Journal article 43229 views 128 downloads
DS-KCF: a real-time tracker for RGB-D data
Journal of Real-Time Image Processing, Volume: 16, Issue: 5, Pages: 1439 - 1458
Swansea University Author: Adeline Paiement
-
PDF | Version of Record
Released under the terms of a Creative Commons Attribution License (CC-BY).
Download (2.38MB)
DOI (Published version): 10.1007/s11554-016-0654-3
Abstract
We propose an RGB-D single-object tracker, built upon the extremely fast RGB-only KCF tracker that is able to exploit depth information to handle scale changes, occlusions, and shape changes. Despite the computational demands of the extra functionalities, we still achieve real-time performance rates...
Published in: | Journal of Real-Time Image Processing |
---|---|
ISSN: | 1861-8200 1861-8219 |
Published: |
Springer Science and Business Media LLC
2019
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa31410 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
first_indexed |
2016-12-09T14:59:18Z |
---|---|
last_indexed |
2020-07-31T18:48:10Z |
id |
cronfa31410 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2020-07-31T15:47:28.1835981</datestamp><bib-version>v2</bib-version><id>31410</id><entry>2016-12-09</entry><title>DS-KCF: a real-time tracker for RGB-D data</title><swanseaauthors><author><sid>f50adf4186d930e3a2a0f9a6d643cf53</sid><firstname>Adeline</firstname><surname>Paiement</surname><name>Adeline Paiement</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2016-12-09</date><deptcode>FGHSS</deptcode><abstract>We propose an RGB-D single-object tracker, built upon the extremely fast RGB-only KCF tracker that is able to exploit depth information to handle scale changes, occlusions, and shape changes. Despite the computational demands of the extra functionalities, we still achieve real-time performance rates of 35–43 fps in MATLAB and 187 fps in our C++ implementation. Our proposed method includes fast depth-based target object segmentation that enables, (1) efficient scale change handling within the KCF core functionality in the Fourier domain, (2) the detection of occlusions by temporal analysis of the target’s depth distribution, and (3) the estimation of a target’s change of shape through the temporal evolution of its segmented silhouette allows. Finally, we provide an in-depth analysis of the factors affecting the throughput and precision of our proposed tracker and perform extensive comparative analysis. Both the MATLAB and C++ versions of our software are available in the public domain.</abstract><type>Journal Article</type><journal>Journal of Real-Time Image Processing</journal><volume>16</volume><journalNumber>5</journalNumber><paginationStart>1439</paginationStart><paginationEnd>1458</paginationEnd><publisher>Springer Science and Business Media LLC</publisher><issnPrint>1861-8200</issnPrint><issnElectronic>1861-8219</issnElectronic><keywords>RGB-D tracking; Correlation filters; Scale and shape changes handling; Occlusion detection; Depth-based segmentation</keywords><publishedDay>1</publishedDay><publishedMonth>10</publishedMonth><publishedYear>2019</publishedYear><publishedDate>2019-10-01</publishedDate><doi>10.1007/s11554-016-0654-3</doi><url/><notes/><college>COLLEGE NANME</college><department>Humanities and Social Sciences - Faculty</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>FGHSS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2020-07-31T15:47:28.1835981</lastEdited><Created>2016-12-09T12:06:01.7551790</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Computer Science</level></path><authors><author><firstname>Sion</firstname><surname>Hannuna</surname><order>1</order></author><author><firstname>Massimo</firstname><surname>Camplani</surname><order>2</order></author><author><firstname>Jake</firstname><surname>Hall</surname><order>3</order></author><author><firstname>Majid</firstname><surname>Mirmehdi</surname><order>4</order></author><author><firstname>Dima</firstname><surname>Damen</surname><order>5</order></author><author><firstname>Tilo</firstname><surname>Burghardt</surname><order>6</order></author><author><firstname>Adeline</firstname><surname>Paiement</surname><order>7</order></author><author><firstname>Lili</firstname><surname>Tao</surname><order>8</order></author></authors><documents><document><filename>31410__17820__f8553b8311834c8d8485bb1d1cfa5c97.pdf</filename><originalFilename>DSKCFVOR.pdf</originalFilename><uploaded>2020-07-31T15:45:20.6368792</uploaded><type>Output</type><contentLength>2498226</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>Released under the terms of a Creative Commons Attribution License (CC-BY).</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807> |
