No Cover Image

Journal article 514 views 73 downloads

Homogenization of porous piezoelectric materials / Germán Martínez-Ayuso; Michael Friswell; Sondipon Adhikari; Hamed Haddad Khodaparast; Harald Berger

International Journal of Solids and Structures, Volume: 113-114, Pages: 218 - 229

Swansea University Authors: Michael, Friswell, Sondipon, Adhikari, Hamed, Haddad Khodaparast

Abstract

This paper presents a homogenization study of porous piezoelectric materials through analytical and numerical analysis. Using two of the most well-known analytical methods for theoretical homogenization, the Mori-Tanaka and self-consistent schemes, the full set of material properties are obtained. T...

Full description

Published in: International Journal of Solids and Structures
ISSN: 0020-7683
Published: 2017
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa32494
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2017-03-17T20:02:14Z
last_indexed 2020-07-15T18:49:25Z
id cronfa32494
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2020-07-15T14:03:51.8782029</datestamp><bib-version>v2</bib-version><id>32494</id><entry>2017-03-17</entry><title>Homogenization of porous piezoelectric materials</title><swanseaauthors><author><sid>5894777b8f9c6e64bde3568d68078d40</sid><firstname>Michael</firstname><surname>Friswell</surname><name>Michael Friswell</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>4ea84d67c4e414f5ccbd7593a40f04d3</sid><ORCID>0000-0003-4181-3457</ORCID><firstname>Sondipon</firstname><surname>Adhikari</surname><name>Sondipon Adhikari</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>f207b17edda9c4c3ea074cbb7555efc1</sid><ORCID>0000-0002-3721-4980</ORCID><firstname>Hamed</firstname><surname>Haddad Khodaparast</surname><name>Hamed Haddad Khodaparast</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2017-03-17</date><deptcode>EEN</deptcode><abstract>This paper presents a homogenization study of porous piezoelectric materials through analytical and numerical analysis. Using two of the most well-known analytical methods for theoretical homogenization, the Mori-Tanaka and self-consistent schemes, the full set of material properties are obtained. These results are compared to two different theoretical bounds, the Halpin-Tsai and Hashin-Sthrikman bounds. A numerical model of a representative volume element is then developed using finite element analysis for different percentages of inclusions. Finally, the analytical and numerical results are compared and discussed; a good agreement between the analytical and numerical methods is shown.</abstract><type>Journal Article</type><journal>International Journal of Solids and Structures</journal><volume>113-114</volume><paginationStart>218</paginationStart><paginationEnd>229</paginationEnd><publisher/><issnPrint>0020-7683</issnPrint><keywords>Piezoelectricity; Porous; Homogenization; Numerical; Mori-Tanaka; Finite Element Method</keywords><publishedDay>31</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2017</publishedYear><publishedDate>2017-12-31</publishedDate><doi>10.1016/j.ijsolstr.2017.03.003</doi><url/><notes/><college>COLLEGE NANME</college><department>Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>EEN</DepartmentCode><institution>Swansea University</institution><lastEdited>2020-07-15T14:03:51.8782029</lastEdited><Created>2017-03-17T14:41:32.8516937</Created><path><level id="1">College of Engineering</level><level id="2">Engineering</level></path><authors><author><firstname>Germ&#xE1;n</firstname><surname>Mart&#xED;nez-Ayuso</surname><order>1</order></author><author><firstname>Michael</firstname><surname>Friswell</surname><order>2</order></author><author><firstname>Sondipon</firstname><surname>Adhikari</surname><orcid>0000-0003-4181-3457</orcid><order>3</order></author><author><firstname>Hamed Haddad</firstname><surname>Khodaparast</surname><order>4</order></author><author><firstname>Harald</firstname><surname>Berger</surname><order>5</order></author><author><firstname>Hamed</firstname><surname>Haddad Khodaparast</surname><orcid>0000-0002-3721-4980</orcid><order>6</order></author></authors><documents><document><filename>0032494-17032017144334.pdf</filename><originalFilename>martinez-ayuso2017.pdf</originalFilename><uploaded>2017-03-17T14:43:34.8600000</uploaded><type>Output</type><contentLength>1782561</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><action/><embargoDate>2018-03-16T00:00:00.0000000</embargoDate><copyrightCorrect>false</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807>
