Conference Paper/Proceeding/Abstract 1787 views 305 downloads
Nested Shallow CNN-Cascade for Face Detection in the Wild
2017 IEEE 12th International Conference on Automatic Face & Gesture Recognition, Pages: 165 - 172
Swansea University Authors: Jingjing Deng, Xianghua Xie
-
PDF | Accepted Manuscript
Download (16.33MB)
DOI (Published version): 10.1109/FG.2017.29
Abstract
We propose a nested CNN-cascade learning algorithm that adopts shallow neural network architectures that allow efficient and progressive elimination of negative hypothesis from easy to hard via self-learning discriminative representations from coarse to fine scales. The face detection problem is con...
Published in: | 2017 IEEE 12th International Conference on Automatic Face & Gesture Recognition |
---|---|
ISBN: | 978-1-5090-4024-7 978-1-5090-4023-0 |
Published: |
IEEE
2017
|
Online Access: |
http://csvision.swan.ac.uk/uploads/Site/Publication/jd17fg.pdf |
URI: | https://cronfa.swan.ac.uk/Record/cronfa32108 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
first_indexed |
2017-02-25T05:04:38Z |
---|---|
last_indexed |
2021-01-29T03:49:48Z |
id |
cronfa32108 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2021-01-28T13:20:48.0322638</datestamp><bib-version>v2</bib-version><id>32108</id><entry>2017-02-24</entry><title>Nested Shallow CNN-Cascade for Face Detection in the Wild</title><swanseaauthors><author><sid>6f6d01d585363d6dc1622640bb4fcb3f</sid><firstname>Jingjing</firstname><surname>Deng</surname><name>Jingjing Deng</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>b334d40963c7a2f435f06d2c26c74e11</sid><ORCID>0000-0002-2701-8660</ORCID><firstname>Xianghua</firstname><surname>Xie</surname><name>Xianghua Xie</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2017-02-24</date><abstract>We propose a nested CNN-cascade learning algorithm that adopts shallow neural network architectures that allow efficient and progressive elimination of negative hypothesis from easy to hard via self-learning discriminative representations from coarse to fine scales. The face detection problem is considered as solving three sub-problems: eliminating easy background with a simple but fast model, then localising the face region with a soft-cascade, followed by precise detection and localisation by verifying retained regions with a deeper and stronger model.</abstract><type>Conference Paper/Proceeding/Abstract</type><journal>2017 IEEE 12th International Conference on Automatic Face & Gesture Recognition</journal><volume/><journalNumber/><paginationStart>165</paginationStart><paginationEnd>172</paginationEnd><publisher>IEEE</publisher><placeOfPublication/><isbnPrint>978-1-5090-4024-7</isbnPrint><isbnElectronic>978-1-5090-4023-0</isbnElectronic><issnPrint/><issnElectronic/><keywords>Deep Learning, Neural Network, Face Detection, CNN</keywords><publishedDay>29</publishedDay><publishedMonth>6</publishedMonth><publishedYear>2017</publishedYear><publishedDate>2017-06-29</publishedDate><doi>10.1109/FG.2017.29</doi><url>http://csvision.swan.ac.uk/uploads/Site/Publication/jd17fg.pdf</url><notes/><college>COLLEGE NANME</college><CollegeCode>COLLEGE CODE</CollegeCode><institution>Swansea University</institution><apcterm/><lastEdited>2021-01-28T13:20:48.0322638</lastEdited><Created>2017-02-24T23:46:07.2461762</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Computer Science</level></path><authors><author><firstname>Jingjing</firstname><surname>Deng</surname><order>1</order></author><author><firstname>Xianghua</firstname><surname>Xie</surname><orcid>0000-0002-2701-8660</orcid><order>2</order></author></authors><documents><document><filename>0032108-27052017151854.pdf</filename><originalFilename>FG2017CRC.pdf</originalFilename><uploaded>2017-05-27T15:18:54.0230000</uploaded><type>Output</type><contentLength>17090590</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2017-05-27T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807> |
