Journal article 869 views 270 downloads
Dysprosium-Doped Chalcogenide Master Oscillator Power Amplifier (MOPA) for Mid-IR Emission
Mario Christian Falconi,
Giuseppe Palma,
Florent Starecki,
Virginie Nazabal,
Johann Troles,
Jean-Luc Adam,
Stefano Taccheo ,
Maurizio Ferrari,
Francesco Prudenzano
Journal of Lightwave Technology, Volume: 35, Issue: 2, Pages: 265 - 273
Swansea University Author: Stefano Taccheo
-
PDF | Version of Record
Download (589.38KB)
DOI (Published version): 10.1109/JLT.2016.2632531
Abstract
The paper describes the design of a medium infrared fiber laser based on a dysprosium-doped chalcogenide glass Dy3+ : Ga5 Ge20Sb10S65. To obtain a high efficiency, the fiber laser is followed by an optical amplifier making use of residual pump power. The optimized optical source exploits a master os...
Published in: | Journal of Lightwave Technology |
---|---|
ISSN: | 0733-8724 1558-2213 |
Published: |
2017
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa32357 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
first_indexed |
2017-03-09T14:00:41Z |
---|---|
last_indexed |
2020-06-24T12:44:10Z |
id |
cronfa32357 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2020-06-24T12:42:06.9303164</datestamp><bib-version>v2</bib-version><id>32357</id><entry>2017-03-09</entry><title>Dysprosium-Doped Chalcogenide Master Oscillator Power Amplifier (MOPA) for Mid-IR Emission</title><swanseaauthors><author><sid>ab5f951bdf448ec045d42a35d95dc0bf</sid><ORCID>0000-0003-0578-0563</ORCID><firstname>Stefano</firstname><surname>Taccheo</surname><name>Stefano Taccheo</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2017-03-09</date><deptcode>MECH</deptcode><abstract>The paper describes the design of a medium infrared fiber laser based on a dysprosium-doped chalcogenide glass Dy3+ : Ga5 Ge20Sb10S65. To obtain a high efficiency, the fiber laser is followed by an optical amplifier making use of residual pump power. The optimized optical source exploits a master oscillator power amplifier (MOPA) configuration. The MOPA pump and signal wavelengths are 1709 and 4384 nm, respectively. Spectroscopic parameters measured on preliminary samples of chalcogenide glasses are taken into account to fulfill realistic simulations. The MOPA emission is maximized by applying a particle swarm optimization approach. For an input pump power of 3 W, an output power of 637 mW can be obtained for optical fiber losses close to 1 dB m-1. The optimized MOPA configuration allows a laser efficiency larger than 21%.</abstract><type>Journal Article</type><journal>Journal of Lightwave Technology</journal><volume>35</volume><journalNumber>2</journalNumber><paginationStart>265</paginationStart><paginationEnd>273</paginationEnd><publisher/><issnPrint>0733-8724</issnPrint><issnElectronic>1558-2213</issnElectronic><keywords>photonic crystal fibers (PCFs), Chalcogenide glass, dysprosium, electromagnetic analysis, laser, medium infrared, MOPA, optical fiber amplifiers</keywords><publishedDay>15</publishedDay><publishedMonth>1</publishedMonth><publishedYear>2017</publishedYear><publishedDate>2017-01-15</publishedDate><doi>10.1109/JLT.2016.2632531</doi><url/><notes/><college>COLLEGE NANME</college><department>Mechanical Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MECH</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2020-06-24T12:42:06.9303164</lastEdited><Created>2017-03-09T12:11:48.0276401</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Mechanical Engineering</level></path><authors><author><firstname>Mario Christian</firstname><surname>Falconi</surname><order>1</order></author><author><firstname>Giuseppe</firstname><surname>Palma</surname><order>2</order></author><author><firstname>Florent</firstname><surname>Starecki</surname><order>3</order></author><author><firstname>Virginie</firstname><surname>Nazabal</surname><order>4</order></author><author><firstname>Johann</firstname><surname>Troles</surname><order>5</order></author><author><firstname>Jean-Luc</firstname><surname>Adam</surname><order>6</order></author><author><firstname>Stefano</firstname><surname>Taccheo</surname><orcid>0000-0003-0578-0563</orcid><order>7</order></author><author><firstname>Maurizio</firstname><surname>Ferrari</surname><order>8</order></author><author><firstname>Francesco</firstname><surname>Prudenzano</surname><order>9</order></author></authors><documents><document><filename>0032357-27032017105606.pdf</filename><originalFilename>falconi2017.pdf</originalFilename><uploaded>2017-03-27T10:56:06.6470000</uploaded><type>Output</type><contentLength>580690</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><embargoDate>2017-03-27T00:00:00.0000000</embargoDate><copyrightCorrect>false</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807> |
