No Cover Image

Journal article 703 views 129 downloads

Climate Change Impacts on Future Wave Climate around the UK

William Bennett, Harshinie Karunarathna Orcid Logo, Nobuhito Mori, Dominic Reeve

Journal of Marine Science and Engineering, Volume: 4, Issue: 4, Start page: 78

Swansea University Author: Harshinie Karunarathna Orcid Logo

  • Bennetetal2016JMSE.pdf

    PDF | Version of Record

    © 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

    Download (988.23KB)

Check full text

DOI (Published version): 10.3390/jmse4040078

Abstract

Understanding the changes in future storm wave climate is crucial for coastal managers and planners to make informed decisions required for sustainable coastal management and for the renewable energy industry. To investigate potential future changes to storm climate around the UK, global wave model...

Full description

Published in: Journal of Marine Science and Engineering
ISSN: 2077-1312
Published: 2016
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa31326
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2016-11-28T20:24:23Z
last_indexed 2018-02-09T05:18:06Z
id cronfa31326
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2017-07-07T14:08:34.7030638</datestamp><bib-version>v2</bib-version><id>31326</id><entry>2016-11-28</entry><title>Climate Change Impacts on Future Wave Climate around the UK</title><swanseaauthors><author><sid>0d3d327a240d49b53c78e02b7c00e625</sid><ORCID>0000-0002-9087-3811</ORCID><firstname>Harshinie</firstname><surname>Karunarathna</surname><name>Harshinie Karunarathna</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2016-11-28</date><deptcode>CIVL</deptcode><abstract>Understanding the changes in future storm wave climate is crucial for coastal managers and planners to make informed decisions required for sustainable coastal management and for the renewable energy industry. To investigate potential future changes to storm climate around the UK, global wave model outputs of two time slice experiments were analysed with 1979&#x2013;2009 representing present conditions and 2075&#x2013;2100 representing the future climate. Three WaveNet buoy sites around the United Kingdom, which represent diverse site conditions and have long datasets, were chosen for this study. A storm event definition (Dissanayake et al., 2015) was used to separate meteorologically-independent storm events from wave data, which in turn allowed storm wave characteristics to be analysed. Model outputs were validated through a comparison of the modelled storm data with observed storm data for overlapping periods. Although no consistent trends across all future clusters were observed, there were no significant increases in storm wave height, storm count or storm power in the future, at least according to the global wave projection results provided by the chosen model.</abstract><type>Journal Article</type><journal>Journal of Marine Science and Engineering</journal><volume>4</volume><journalNumber>4</journalNumber><paginationStart>78</paginationStart><publisher/><issnElectronic>2077-1312</issnElectronic><keywords>Storm wave height, global warming, global wave modelling, wave forecasting, coastal flooding</keywords><publishedDay>18</publishedDay><publishedMonth>11</publishedMonth><publishedYear>2016</publishedYear><publishedDate>2016-11-18</publishedDate><doi>10.3390/jmse4040078</doi><url/><notes/><college>COLLEGE NANME</college><department>Civil Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>CIVL</DepartmentCode><institution>Swansea University</institution><degreesponsorsfunders>Institution</degreesponsorsfunders><apcterm/><lastEdited>2017-07-07T14:08:34.7030638</lastEdited><Created>2016-11-28T15:13:48.4815583</Created><path><level id="1">College of Engineering</level><level id="2">Engineering</level></path><authors><author><firstname>William</firstname><surname>Bennett</surname><order>1</order></author><author><firstname>Harshinie</firstname><surname>Karunarathna</surname><orcid>0000-0002-9087-3811</orcid><order>2</order></author><author><firstname>Nobuhito</firstname><surname>Mori</surname><order>3</order></author><author><firstname>Dominic</firstname><surname>Reeve</surname><order>4</order></author></authors><documents><document><filename>0031326-28112016151603.pdf</filename><originalFilename>Bennetetal2016JMSE.pdf</originalFilename><uploaded>2016-11-28T15:16:03.2200000</uploaded><type>Output</type><contentLength>957254</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><embargoDate>2016-11-28T00:00:00.0000000</embargoDate><documentNotes>&#xA9; 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).</documentNotes><copyrightCorrect>true</copyrightCorrect></document></documents><OutputDurs/></rfc1807>