spelling |
2020-07-31T15:47:28.1835981 v2 31410 2016-12-09 DS-KCF: a real-time tracker for RGB-D data f50adf4186d930e3a2a0f9a6d643cf53 Adeline Paiement Adeline Paiement true false 2016-12-09 FGHSS We propose an RGB-D single-object tracker, built upon the extremely fast RGB-only KCF tracker that is able to exploit depth information to handle scale changes, occlusions, and shape changes. Despite the computational demands of the extra functionalities, we still achieve real-time performance rates of 35–43 fps in MATLAB and 187 fps in our C++ implementation. Our proposed method includes fast depth-based target object segmentation that enables, (1) efficient scale change handling within the KCF core functionality in the Fourier domain, (2) the detection of occlusions by temporal analysis of the target’s depth distribution, and (3) the estimation of a target’s change of shape through the temporal evolution of its segmented silhouette allows. Finally, we provide an in-depth analysis of the factors affecting the throughput and precision of our proposed tracker and perform extensive comparative analysis. Both the MATLAB and C++ versions of our software are available in the public domain. Journal Article Journal of Real-Time Image Processing 16 5 1439 1458 Springer Science and Business Media LLC 1861-8200 1861-8219 RGB-D tracking; Correlation filters; Scale and shape changes handling; Occlusion detection; Depth-based segmentation 1 10 2019 2019-10-01 10.1007/s11554-016-0654-3 COLLEGE NANME Humanities and Social Sciences - Faculty COLLEGE CODE FGHSS Swansea University 2020-07-31T15:47:28.1835981 2016-12-09T12:06:01.7551790 Faculty of Science and Engineering School of Mathematics and Computer Science - Computer Science Sion Hannuna 1 Massimo Camplani 2 Jake Hall 3 Majid Mirmehdi 4 Dima Damen 5 Tilo Burghardt 6 Adeline Paiement 7 Lili Tao 8 31410__17820__f8553b8311834c8d8485bb1d1cfa5c97.pdf DSKCFVOR.pdf 2020-07-31T15:45:20.6368792 Output 2498226 application/pdf Version of Record true Released under the terms of a Creative Commons Attribution License (CC-BY). true eng http://creativecommons.org/licenses/by/4.0/ |
title |
DS-KCF: a real-time tracker for RGB-D data |
spellingShingle |
DS-KCF: a real-time tracker for RGB-D data Adeline Paiement |
title_short |
DS-KCF: a real-time tracker for RGB-D data |
title_full |
DS-KCF: a real-time tracker for RGB-D data |
title_fullStr |
DS-KCF: a real-time tracker for RGB-D data |
title_full_unstemmed |
DS-KCF: a real-time tracker for RGB-D data |
title_sort |
DS-KCF: a real-time tracker for RGB-D data |
author_id_str_mv |
f50adf4186d930e3a2a0f9a6d643cf53 |
author_id_fullname_str_mv |
f50adf4186d930e3a2a0f9a6d643cf53_***_Adeline Paiement |
author |
Adeline Paiement |
author2 |
Sion Hannuna Massimo Camplani Jake Hall Majid Mirmehdi Dima Damen Tilo Burghardt Adeline Paiement Lili Tao |
format |
Journal article |
container_title |
Journal of Real-Time Image Processing |
container_volume |
16 |
container_issue |
5 |
container_start_page |
1439 |
publishDate |
2019 |
institution |
Swansea University |
issn |
1861-8200 1861-8219 |
doi_str_mv |
10.1007/s11554-016-0654-3 |
publisher |
Springer Science and Business Media LLC |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Mathematics and Computer Science - Computer Science{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Computer Science |
document_store_str |
1 |
active_str |
0 |
description |
We propose an RGB-D single-object tracker, built upon the extremely fast RGB-only KCF tracker that is able to exploit depth information to handle scale changes, occlusions, and shape changes. Despite the computational demands of the extra functionalities, we still achieve real-time performance rates of 35–43 fps in MATLAB and 187 fps in our C++ implementation. Our proposed method includes fast depth-based target object segmentation that enables, (1) efficient scale change handling within the KCF core functionality in the Fourier domain, (2) the detection of occlusions by temporal analysis of the target’s depth distribution, and (3) the estimation of a target’s change of shape through the temporal evolution of its segmented silhouette allows. Finally, we provide an in-depth analysis of the factors affecting the throughput and precision of our proposed tracker and perform extensive comparative analysis. Both the MATLAB and C++ versions of our software are available in the public domain. |
published_date |
2019-10-01T03:38:22Z |
_version_ |
1763751705912016896 |
score |
11.036006 |