Conference Paper/Proceeding/Abstract 1013 views 480 downloads
Detecting humans in RGB-D data with CNNs
Pages: 306 - 309
Swansea University Author: Adeline Paiement
-
PDF | Version of Record
Download (5.31MB)
DOI (Published version): 10.23919/MVA.2017.7986862
Abstract
We address the problem of people detection in RGB-D data where we leverage depth information to develop a region-of-interest (ROI) selection method that provides proposals to two color and depth CNNs. To combine the detections produced by the two CNNs, we propose a novel fusion approach based on the...
Published: |
The Fifteenth IAPR International Conference on Machine Vision Applications
2017
|
---|---|
Online Access: |
http://www.mva-org.jp/mva2017/ |
URI: | https://cronfa.swan.ac.uk/Record/cronfa31971 |
first_indexed |
2017-02-13T20:56:40Z |
---|---|
last_indexed |
2018-02-09T05:19:23Z |
id |
cronfa31971 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2017-09-13T15:23:42.2918552</datestamp><bib-version>v2</bib-version><id>31971</id><entry>2017-02-13</entry><title>Detecting humans in RGB-D data with CNNs</title><swanseaauthors><author><sid>f50adf4186d930e3a2a0f9a6d643cf53</sid><ORCID>0000-0001-5114-1514</ORCID><firstname>Adeline</firstname><surname>Paiement</surname><name>Adeline Paiement</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2017-02-13</date><deptcode>MACS</deptcode><abstract>We address the problem of people detection in RGB-D data where we leverage depth information to develop a region-of-interest (ROI) selection method that provides proposals to two color and depth CNNs. To combine the detections produced by the two CNNs, we propose a novel fusion approach based on the characteristics of depth images. We also present a new depth-encoding scheme, which not only encodes depth images into three channels but also enhances the information for classification. We conduct experiments on a publicly available RGB-D people dataset and show that our approach outperforms the baseline models that only use RGB data.</abstract><type>Conference Paper/Proceeding/Abstract</type><journal/><paginationStart>306</paginationStart><paginationEnd>309</paginationEnd><publisher>The Fifteenth IAPR International Conference on Machine Vision Applications</publisher><keywords/><publishedDay>20</publishedDay><publishedMonth>7</publishedMonth><publishedYear>2017</publishedYear><publishedDate>2017-07-20</publishedDate><doi>10.23919/MVA.2017.7986862</doi><url>http://www.mva-org.jp/mva2017/</url><notes/><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2017-09-13T15:23:42.2918552</lastEdited><Created>2017-02-13T15:08:25.6267803</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Computer Science</level></path><authors><author><firstname>Kaiyang</firstname><surname>Zhou</surname><order>1</order></author><author><firstname>Adeline</firstname><surname>Paiement</surname><orcid>0000-0001-5114-1514</orcid><order>2</order></author><author><firstname>Majid</firstname><surname>Mirmehdi</surname><order>3</order></author></authors><documents><document><filename>0031971-02062017183257.pdf</filename><originalFilename>MVA17.pdf</originalFilename><uploaded>2017-06-02T18:32:57.2700000</uploaded><type>Output</type><contentLength>5534229</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><embargoDate>2017-07-20T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807> |
spelling |
2017-09-13T15:23:42.2918552 v2 31971 2017-02-13 Detecting humans in RGB-D data with CNNs f50adf4186d930e3a2a0f9a6d643cf53 0000-0001-5114-1514 Adeline Paiement Adeline Paiement true false 2017-02-13 MACS We address the problem of people detection in RGB-D data where we leverage depth information to develop a region-of-interest (ROI) selection method that provides proposals to two color and depth CNNs. To combine the detections produced by the two CNNs, we propose a novel fusion approach based on the characteristics of depth images. We also present a new depth-encoding scheme, which not only encodes depth images into three channels but also enhances the information for classification. We conduct experiments on a publicly available RGB-D people dataset and show that our approach outperforms the baseline models that only use RGB data. Conference Paper/Proceeding/Abstract 306 309 The Fifteenth IAPR International Conference on Machine Vision Applications 20 7 2017 2017-07-20 10.23919/MVA.2017.7986862 http://www.mva-org.jp/mva2017/ COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University 2017-09-13T15:23:42.2918552 2017-02-13T15:08:25.6267803 Faculty of Science and Engineering School of Mathematics and Computer Science - Computer Science Kaiyang Zhou 1 Adeline Paiement 0000-0001-5114-1514 2 Majid Mirmehdi 3 0031971-02062017183257.pdf MVA17.pdf 2017-06-02T18:32:57.2700000 Output 5534229 application/pdf Version of Record true 2017-07-20T00:00:00.0000000 true eng |
title |
Detecting humans in RGB-D data with CNNs |
spellingShingle |
Detecting humans in RGB-D data with CNNs Adeline Paiement |
title_short |
Detecting humans in RGB-D data with CNNs |
title_full |
Detecting humans in RGB-D data with CNNs |
title_fullStr |
Detecting humans in RGB-D data with CNNs |
title_full_unstemmed |
Detecting humans in RGB-D data with CNNs |
title_sort |
Detecting humans in RGB-D data with CNNs |
author_id_str_mv |
f50adf4186d930e3a2a0f9a6d643cf53 |
author_id_fullname_str_mv |
f50adf4186d930e3a2a0f9a6d643cf53_***_Adeline Paiement |
author |
Adeline Paiement |
author2 |
Kaiyang Zhou Adeline Paiement Majid Mirmehdi |
format |
Conference Paper/Proceeding/Abstract |
container_start_page |
306 |
publishDate |
2017 |
institution |
Swansea University |
doi_str_mv |
10.23919/MVA.2017.7986862 |
publisher |
The Fifteenth IAPR International Conference on Machine Vision Applications |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Mathematics and Computer Science - Computer Science{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Computer Science |
url |
http://www.mva-org.jp/mva2017/ |
document_store_str |
1 |
active_str |
0 |
description |
We address the problem of people detection in RGB-D data where we leverage depth information to develop a region-of-interest (ROI) selection method that provides proposals to two color and depth CNNs. To combine the detections produced by the two CNNs, we propose a novel fusion approach based on the characteristics of depth images. We also present a new depth-encoding scheme, which not only encodes depth images into three channels but also enhances the information for classification. We conduct experiments on a publicly available RGB-D people dataset and show that our approach outperforms the baseline models that only use RGB data. |
published_date |
2017-07-20T07:01:42Z |
_version_ |
1821297347302260736 |
score |
11.047609 |