No Cover Image

Book chapter 924 views 305 downloads

Neural Network Boundary Detection for 3D Vessel Segmentation

Robert Ieuan Palmer, Xianghua Xie Orcid Logo

Advanced Concepts for Intelligent Vision Systems, Volume: 10016, Pages: 25 - 36

Swansea University Author: Xianghua Xie Orcid Logo

DOI (Published version): 10.1007/978-3-319-48680-2_3

Abstract

In this paper we investigate the performance of NN architectures for the purpose of boundary detection, before integrating a chosen architecture in a data-driven deformable modelling framework for full segmentation.

Published in: Advanced Concepts for Intelligent Vision Systems
ISBN: 978-3-319-48679-6 978-3-319-48680-2
Published: 2016
URI: https://cronfa.swan.ac.uk/Record/cronfa32106
first_indexed 2017-02-25T05:04:37Z
last_indexed 2018-02-09T05:19:41Z
id cronfa32106
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2017-04-26T17:39:53.0861588</datestamp><bib-version>v2</bib-version><id>32106</id><entry>2017-02-24</entry><title>Neural Network Boundary Detection for 3D Vessel Segmentation</title><swanseaauthors><author><sid>b334d40963c7a2f435f06d2c26c74e11</sid><ORCID>0000-0002-2701-8660</ORCID><firstname>Xianghua</firstname><surname>Xie</surname><name>Xianghua Xie</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2017-02-24</date><deptcode>MACS</deptcode><abstract>In this paper we investigate the performance of NN architectures for the purpose of boundary detection, before integrating a chosen architecture in a data-driven deformable modelling framework for full segmentation.</abstract><type>Book chapter</type><journal>Advanced Concepts for Intelligent Vision Systems</journal><volume>10016</volume><paginationStart>25</paginationStart><paginationEnd>36</paginationEnd><publisher/><isbnPrint>978-3-319-48679-6</isbnPrint><isbnElectronic>978-3-319-48680-2</isbnElectronic><keywords>Neural network, image segmentation, medical image analysis</keywords><publishedDay>31</publishedDay><publishedMonth>10</publishedMonth><publishedYear>2016</publishedYear><publishedDate>2016-10-31</publishedDate><doi>10.1007/978-3-319-48680-2_3</doi><url/><notes/><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2017-04-26T17:39:53.0861588</lastEdited><Created>2017-02-24T23:38:51.8269712</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Computer Science</level></path><authors><author><firstname>Robert Ieuan</firstname><surname>Palmer</surname><order>1</order></author><author><firstname>Xianghua</firstname><surname>Xie</surname><orcid>0000-0002-2701-8660</orcid><order>2</order></author></authors><documents><document><filename>0032106-21032017092225.pdf</filename><originalFilename>acivs16rp.pdf</originalFilename><uploaded>2017-03-21T09:22:25.7270000</uploaded><type>Output</type><contentLength>2957667</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2016-10-01T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807>
spelling 2017-04-26T17:39:53.0861588 v2 32106 2017-02-24 Neural Network Boundary Detection for 3D Vessel Segmentation b334d40963c7a2f435f06d2c26c74e11 0000-0002-2701-8660 Xianghua Xie Xianghua Xie true false 2017-02-24 MACS In this paper we investigate the performance of NN architectures for the purpose of boundary detection, before integrating a chosen architecture in a data-driven deformable modelling framework for full segmentation. Book chapter Advanced Concepts for Intelligent Vision Systems 10016 25 36 978-3-319-48679-6 978-3-319-48680-2 Neural network, image segmentation, medical image analysis 31 10 2016 2016-10-31 10.1007/978-3-319-48680-2_3 COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University 2017-04-26T17:39:53.0861588 2017-02-24T23:38:51.8269712 Faculty of Science and Engineering School of Mathematics and Computer Science - Computer Science Robert Ieuan Palmer 1 Xianghua Xie 0000-0002-2701-8660 2 0032106-21032017092225.pdf acivs16rp.pdf 2017-03-21T09:22:25.7270000 Output 2957667 application/pdf Accepted Manuscript true 2016-10-01T00:00:00.0000000 true eng
title Neural Network Boundary Detection for 3D Vessel Segmentation
spellingShingle Neural Network Boundary Detection for 3D Vessel Segmentation
Xianghua Xie
title_short Neural Network Boundary Detection for 3D Vessel Segmentation
title_full Neural Network Boundary Detection for 3D Vessel Segmentation
title_fullStr Neural Network Boundary Detection for 3D Vessel Segmentation
title_full_unstemmed Neural Network Boundary Detection for 3D Vessel Segmentation
title_sort Neural Network Boundary Detection for 3D Vessel Segmentation
author_id_str_mv b334d40963c7a2f435f06d2c26c74e11
author_id_fullname_str_mv b334d40963c7a2f435f06d2c26c74e11_***_Xianghua Xie
author Xianghua Xie
author2 Robert Ieuan Palmer
Xianghua Xie
format Book chapter
container_title Advanced Concepts for Intelligent Vision Systems
container_volume 10016
container_start_page 25
publishDate 2016
institution Swansea University
isbn 978-3-319-48679-6
978-3-319-48680-2
doi_str_mv 10.1007/978-3-319-48680-2_3
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Mathematics and Computer Science - Computer Science{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Computer Science
document_store_str 1
active_str 0
description In this paper we investigate the performance of NN architectures for the purpose of boundary detection, before integrating a chosen architecture in a data-driven deformable modelling framework for full segmentation.
published_date 2016-10-31T13:07:49Z
_version_ 1821320381417390080
score 11.323529