Journal article 598 views
Thermal Chemistry of Cp*W(NO)(CH2CMe3)(H)(L) Complexes (L = Lewis Base)
Inorganic Chemistry, Volume: 56, Issue: 1, Pages: 573 - 582
Swansea University Author: Russell Wakeham
Full text not available from this repository: check for access using links below.
DOI (Published version): 10.1021/acs.inorgchem.6b02431
Abstract
The complexes trans-Cp*W(NO)(CH2CMe3)(H)(L) (Cp* = η5-C5Me5) result from the treatment of Cp*W(NO)(CH2CMe3)2 in n-pentane with H2 (∼1 atm) in the presence of a Lewis base, L. The designation of a particular geometrical isomer as cis or trans indicates the relative positions of the alkyl and hydrido...
Published in: | Inorganic Chemistry |
---|---|
ISSN: | 0020-1669 1520-510X |
Published: |
American Chemical Society (ACS)
2017
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa32705 |
Abstract: |
The complexes trans-Cp*W(NO)(CH2CMe3)(H)(L) (Cp* = η5-C5Me5) result from the treatment of Cp*W(NO)(CH2CMe3)2 in n-pentane with H2 (∼1 atm) in the presence of a Lewis base, L. The designation of a particular geometrical isomer as cis or trans indicates the relative positions of the alkyl and hydrido ligands in the base of a four-legged piano-stool molecular structure. The thermal behavior of these complexes is markedly dependent on the nature of L. Some of them can be isolated at ambient temperatures [e.g., L = P(OMe)3, P(OPh)3, or P(OCH2)3CMe]. Others undergo reductive elimination of CMe4 via trans to cis isomerization to generate the 16e reactive intermediates Cp*W(NO)(L). These intermediates can intramolecularly activate a C–H bond of L to form 18e cis complexes that may convert to the thermodynamically more stable trans isomers [e.g., Cp*W(NO)(PPh3) initially forms cis-Cp*W(NO)(H)(κ2-PPh2C6H4) that upon being warmed in n-pentane at 80 °C isomerizes to trans-Cp*W(NO)(H)(κ2-PPh2C6H4)]. Alternatively, the Cp*W(NO)(L) intermediates can effect the intermolecular activation of a substrate R-H to form trans-Cp*W(NO)(R)(H)(L) complexes [e.g., L = P(OMe)3 or P(OCH2)3CMe; R-H = C6H6 or Me4Si] probably via their cis isomers. These latter activations are also accompanied by the formation of some Cp*W(NO)(L)2 disproportionation products. An added complication in the L = P(OMe)3 system is that thermolysis of trans-Cp*W(NO)(CH2CMe3)(H)(P(OMe)3) results in it undergoing an Arbuzov-like rearrangement and being converted mainly into [Cp*W(NO)(Me)(PO(OMe)2)]2, which exists as a mixture of two isomers. All new complexes have been characterized by conventional and spectroscopic methods, and the solid-state molecular structures of most of them have been established by single-crystal X-ray crystallographic analyses. |
---|---|
College: |
Faculty of Science and Engineering |
Issue: |
1 |
Start Page: |
573 |
End Page: |
582 |