spelling |
2020-06-24T12:42:06.9303164 v2 32357 2017-03-09 Dysprosium-Doped Chalcogenide Master Oscillator Power Amplifier (MOPA) for Mid-IR Emission ab5f951bdf448ec045d42a35d95dc0bf 0000-0003-0578-0563 Stefano Taccheo Stefano Taccheo true false 2017-03-09 MECH The paper describes the design of a medium infrared fiber laser based on a dysprosium-doped chalcogenide glass Dy3+ : Ga5 Ge20Sb10S65. To obtain a high efficiency, the fiber laser is followed by an optical amplifier making use of residual pump power. The optimized optical source exploits a master oscillator power amplifier (MOPA) configuration. The MOPA pump and signal wavelengths are 1709 and 4384 nm, respectively. Spectroscopic parameters measured on preliminary samples of chalcogenide glasses are taken into account to fulfill realistic simulations. The MOPA emission is maximized by applying a particle swarm optimization approach. For an input pump power of 3 W, an output power of 637 mW can be obtained for optical fiber losses close to 1 dB m-1. The optimized MOPA configuration allows a laser efficiency larger than 21%. Journal Article Journal of Lightwave Technology 35 2 265 273 0733-8724 1558-2213 photonic crystal fibers (PCFs), Chalcogenide glass, dysprosium, electromagnetic analysis, laser, medium infrared, MOPA, optical fiber amplifiers 15 1 2017 2017-01-15 10.1109/JLT.2016.2632531 COLLEGE NANME Mechanical Engineering COLLEGE CODE MECH Swansea University 2020-06-24T12:42:06.9303164 2017-03-09T12:11:48.0276401 Faculty of Science and Engineering School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Mechanical Engineering Mario Christian Falconi 1 Giuseppe Palma 2 Florent Starecki 3 Virginie Nazabal 4 Johann Troles 5 Jean-Luc Adam 6 Stefano Taccheo 0000-0003-0578-0563 7 Maurizio Ferrari 8 Francesco Prudenzano 9 0032357-27032017105606.pdf falconi2017.pdf 2017-03-27T10:56:06.6470000 Output 580690 application/pdf Version of Record true 2017-03-27T00:00:00.0000000 false eng |
title |
Dysprosium-Doped Chalcogenide Master Oscillator Power Amplifier (MOPA) for Mid-IR Emission |
spellingShingle |
Dysprosium-Doped Chalcogenide Master Oscillator Power Amplifier (MOPA) for Mid-IR Emission Stefano Taccheo |
title_short |
Dysprosium-Doped Chalcogenide Master Oscillator Power Amplifier (MOPA) for Mid-IR Emission |
title_full |
Dysprosium-Doped Chalcogenide Master Oscillator Power Amplifier (MOPA) for Mid-IR Emission |
title_fullStr |
Dysprosium-Doped Chalcogenide Master Oscillator Power Amplifier (MOPA) for Mid-IR Emission |
title_full_unstemmed |
Dysprosium-Doped Chalcogenide Master Oscillator Power Amplifier (MOPA) for Mid-IR Emission |
title_sort |
Dysprosium-Doped Chalcogenide Master Oscillator Power Amplifier (MOPA) for Mid-IR Emission |
author_id_str_mv |
ab5f951bdf448ec045d42a35d95dc0bf |
author_id_fullname_str_mv |
ab5f951bdf448ec045d42a35d95dc0bf_***_Stefano Taccheo |
author |
Stefano Taccheo |
author2 |
Mario Christian Falconi Giuseppe Palma Florent Starecki Virginie Nazabal Johann Troles Jean-Luc Adam Stefano Taccheo Maurizio Ferrari Francesco Prudenzano |
format |
Journal article |
container_title |
Journal of Lightwave Technology |
container_volume |
35 |
container_issue |
2 |
container_start_page |
265 |
publishDate |
2017 |
institution |
Swansea University |
issn |
0733-8724 1558-2213 |
doi_str_mv |
10.1109/JLT.2016.2632531 |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Mechanical Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Mechanical Engineering |
document_store_str |
1 |
active_str |
0 |
description |
The paper describes the design of a medium infrared fiber laser based on a dysprosium-doped chalcogenide glass Dy3+ : Ga5 Ge20Sb10S65. To obtain a high efficiency, the fiber laser is followed by an optical amplifier making use of residual pump power. The optimized optical source exploits a master oscillator power amplifier (MOPA) configuration. The MOPA pump and signal wavelengths are 1709 and 4384 nm, respectively. Spectroscopic parameters measured on preliminary samples of chalcogenide glasses are taken into account to fulfill realistic simulations. The MOPA emission is maximized by applying a particle swarm optimization approach. For an input pump power of 3 W, an output power of 637 mW can be obtained for optical fiber losses close to 1 dB m-1. The optimized MOPA configuration allows a laser efficiency larger than 21%. |
published_date |
2017-01-15T03:39:38Z |
_version_ |
1763751785851256832 |
score |
11.035655 |