No Cover Image

Conference Paper/Proceeding/Abstract 1246 views 250 downloads

Learning feature extractors for AMD classification in OCT using convolutional neural networks

Dafydd Ravenscroft, Jingjing Deng, Xianghua Xie Orcid Logo, Louise Terry, Tom H. Margrain, Rachel V. North, Ashley Wood

Signal Processing Conference (EUSIPCO), 2017 25th European, Pages: 51 - 55

Swansea University Authors: Jingjing Deng, Xianghua Xie Orcid Logo

  • amd.pdf

    PDF | Accepted Manuscript

    © 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works

    Download (1.24MB)

Abstract

In this paper, we propose a two-step textural feature extraction method, which utilizes the feature learning ability of Convolutional Neural Networks (CNN) to extract a set of low level primitive filter kernels, and then generalizes the discriminative power by forming a histogram based descriptor.

Published in: Signal Processing Conference (EUSIPCO), 2017 25th European
ISSN: 2076-1465
Published: Kos, Greece Signal Processing Conference (EUSIPCO), 2017 25th European 2017
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa33957
first_indexed 2017-05-27T20:04:53Z
last_indexed 2018-07-10T13:17:40Z
id cronfa33957
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2018-07-09T15:18:58.9675906</datestamp><bib-version>v2</bib-version><id>33957</id><entry>2017-05-27</entry><title>Learning feature extractors for AMD classification in OCT using convolutional neural networks</title><swanseaauthors><author><sid>6f6d01d585363d6dc1622640bb4fcb3f</sid><firstname>Jingjing</firstname><surname>Deng</surname><name>Jingjing Deng</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>b334d40963c7a2f435f06d2c26c74e11</sid><ORCID>0000-0002-2701-8660</ORCID><firstname>Xianghua</firstname><surname>Xie</surname><name>Xianghua Xie</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2017-05-27</date><deptcode>MACS</deptcode><abstract>In this paper, we propose a two-step textural feature extraction method, which utilizes the feature learning ability of Convolutional Neural Networks (CNN) to extract a set of low level primitive filter kernels, and then generalizes the discriminative power by forming a histogram based descriptor.</abstract><type>Conference Paper/Proceeding/Abstract</type><journal>Signal Processing Conference (EUSIPCO), 2017 25th European</journal><paginationStart>51</paginationStart><paginationEnd>55</paginationEnd><publisher>Signal Processing Conference (EUSIPCO), 2017 25th European</publisher><placeOfPublication>Kos, Greece</placeOfPublication><issnElectronic>2076-1465</issnElectronic><keywords/><publishedDay>26</publishedDay><publishedMonth>10</publishedMonth><publishedYear>2017</publishedYear><publishedDate>2017-10-26</publishedDate><doi>10.23919/EUSIPCO.2017.8081167</doi><url>http://ieeexplore.ieee.org/document/8081167/</url><notes/><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2018-07-09T15:18:58.9675906</lastEdited><Created>2017-05-27T15:57:18.8393975</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Computer Science</level></path><authors><author><firstname>Dafydd</firstname><surname>Ravenscroft</surname><order>1</order></author><author><firstname>Jingjing</firstname><surname>Deng</surname><order>2</order></author><author><firstname>Xianghua</firstname><surname>Xie</surname><orcid>0000-0002-2701-8660</orcid><order>3</order></author><author><firstname>Louise</firstname><surname>Terry</surname><order>4</order></author><author><firstname>Tom H.</firstname><surname>Margrain</surname><order>5</order></author><author><firstname>Rachel V.</firstname><surname>North</surname><order>6</order></author><author><firstname>Ashley</firstname><surname>Wood</surname><order>7</order></author></authors><documents><document><filename>0033957-27052017160046.pdf</filename><originalFilename>amd.pdf</originalFilename><uploaded>2017-05-27T16:00:46.3070000</uploaded><type>Output</type><contentLength>1274336</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2017-12-27T00:00:00.0000000</embargoDate><documentNotes>&#xA9; 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807>
spelling 2018-07-09T15:18:58.9675906 v2 33957 2017-05-27 Learning feature extractors for AMD classification in OCT using convolutional neural networks 6f6d01d585363d6dc1622640bb4fcb3f Jingjing Deng Jingjing Deng true false b334d40963c7a2f435f06d2c26c74e11 0000-0002-2701-8660 Xianghua Xie Xianghua Xie true false 2017-05-27 MACS In this paper, we propose a two-step textural feature extraction method, which utilizes the feature learning ability of Convolutional Neural Networks (CNN) to extract a set of low level primitive filter kernels, and then generalizes the discriminative power by forming a histogram based descriptor. Conference Paper/Proceeding/Abstract Signal Processing Conference (EUSIPCO), 2017 25th European 51 55 Signal Processing Conference (EUSIPCO), 2017 25th European Kos, Greece 2076-1465 26 10 2017 2017-10-26 10.23919/EUSIPCO.2017.8081167 http://ieeexplore.ieee.org/document/8081167/ COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University 2018-07-09T15:18:58.9675906 2017-05-27T15:57:18.8393975 Faculty of Science and Engineering School of Mathematics and Computer Science - Computer Science Dafydd Ravenscroft 1 Jingjing Deng 2 Xianghua Xie 0000-0002-2701-8660 3 Louise Terry 4 Tom H. Margrain 5 Rachel V. North 6 Ashley Wood 7 0033957-27052017160046.pdf amd.pdf 2017-05-27T16:00:46.3070000 Output 1274336 application/pdf Accepted Manuscript true 2017-12-27T00:00:00.0000000 © 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works true eng
title Learning feature extractors for AMD classification in OCT using convolutional neural networks
spellingShingle Learning feature extractors for AMD classification in OCT using convolutional neural networks
Jingjing Deng
Xianghua Xie
title_short Learning feature extractors for AMD classification in OCT using convolutional neural networks
title_full Learning feature extractors for AMD classification in OCT using convolutional neural networks
title_fullStr Learning feature extractors for AMD classification in OCT using convolutional neural networks
title_full_unstemmed Learning feature extractors for AMD classification in OCT using convolutional neural networks
title_sort Learning feature extractors for AMD classification in OCT using convolutional neural networks
author_id_str_mv 6f6d01d585363d6dc1622640bb4fcb3f
b334d40963c7a2f435f06d2c26c74e11
author_id_fullname_str_mv 6f6d01d585363d6dc1622640bb4fcb3f_***_Jingjing Deng
b334d40963c7a2f435f06d2c26c74e11_***_Xianghua Xie
author Jingjing Deng
Xianghua Xie
author2 Dafydd Ravenscroft
Jingjing Deng
Xianghua Xie
Louise Terry
Tom H. Margrain
Rachel V. North
Ashley Wood
format Conference Paper/Proceeding/Abstract
container_title Signal Processing Conference (EUSIPCO), 2017 25th European
container_start_page 51
publishDate 2017
institution Swansea University
issn 2076-1465
doi_str_mv 10.23919/EUSIPCO.2017.8081167
publisher Signal Processing Conference (EUSIPCO), 2017 25th European
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Mathematics and Computer Science - Computer Science{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Computer Science
url http://ieeexplore.ieee.org/document/8081167/
document_store_str 1
active_str 0
description In this paper, we propose a two-step textural feature extraction method, which utilizes the feature learning ability of Convolutional Neural Networks (CNN) to extract a set of low level primitive filter kernels, and then generalizes the discriminative power by forming a histogram based descriptor.
published_date 2017-10-26T07:11:27Z
_version_ 1822022736703127552
score 11.085372