Journal article 1374 views 208 downloads
Climate Change Impacts on Future Wave Climate around the UK
Journal of Marine Science and Engineering, Volume: 4, Issue: 4, Start page: 78
Swansea University Authors: William Bennett , Harshinie Karunarathna
-
PDF | Version of Record
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Download (988.23KB)
DOI (Published version): 10.3390/jmse4040078
Abstract
Understanding the changes in future storm wave climate is crucial for coastal managers and planners to make informed decisions required for sustainable coastal management and for the renewable energy industry. To investigate potential future changes to storm climate around the UK, global wave model...
Published in: | Journal of Marine Science and Engineering |
---|---|
ISSN: | 2077-1312 |
Published: |
2016
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa31326 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
first_indexed |
2016-11-28T20:24:23Z |
---|---|
last_indexed |
2023-01-11T14:04:37Z |
id |
cronfa31326 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2022-11-24T10:08:15.8731418</datestamp><bib-version>v2</bib-version><id>31326</id><entry>2016-11-28</entry><title>Climate Change Impacts on Future Wave Climate around the UK</title><swanseaauthors><author><sid>02f99b24e395a83ca52f7b85b151b29b</sid><ORCID>0000-0002-7229-5747</ORCID><firstname>William</firstname><surname>Bennett</surname><name>William Bennett</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>0d3d327a240d49b53c78e02b7c00e625</sid><ORCID>0000-0002-9087-3811</ORCID><firstname>Harshinie</firstname><surname>Karunarathna</surname><name>Harshinie Karunarathna</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2016-11-28</date><deptcode>CIVL</deptcode><abstract>Understanding the changes in future storm wave climate is crucial for coastal managers and planners to make informed decisions required for sustainable coastal management and for the renewable energy industry. To investigate potential future changes to storm climate around the UK, global wave model outputs of two time slice experiments were analysed with 1979–2009 representing present conditions and 2075–2100 representing the future climate. Three WaveNet buoy sites around the United Kingdom, which represent diverse site conditions and have long datasets, were chosen for this study. A storm event definition (Dissanayake et al., 2015) was used to separate meteorologically-independent storm events from wave data, which in turn allowed storm wave characteristics to be analysed. Model outputs were validated through a comparison of the modelled storm data with observed storm data for overlapping periods. Although no consistent trends across all future clusters were observed, there were no significant increases in storm wave height, storm count or storm power in the future, at least according to the global wave projection results provided by the chosen model.</abstract><type>Journal Article</type><journal>Journal of Marine Science and Engineering</journal><volume>4</volume><journalNumber>4</journalNumber><paginationStart>78</paginationStart><paginationEnd/><publisher/><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint/><issnElectronic>2077-1312</issnElectronic><keywords>Storm wave height, global warming, global wave modelling, wave forecasting, coastal flooding</keywords><publishedDay>18</publishedDay><publishedMonth>11</publishedMonth><publishedYear>2016</publishedYear><publishedDate>2016-11-18</publishedDate><doi>10.3390/jmse4040078</doi><url/><notes/><college>COLLEGE NANME</college><department>Civil Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>CIVL</DepartmentCode><institution>Swansea University</institution><degreesponsorsfunders>Institution</degreesponsorsfunders><apcterm>Not Required</apcterm><funders/><projectreference/><lastEdited>2022-11-24T10:08:15.8731418</lastEdited><Created>2016-11-28T15:13:48.4815583</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering</level></path><authors><author><firstname>William</firstname><surname>Bennett</surname><orcid>0000-0002-7229-5747</orcid><order>1</order></author><author><firstname>Harshinie</firstname><surname>Karunarathna</surname><orcid>0000-0002-9087-3811</orcid><order>2</order></author><author><firstname>Nobuhito</firstname><surname>Mori</surname><order>3</order></author></authors><documents><document><filename>0031326-28112016151603.pdf</filename><originalFilename>Bennetetal2016JMSE.pdf</originalFilename><uploaded>2016-11-28T15:16:03.2200000</uploaded><type>Output</type><contentLength>957254</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><embargoDate>2016-11-28T00:00:00.0000000</embargoDate><documentNotes>© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).</documentNotes><copyrightCorrect>true</copyrightCorrect></document></documents><OutputDurs/></rfc1807> |
spelling |