spelling 2017-07-07T14:08:34.7030638 v2 31326 2016-11-28 Climate Change Impacts on Future Wave Climate around the UK 0d3d327a240d49b53c78e02b7c00e625 0000-0002-9087-3811 Harshinie Karunarathna Harshinie Karunarathna true false 2016-11-28 CIVL Understanding the changes in future storm wave climate is crucial for coastal managers and planners to make informed decisions required for sustainable coastal management and for the renewable energy industry. To investigate potential future changes to storm climate around the UK, global wave model outputs of two time slice experiments were analysed with 1979–2009 representing present conditions and 2075–2100 representing the future climate. Three WaveNet buoy sites around the United Kingdom, which represent diverse site conditions and have long datasets, were chosen for this study. A storm event definition (Dissanayake et al., 2015) was used to separate meteorologically-independent storm events from wave data, which in turn allowed storm wave characteristics to be analysed. Model outputs were validated through a comparison of the modelled storm data with observed storm data for overlapping periods. Although no consistent trends across all future clusters were observed, there were no significant increases in storm wave height, storm count or storm power in the future, at least according to the global wave projection results provided by the chosen model. Journal Article Journal of Marine Science and Engineering 4 4 78 2077-1312 Storm wave height, global warming, global wave modelling, wave forecasting, coastal flooding 18 11 2016 2016-11-18 10.3390/jmse4040078 COLLEGE NANME Civil Engineering COLLEGE CODE CIVL Swansea University Institution 2017-07-07T14:08:34.7030638 2016-11-28T15:13:48.4815583 College of Engineering Engineering William Bennett 1 Harshinie Karunarathna 0000-0002-9087-3811 2 Nobuhito Mori 3 Dominic Reeve 4 0031326-28112016151603.pdf Bennetetal2016JMSE.pdf 2016-11-28T15:16:03.2200000 Output 957254 application/pdf Version of Record true 2016-11-28T00:00:00.0000000 © 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/). true
title Climate Change Impacts on Future Wave Climate around the UK
spellingShingle Climate Change Impacts on Future Wave Climate around the UK
Harshinie Karunarathna
title_short Climate Change Impacts on Future Wave Climate around the UK
title_full Climate Change Impacts on Future Wave Climate around the UK
title_fullStr Climate Change Impacts on Future Wave Climate around the UK
title_full_unstemmed Climate Change Impacts on Future Wave Climate around the UK
title_sort Climate Change Impacts on Future Wave Climate around the UK
author_id_str_mv 0d3d327a240d49b53c78e02b7c00e625
author_id_fullname_str_mv 0d3d327a240d49b53c78e02b7c00e625_***_Harshinie Karunarathna
author Harshinie Karunarathna
author2 William Bennett
Harshinie Karunarathna
Nobuhito Mori
Dominic Reeve
format Journal article
container_title Journal of Marine Science and Engineering
container_volume 4
container_issue 4
container_start_page 78
publishDate 2016
institution Swansea University
issn 2077-1312
doi_str_mv 10.3390/jmse4040078
college_str College of Engineering
hierarchytype
hierarchy_top_id collegeofengineering
hierarchy_top_title College of Engineering
hierarchy_parent_id collegeofengineering
hierarchy_parent_title College of Engineering
department_str Engineering{{{_:::_}}}College of Engineering{{{_:::_}}}Engineering
document_store_str 1
active_str 0
description Understanding the changes in future storm wave climate is crucial for coastal managers and planners to make informed decisions required for sustainable coastal management and for the renewable energy industry. To investigate potential future changes to storm climate around the UK, global wave model outputs of two time slice experiments were analysed with 1979–2009 representing present conditions and 2075–2100 representing the future climate. Three WaveNet buoy sites around the United Kingdom, which represent diverse site conditions and have long datasets, were chosen for this study. A storm event definition (Dissanayake et al., 2015) was used to separate meteorologically-independent storm events from wave data, which in turn allowed storm wave characteristics to be analysed. Model outputs were validated through a comparison of the modelled storm data with observed storm data for overlapping periods. Although no consistent trends across all future clusters were observed, there were no significant increases in storm wave height, storm count or storm power in the future, at least according to the global wave projection results provided by the chosen model.
published_date 2016-11-18T03:43:09Z
_version_ 1737025902145961984
score 10.898776