No Cover Image

Journal article 456 views 94 downloads

Analysis of reported error in Monte Carlo rendered images / Mark, Jones

The Visual Computer, Volume: 33, Issue: 6-8, Pages: 705 - 713

Swansea University Author: Mark, Jones

  • 2017_MC_Error.pdf

    PDF | Accepted Manuscript

    Download (1.24MB)
  • 2017_MC_Errorv2.pdf

    PDF | Version of Record

    This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

    Download (2.26MB)

Abstract

Evaluating image quality in Monte Carlo rendered images is an important aspect of the rendering process as we often need to determine the relative quality between images computed using different algorithms and with varying amounts of computation. The use of a gold-standard, reference image, or groun...

Full description

Published in: The Visual Computer
ISSN: 0178-2789 1432-2315
Published: 2017
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa33015
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2017-04-22T19:00:53Z
last_indexed 2019-04-02T09:50:56Z
id cronfa33015
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2019-04-01T13:45:22.7953576</datestamp><bib-version>v2</bib-version><id>33015</id><entry>2017-04-22</entry><title>Analysis of reported error in Monte Carlo rendered images</title><swanseaauthors><author><sid>2e1030b6e14fc9debd5d5ae7cc335562</sid><ORCID>0000-0001-8991-1190</ORCID><firstname>Mark</firstname><surname>Jones</surname><name>Mark Jones</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2017-04-22</date><deptcode>SCS</deptcode><abstract>Evaluating image quality in Monte Carlo rendered images is an important aspect of the rendering process as we often need to determine the relative quality between images computed using different algorithms and with varying amounts of computation. The use of a gold-standard, reference image, or ground truth (GT) is a common method to provide a baseline with which to compare experimental results. We show that if not chosen carefully the reference image can skew results leading to significant misreporting of error. We present an analysis of error in Monte Carlo rendered images and discuss practices to avoid or be aware of when designing an experiment.</abstract><type>Journal Article</type><journal>The Visual Computer</journal><volume>33</volume><journalNumber>6-8</journalNumber><paginationStart>705</paginationStart><paginationEnd>713</paginationEnd><publisher/><issnPrint>0178-2789</issnPrint><issnElectronic>1432-2315</issnElectronic><keywords/><publishedDay>3</publishedDay><publishedMonth>6</publishedMonth><publishedYear>2017</publishedYear><publishedDate>2017-06-03</publishedDate><doi>10.1007/s00371-017-1384-7</doi><url/><notes/><college>COLLEGE NANME</college><department>Computer Science</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>SCS</DepartmentCode><institution>Swansea University</institution><sponsorsfunders>RCUK</sponsorsfunders><lastEdited>2019-04-01T13:45:22.7953576</lastEdited><Created>2017-04-22T13:52:41.0880562</Created><path><level id="1">College of Science</level><level id="2">Computer Science</level></path><authors><author><firstname>Joss</firstname><surname>Whittle</surname><order>1</order></author><author><firstname>Mark</firstname><surname>Jones</surname><orcid>0000-0001-8991-1190</orcid><order>2</order></author><author><firstname>Rafa&#x142;</firstname><surname>Mantiuk</surname><order>3</order></author></authors><documents><document><filename>0033015-22042017140012.pdf</filename><originalFilename>2017_MC_Error.pdf</originalFilename><uploaded>2017-04-22T14:00:12.2770000</uploaded><type>Output</type><contentLength>1264249</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><action/><embargoDate>2017-05-13T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect><language>eng</language></document><document><filename>0033015-13052017200622.pdf</filename><originalFilename>2017_MC_Errorv2.pdf</originalFilename><uploaded>2017-05-13T20:06:22.8700000</uploaded><type>Output</type><contentLength>2298627</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><action/><embargoDate>2017-05-13T00:00:00.0000000</embargoDate><documentNotes>This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents></rfc1807>
spelling 2019-04-01T13:45:22.7953576 v2 33015 2017-04-22 Analysis of reported error in Monte Carlo rendered images 2e1030b6e14fc9debd5d5ae7cc335562 0000-0001-8991-1190 Mark Jones Mark Jones true false 2017-04-22 SCS Evaluating image quality in Monte Carlo rendered images is an important aspect of the rendering process as we often need to determine the relative quality between images computed using different algorithms and with varying amounts of computation. The use of a gold-standard, reference image, or ground truth (GT) is a common method to provide a baseline with which to compare experimental results. We show that if not chosen carefully the reference image can skew results leading to significant misreporting of error. We present an analysis of error in Monte Carlo rendered images and discuss practices to avoid or be aware of when designing an experiment. Journal Article The Visual Computer 33 6-8 705 713 0178-2789 1432-2315 3 6 2017 2017-06-03 10.1007/s00371-017-1384-7 COLLEGE NANME Computer Science COLLEGE CODE SCS Swansea University RCUK 2019-04-01T13:45:22.7953576 2017-04-22T13:52:41.0880562 College of Science Computer Science Joss Whittle 1 Mark Jones 0000-0001-8991-1190 2 Rafał Mantiuk 3 0033015-22042017140012.pdf 2017_MC_Error.pdf 2017-04-22T14:00:12.2770000 Output 1264249 application/pdf Accepted Manuscript true 2017-05-13T00:00:00.0000000 true eng 0033015-13052017200622.pdf 2017_MC_Errorv2.pdf 2017-05-13T20:06:22.8700000 Output 2298627 application/pdf Version of Record true 2017-05-13T00:00:00.0000000 This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. true eng
title Analysis of reported error in Monte Carlo rendered images
spellingShingle Analysis of reported error in Monte Carlo rendered images
Mark, Jones
title_short Analysis of reported error in Monte Carlo rendered images
title_full Analysis of reported error in Monte Carlo rendered images
title_fullStr Analysis of reported error in Monte Carlo rendered images
title_full_unstemmed Analysis of reported error in Monte Carlo rendered images
title_sort Analysis of reported error in Monte Carlo rendered images
author_id_str_mv 2e1030b6e14fc9debd5d5ae7cc335562
author_id_fullname_str_mv 2e1030b6e14fc9debd5d5ae7cc335562_***_Mark, Jones
author Mark, Jones
format Journal article
container_title The Visual Computer
container_volume 33
container_issue 6-8
container_start_page 705
publishDate 2017
institution Swansea University
issn 0178-2789
1432-2315
doi_str_mv 10.1007/s00371-017-1384-7
college_str College of Science
hierarchytype
hierarchy_top_id collegeofscience
hierarchy_top_title College of Science
hierarchy_parent_id collegeofscience
hierarchy_parent_title College of Science
department_str Computer Science{{{_:::_}}}College of Science{{{_:::_}}}Computer Science
document_store_str 1
active_str 0
description Evaluating image quality in Monte Carlo rendered images is an important aspect of the rendering process as we often need to determine the relative quality between images computed using different algorithms and with varying amounts of computation. The use of a gold-standard, reference image, or ground truth (GT) is a common method to provide a baseline with which to compare experimental results. We show that if not chosen carefully the reference image can skew results leading to significant misreporting of error. We present an analysis of error in Monte Carlo rendered images and discuss practices to avoid or be aware of when designing an experiment.
published_date 2017-06-03T18:50:21Z
_version_ 1650747843496902656
score 10.868534