2022-11-24T10:08:15.8731418 v2 31326 2016-11-28 Climate Change Impacts on Future Wave Climate around the UK 02f99b24e395a83ca52f7b85b151b29b 0000-0002-7229-5747 William Bennett William Bennett true false 0d3d327a240d49b53c78e02b7c00e625 0000-0002-9087-3811 Harshinie Karunarathna Harshinie Karunarathna true false 2016-11-28 CIVL Understanding the changes in future storm wave climate is crucial for coastal managers and planners to make informed decisions required for sustainable coastal management and for the renewable energy industry. To investigate potential future changes to storm climate around the UK, global wave model outputs of two time slice experiments were analysed with 1979–2009 representing present conditions and 2075–2100 representing the future climate. Three WaveNet buoy sites around the United Kingdom, which represent diverse site conditions and have long datasets, were chosen for this study. A storm event definition (Dissanayake et al., 2015) was used to separate meteorologically-independent storm events from wave data, which in turn allowed storm wave characteristics to be analysed. Model outputs were validated through a comparison of the modelled storm data with observed storm data for overlapping periods. Although no consistent trends across all future clusters were observed, there were no significant increases in storm wave height, storm count or storm power in the future, at least according to the global wave projection results provided by the chosen model. Journal Article Journal of Marine Science and Engineering 4 4 78 2077-1312 Storm wave height, global warming, global wave modelling, wave forecasting, coastal flooding 18 11 2016 2016-11-18 10.3390/jmse4040078 COLLEGE NANME Civil Engineering COLLEGE CODE CIVL Swansea University Institution Not Required 2022-11-24T10:08:15.8731418 2016-11-28T15:13:48.4815583 Faculty of Science and Engineering School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering William Bennett 0000-0002-7229-5747 1 Harshinie Karunarathna 0000-0002-9087-3811 2 Nobuhito Mori 3 0031326-28112016151603.pdf Bennetetal2016JMSE.pdf 2016-11-28T15:16:03.2200000 Output 957254 application/pdf Version of Record true 2016-11-28T00:00:00.0000000 © 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/). true |
title |
Climate Change Impacts on Future Wave Climate around the UK |
spellingShingle |
Climate Change Impacts on Future Wave Climate around the UK William Bennett Harshinie Karunarathna |
title_short |
Climate Change Impacts on Future Wave Climate around the UK |
title_full |
Climate Change Impacts on Future Wave Climate around the UK |
title_fullStr |
Climate Change Impacts on Future Wave Climate around the UK |
title_full_unstemmed |
Climate Change Impacts on Future Wave Climate around the UK |
title_sort |
Climate Change Impacts on Future Wave Climate around the UK |
author_id_str_mv |
02f99b24e395a83ca52f7b85b151b29b 0d3d327a240d49b53c78e02b7c00e625 |
author_id_fullname_str_mv |
02f99b24e395a83ca52f7b85b151b29b_***_William Bennett 0d3d327a240d49b53c78e02b7c00e625_***_Harshinie Karunarathna |
author |
William Bennett Harshinie Karunarathna |
author2 |
William Bennett Harshinie Karunarathna Nobuhito Mori |
format |
Journal article |
container_title |
Journal of Marine Science and Engineering |
container_volume |
4 |
container_issue |
4 |
container_start_page |
78 |
publishDate |
2016 |
institution |
Swansea University |
issn |
2077-1312 |
doi_str_mv |
10.3390/jmse4040078 |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering |
document_store_str |
1 |
active_str |
0 |
description |
Understanding the changes in future storm wave climate is crucial for coastal managers and planners to make informed decisions required for sustainable coastal management and for the renewable energy industry. To investigate potential future changes to storm climate around the UK, global wave model outputs of two time slice experiments were analysed with 1979–2009 representing present conditions and 2075–2100 representing the future climate. Three WaveNet buoy sites around the United Kingdom, which represent diverse site conditions and have long datasets, were chosen for this study. A storm event definition (Dissanayake et al., 2015) was used to separate meteorologically-independent storm events from wave data, which in turn allowed storm wave characteristics to be analysed. Model outputs were validated through a comparison of the modelled storm data with observed storm data for overlapping periods. Although no consistent trends across all future clusters were observed, there were no significant increases in storm wave height, storm count or storm power in the future, at least according to the global wave projection results provided by the chosen model. |
published_date |
2016-11-18T03:38:16Z |
_version_ |
1763751699838664704 |
score |
11.036706 |