No Cover Image

Journal article 442 views 49 downloads

A pulse size estimation method for reduced-order models / L.M. Griffiths; A.L. Gaitonde; D.P. Jones; M.I. Friswell; Michael Friswell

The Aeronautical Journal, Volume: 120, Issue: 1234, Pages: 1891 - 1916

Swansea University Author: Michael, Friswell

Check full text

DOI (Published version): 10.1017/aer.2016.111

Abstract

Model-Order Reduction (MOR) is an important technique that allows Reduced-Order Models (ROMs) of physical systems to be generated that can capture the dominant dynamics, but at lower cost than the full order system. One approach to MOR that has been successfully implemented in fluid dynamics is the...

Full description

Published in: The Aeronautical Journal
ISSN: 0001-9240 2059-6464
Published: 2016
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa31571
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2017-01-04T20:57:16Z
last_indexed 2018-02-09T05:18:38Z
id cronfa31571
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2017-01-05T15:23:50.9572920</datestamp><bib-version>v2</bib-version><id>31571</id><entry>2017-01-04</entry><title>A pulse size estimation method for reduced-order models</title><swanseaauthors><author><sid>5894777b8f9c6e64bde3568d68078d40</sid><firstname>Michael</firstname><surname>Friswell</surname><name>Michael Friswell</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2017-01-04</date><deptcode>EEN</deptcode><abstract>Model-Order Reduction (MOR) is an important technique that allows Reduced-Order Models (ROMs) of physical systems to be generated that can capture the dominant dynamics, but at lower cost than the full order system. One approach to MOR that has been successfully implemented in fluid dynamics is the Eigensystem Realization Algorithm (ERA). This method requires only minimal changes to the inputs and outputs of a CFD code so that the linear responses of the system to unit impulses on each input channel can be extracted. One of the challenges with the method is to specify the size of the input pulse. An inappropriate size may cause a failure of the code to converge due to non-physical behaviour arising during the solution process. This paper addresses this issue by using piston theory to estimate the appropriate input pulse size.</abstract><type>Journal Article</type><journal>The Aeronautical Journal</journal><volume>120</volume><journalNumber>1234</journalNumber><paginationStart>1891</paginationStart><paginationEnd>1916</paginationEnd><publisher/><issnPrint>0001-9240</issnPrint><issnElectronic>2059-6464</issnElectronic><keywords/><publishedDay>31</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2016</publishedYear><publishedDate>2016-12-31</publishedDate><doi>10.1017/aer.2016.111</doi><url/><notes/><college>COLLEGE NANME</college><department>Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>EEN</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2017-01-05T15:23:50.9572920</lastEdited><Created>2017-01-04T16:08:45.4806558</Created><path><level id="1">College of Engineering</level><level id="2">Engineering</level></path><authors><author><firstname>L.M.</firstname><surname>Griffiths</surname><order>1</order></author><author><firstname>A.L.</firstname><surname>Gaitonde</surname><order>2</order></author><author><firstname>D.P.</firstname><surname>Jones</surname><order>3</order></author><author><firstname>M.I.</firstname><surname>Friswell</surname><order>4</order></author><author><firstname>Michael</firstname><surname>Friswell</surname><order>5</order></author></authors><documents><document><filename>0031571-05012017152203.pdf</filename><originalFilename>griffiths2016v3.pdf</originalFilename><uploaded>2017-01-05T15:22:03.5200000</uploaded><type>Output</type><contentLength>496681</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><action/><embargoDate>2017-05-21T00:00:00.0000000</embargoDate><copyrightCorrect>false</copyrightCorrect></document></documents><OutputDurs/></rfc1807>
spelling 2017-01-05T15:23:50.9572920 v2 31571 2017-01-04 A pulse size estimation method for reduced-order models 5894777b8f9c6e64bde3568d68078d40 Michael Friswell Michael Friswell true false 2017-01-04 EEN Model-Order Reduction (MOR) is an important technique that allows Reduced-Order Models (ROMs) of physical systems to be generated that can capture the dominant dynamics, but at lower cost than the full order system. One approach to MOR that has been successfully implemented in fluid dynamics is the Eigensystem Realization Algorithm (ERA). This method requires only minimal changes to the inputs and outputs of a CFD code so that the linear responses of the system to unit impulses on each input channel can be extracted. One of the challenges with the method is to specify the size of the input pulse. An inappropriate size may cause a failure of the code to converge due to non-physical behaviour arising during the solution process. This paper addresses this issue by using piston theory to estimate the appropriate input pulse size. Journal Article The Aeronautical Journal 120 1234 1891 1916 0001-9240 2059-6464 31 12 2016 2016-12-31 10.1017/aer.2016.111 COLLEGE NANME Engineering COLLEGE CODE EEN Swansea University 2017-01-05T15:23:50.9572920 2017-01-04T16:08:45.4806558 College of Engineering Engineering L.M. Griffiths 1 A.L. Gaitonde 2 D.P. Jones 3 M.I. Friswell 4 Michael Friswell 5 0031571-05012017152203.pdf griffiths2016v3.pdf 2017-01-05T15:22:03.5200000 Output 496681 application/pdf Accepted Manuscript true 2017-05-21T00:00:00.0000000 false
title A pulse size estimation method for reduced-order models
spellingShingle A pulse size estimation method for reduced-order models
Michael, Friswell
title_short A pulse size estimation method for reduced-order models
title_full A pulse size estimation method for reduced-order models
title_fullStr A pulse size estimation method for reduced-order models
title_full_unstemmed A pulse size estimation method for reduced-order models
title_sort A pulse size estimation method for reduced-order models
author_id_str_mv 5894777b8f9c6e64bde3568d68078d40
author_id_fullname_str_mv 5894777b8f9c6e64bde3568d68078d40_***_Michael, Friswell
author Michael, Friswell
author2 L.M. Griffiths
A.L. Gaitonde
D.P. Jones
M.I. Friswell
Michael Friswell
format Journal article
container_title The Aeronautical Journal
container_volume 120
container_issue 1234
container_start_page 1891
publishDate 2016
institution Swansea University
issn 0001-9240
2059-6464
doi_str_mv 10.1017/aer.2016.111
college_str College of Engineering
hierarchytype
hierarchy_top_id collegeofengineering
hierarchy_top_title College of Engineering
hierarchy_parent_id collegeofengineering
hierarchy_parent_title College of Engineering
department_str Engineering{{{_:::_}}}College of Engineering{{{_:::_}}}Engineering
document_store_str 1
active_str 0
description Model-Order Reduction (MOR) is an important technique that allows Reduced-Order Models (ROMs) of physical systems to be generated that can capture the dominant dynamics, but at lower cost than the full order system. One approach to MOR that has been successfully implemented in fluid dynamics is the Eigensystem Realization Algorithm (ERA). This method requires only minimal changes to the inputs and outputs of a CFD code so that the linear responses of the system to unit impulses on each input channel can be extracted. One of the challenges with the method is to specify the size of the input pulse. An inappropriate size may cause a failure of the code to converge due to non-physical behaviour arising during the solution process. This paper addresses this issue by using piston theory to estimate the appropriate input pulse size.
published_date 2016-12-31T03:49:54Z
_version_ 1697797839925542912
score 10.789871