spelling 2020-07-15T14:03:51.8782029 v2 32494 2017-03-17 Homogenization of porous piezoelectric materials 5894777b8f9c6e64bde3568d68078d40 Michael Friswell Michael Friswell true false 4ea84d67c4e414f5ccbd7593a40f04d3 0000-0003-4181-3457 Sondipon Adhikari Sondipon Adhikari true false f207b17edda9c4c3ea074cbb7555efc1 0000-0002-3721-4980 Hamed Haddad Khodaparast Hamed Haddad Khodaparast true false 2017-03-17 EEN This paper presents a homogenization study of porous piezoelectric materials through analytical and numerical analysis. Using two of the most well-known analytical methods for theoretical homogenization, the Mori-Tanaka and self-consistent schemes, the full set of material properties are obtained. These results are compared to two different theoretical bounds, the Halpin-Tsai and Hashin-Sthrikman bounds. A numerical model of a representative volume element is then developed using finite element analysis for different percentages of inclusions. Finally, the analytical and numerical results are compared and discussed; a good agreement between the analytical and numerical methods is shown. Journal Article International Journal of Solids and Structures 113-114 218 229 0020-7683 Piezoelectricity; Porous; Homogenization; Numerical; Mori-Tanaka; Finite Element Method 31 12 2017 2017-12-31 10.1016/j.ijsolstr.2017.03.003 COLLEGE NANME Engineering COLLEGE CODE EEN Swansea University 2020-07-15T14:03:51.8782029 2017-03-17T14:41:32.8516937 College of Engineering Engineering Germán Martínez-Ayuso 1 Michael Friswell 2 Sondipon Adhikari 0000-0003-4181-3457 3 Hamed Haddad Khodaparast 4 Harald Berger 5 Hamed Haddad Khodaparast 0000-0002-3721-4980 6 0032494-17032017144334.pdf martinez-ayuso2017.pdf 2017-03-17T14:43:34.8600000 Output 1782561 application/pdf Accepted Manuscript true 2018-03-16T00:00:00.0000000 false eng
title Homogenization of porous piezoelectric materials
spellingShingle Homogenization of porous piezoelectric materials
Michael, Friswell
Sondipon, Adhikari
Hamed, Haddad Khodaparast
title_short Homogenization of porous piezoelectric materials
title_full Homogenization of porous piezoelectric materials
title_fullStr Homogenization of porous piezoelectric materials
title_full_unstemmed Homogenization of porous piezoelectric materials
title_sort Homogenization of porous piezoelectric materials
author_id_str_mv 5894777b8f9c6e64bde3568d68078d40
4ea84d67c4e414f5ccbd7593a40f04d3
f207b17edda9c4c3ea074cbb7555efc1
author_id_fullname_str_mv 5894777b8f9c6e64bde3568d68078d40_***_Michael, Friswell
4ea84d67c4e414f5ccbd7593a40f04d3_***_Sondipon, Adhikari
f207b17edda9c4c3ea074cbb7555efc1_***_Hamed, Haddad Khodaparast
author Michael, Friswell
Sondipon, Adhikari
Hamed, Haddad Khodaparast
author2 Germán Martínez-Ayuso
Michael Friswell
Sondipon Adhikari
Hamed Haddad Khodaparast
Harald Berger
Hamed Haddad Khodaparast
format Journal article
container_title International Journal of Solids and Structures
container_volume 113-114
container_start_page 218
publishDate 2017
institution Swansea University
issn 0020-7683
doi_str_mv 10.1016/j.ijsolstr.2017.03.003
college_str College of Engineering
hierarchytype
hierarchy_top_id collegeofengineering
hierarchy_top_title College of Engineering
hierarchy_parent_id collegeofengineering
hierarchy_parent_title College of Engineering
department_str Engineering{{{_:::_}}}College of Engineering{{{_:::_}}}Engineering
document_store_str 1
active_str 0
description This paper presents a homogenization study of porous piezoelectric materials through analytical and numerical analysis. Using two of the most well-known analytical methods for theoretical homogenization, the Mori-Tanaka and self-consistent schemes, the full set of material properties are obtained. These results are compared to two different theoretical bounds, the Halpin-Tsai and Hashin-Sthrikman bounds. A numerical model of a representative volume element is then developed using finite element analysis for different percentages of inclusions. Finally, the analytical and numerical results are compared and discussed; a good agreement between the analytical and numerical methods is shown.
published_date 2017-12-31T03:50:03Z
_version_ 1697526058601938944
score 10.790067