spelling |
2021-01-28T13:20:48.0322638 v2 32108 2017-02-24 Nested Shallow CNN-Cascade for Face Detection in the Wild 6f6d01d585363d6dc1622640bb4fcb3f Jingjing Deng Jingjing Deng true false b334d40963c7a2f435f06d2c26c74e11 0000-0002-2701-8660 Xianghua Xie Xianghua Xie true false 2017-02-24 We propose a nested CNN-cascade learning algorithm that adopts shallow neural network architectures that allow efficient and progressive elimination of negative hypothesis from easy to hard via self-learning discriminative representations from coarse to fine scales. The face detection problem is considered as solving three sub-problems: eliminating easy background with a simple but fast model, then localising the face region with a soft-cascade, followed by precise detection and localisation by verifying retained regions with a deeper and stronger model. Conference Paper/Proceeding/Abstract 2017 IEEE 12th International Conference on Automatic Face & Gesture Recognition 165 172 IEEE 978-1-5090-4024-7 978-1-5090-4023-0 Deep Learning, Neural Network, Face Detection, CNN 29 6 2017 2017-06-29 10.1109/FG.2017.29 http://csvision.swan.ac.uk/uploads/Site/Publication/jd17fg.pdf COLLEGE NANME COLLEGE CODE Swansea University 2021-01-28T13:20:48.0322638 2017-02-24T23:46:07.2461762 Faculty of Science and Engineering School of Mathematics and Computer Science - Computer Science Jingjing Deng 1 Xianghua Xie 0000-0002-2701-8660 2 0032108-27052017151854.pdf FG2017CRC.pdf 2017-05-27T15:18:54.0230000 Output 17090590 application/pdf Accepted Manuscript true 2017-05-27T00:00:00.0000000 true eng |
title |
Nested Shallow CNN-Cascade for Face Detection in the Wild |
spellingShingle |
Nested Shallow CNN-Cascade for Face Detection in the Wild Jingjing Deng Xianghua Xie |
title_short |
Nested Shallow CNN-Cascade for Face Detection in the Wild |
title_full |
Nested Shallow CNN-Cascade for Face Detection in the Wild |
title_fullStr |
Nested Shallow CNN-Cascade for Face Detection in the Wild |
title_full_unstemmed |
Nested Shallow CNN-Cascade for Face Detection in the Wild |
title_sort |
Nested Shallow CNN-Cascade for Face Detection in the Wild |
author_id_str_mv |
6f6d01d585363d6dc1622640bb4fcb3f b334d40963c7a2f435f06d2c26c74e11 |
author_id_fullname_str_mv |
6f6d01d585363d6dc1622640bb4fcb3f_***_Jingjing Deng b334d40963c7a2f435f06d2c26c74e11_***_Xianghua Xie |
author |
Jingjing Deng Xianghua Xie |
author2 |
Jingjing Deng Xianghua Xie |
format |
Conference Paper/Proceeding/Abstract |
container_title |
2017 IEEE 12th International Conference on Automatic Face & Gesture Recognition |
container_start_page |
165 |
publishDate |
2017 |
institution |
Swansea University |
isbn |
978-1-5090-4024-7 978-1-5090-4023-0 |
doi_str_mv |
10.1109/FG.2017.29 |
publisher |
IEEE |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Mathematics and Computer Science - Computer Science{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Computer Science |
url |
http://csvision.swan.ac.uk/uploads/Site/Publication/jd17fg.pdf |
document_store_str |
1 |
active_str |
0 |
description |
We propose a nested CNN-cascade learning algorithm that adopts shallow neural network architectures that allow efficient and progressive elimination of negative hypothesis from easy to hard via self-learning discriminative representations from coarse to fine scales. The face detection problem is considered as solving three sub-problems: eliminating easy background with a simple but fast model, then localising the face region with a soft-cascade, followed by precise detection and localisation by verifying retained regions with a deeper and stronger model. |
published_date |
2017-06-29T03:39:18Z |
_version_ |
1763751764262125568 |
score |
11.035634 |