No Cover Image

Journal article 115 views

Band offsets and metal contacts in monolayer black phosphorus / Yuzheng Guo; John Robertson

Microelectronic Engineering, Volume: 178, Pages: 108 - 111

Swansea University Author: Guo, Yuzheng

Abstract

Black phosphorus(b-P) is a new member of 2D materials for field effect transistor(FET) application due to its atomic monolayer structure and high electron/hole mobility. The FET application requires the knowledge of b-P interface with high-k oxide and metal electrodes. In this work, the band offsets...

Full description

Published in: Microelectronic Engineering
ISSN: 0167-9317
Published: 2017
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa33643
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract: Black phosphorus(b-P) is a new member of 2D materials for field effect transistor(FET) application due to its atomic monolayer structure and high electron/hole mobility. The FET application requires the knowledge of b-P interface with high-k oxide and metal electrodes. In this work, the band offsets for gate insulators such as HfO2 on black phosphorus (b-P) are calculated using density functional theory(DFT). It is confirmed that HfO2 can provide good band alignment for both conduction and valence band. The Schottky barrier heights(SBH) are also calculated for the monolayer and bulk using the supercell model, for the perfect interface with no defects in the b-P. A strong p-type Fermi level pinning has been observed due to strong metal-P bonding.
Keywords: Band offset; Schottky barrier height; Black phosphorous; DFT; Metal contact; TFET
College: College of Engineering
Start Page: 108
End Page: 111