 downloads

Metformin Prevents Nigrostriatal Dopamine Degeneration Independent of AMPK Activation in Dopamine Neurons

Thierry Alquier, Jacqueline A. Bayliss, Moyra B. Lemus, Vanessa V. Santos, Minh Deo, Jeffrey Davies Orcid Logo, Bruce E. Kemp, John D. Elsworth, Zane B. Andrews

PLOS ONE, Volume: 11, Issue: 7, Start page: e0159381

Swansea University Author: Jeffrey Davies Orcid Logo

  • journal.pone.0159381.PDF

    PDF | Version of Record

    © 2016 Bayliss et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

    Download (1.59MB)

Abstract

Metformin is a widely prescribed drug used to treat type-2 diabetes, although recent studies show it has wide ranging effects to treat other diseases. Animal and retrospective human studies indicate that Metformin treatment is neuroprotective in Parkinson’s Disease (PD), although the neuroprotective...

Full description

Published in: PLOS ONE
ISSN: 1932-6203
Published: 2016
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa29599
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract: Metformin is a widely prescribed drug used to treat type-2 diabetes, although recent studies show it has wide ranging effects to treat other diseases. Animal and retrospective human studies indicate that Metformin treatment is neuroprotective in Parkinson’s Disease (PD), although the neuroprotective mechanism is unknown, numerous studies suggest the beneficial effects on glucose homeostasis may be through AMPK activation. In this study we tested whether or not AMPK activation in dopamine neurons was required for the neuroprotective effects of Metformin in PD. We generated transgenic mice in which AMPK activity in dopamine neurons was ablated by removing AMPK beta 1 and beta 2 subunits from dopamine transporter expressing neurons. These AMPK WT and KO mice were then chronically exposed to Metformin in the drinking water then exposed to MPTP, the mouse model of PD. Chronic Metformin treatment significantly attenuated the MPTP-induced loss of Tyrosine Hydroxylase (TH) neuronal number and volume and TH protein concentration in the nigrostriatal pathway. Additionally, Metformin treatment prevented the MPTP-induced elevation of the DOPAC:DA ratio regardless of genotype. Metformin also prevented MPTP induced gliosis in the Substantia Nigra. These neuroprotective actions were independent of genotype and occurred in both AMPK WT and AMPK KO mice. Overall, our studies suggest that Metformin’s neuroprotective effects are not due to AMPK activation in dopaminergic neurons and that more research is required to determine how metformin acts to restrict the development of PD.
Keywords: Parkinson's disease, Metformin, AMPK, dopamine
College: Faculty of Medicine, Health and Life Sciences
Issue: 7
Start Page: e0159381