No Cover Image

Journal article 2880 views 413 downloads

Aerodynamic optimisation of a hypersonic reentry vehicle based on solution of the Boltzmann–BGK equation and evolutionary optimisation

Ben Evans Orcid Logo, Sean Walton Orcid Logo

Applied Mathematical Modelling, Volume: 52, Pages: 215 - 240

Swansea University Authors: Ben Evans Orcid Logo, Sean Walton Orcid Logo

  • 1-s2.0-S0307904X17304626-main.pdf

    PDF | Accepted Manuscript

    Released under the terms of a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND).

    Download (7.88MB)

Abstract

Over the past decade there has been a surge in the interest, both academic and commercial, in supersonic and hypersonic passenger transport. This paper outlines an original approach for solving the problem of optimal design and configuration of a space vehicle operating in rarefied hypersonic flow....

Full description

Published in: Applied Mathematical Modelling
ISSN: 0307-904X
Published: Elsevier BV 2017
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa34688
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2017-07-18T20:00:35Z
last_indexed 2020-06-27T18:45:20Z
id cronfa34688
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2020-06-27T16:39:28.8101212</datestamp><bib-version>v2</bib-version><id>34688</id><entry>2017-07-18</entry><title>Aerodynamic optimisation of a hypersonic reentry vehicle based on solution of the Boltzmann&#x2013;BGK equation and evolutionary optimisation</title><swanseaauthors><author><sid>3d273fecc8121fe6b53b8fe5281b9c97</sid><ORCID>0000-0003-3662-9583</ORCID><firstname>Ben</firstname><surname>Evans</surname><name>Ben Evans</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>0ec10d5e3ed3720a2d578417a894cf49</sid><ORCID>0000-0002-6451-265X</ORCID><firstname>Sean</firstname><surname>Walton</surname><name>Sean Walton</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2017-07-18</date><deptcode>AERO</deptcode><abstract>Over the past decade there has been a surge in the interest, both academic and commercial, in supersonic and hypersonic passenger transport. This paper outlines an original approach for solving the problem of optimal design and configuration of a space vehicle operating in rarefied hypersonic flow. The approach utilises a novel flow solver based on the solution of the Boltzmann&#x2013;BGK equation. For the first time this solver has been coupled to an evolutionary optimiser to assist in navigation of the unfamiliar hypersonic design space.The Boltzmann&#x2013;BGK solver is rigorously tested on a number of examples and is shown to handle rarefied gas dynamics examples across a range of length scales. The examples, presented here for the first time, include: a Riemann&#x2013;type gas expansion problem, drag prediction of a nano&#x2013;particle and supersonic flow across an aerofoil. Finally the solver is coupled to the evolutionary optimiser Modified Cuckoo Search approach. The coupled solver&#x2013;optimiser design tool is then used to explore the optimum configuration of the forebody of a generic space reentry vehicle under a range of design conditions.In all examples considered the flow solver produces valid solutions. It is also found that the evolutionary optimiser is successful in navigating the unfamiliar design space.</abstract><type>Journal Article</type><journal>Applied Mathematical Modelling</journal><volume>52</volume><paginationStart>215</paginationStart><paginationEnd>240</paginationEnd><publisher>Elsevier BV</publisher><issnPrint>0307-904X</issnPrint><keywords>Boltzmann, Modified Cuckoo Search, Evolutionary Optimisation, rarefied gas flow, hypersonic</keywords><publishedDay>1</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2017</publishedYear><publishedDate>2017-12-01</publishedDate><doi>10.1016/j.apm.2017.07.024</doi><url/><notes/><college>COLLEGE NANME</college><department>Aerospace Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>AERO</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2020-06-27T16:39:28.8101212</lastEdited><Created>2017-07-18T16:32:22.1312713</Created><authors><author><firstname>Ben</firstname><surname>Evans</surname><orcid>0000-0003-3662-9583</orcid><order>1</order></author><author><firstname>Sean</firstname><surname>Walton</surname><orcid>0000-0002-6451-265X</orcid><order>2</order></author></authors><documents><document><filename>0034688-09082017134726.pdf</filename><originalFilename>1-s2.0-S0307904X17304626-main.pdf</originalFilename><uploaded>2017-08-09T13:47:26.8470000</uploaded><type>Output</type><contentLength>8166440</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2018-07-29T00:00:00.0000000</embargoDate><documentNotes>Released under the terms of a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND).</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807>
spelling 2020-06-27T16:39:28.8101212 v2 34688 2017-07-18 Aerodynamic optimisation of a hypersonic reentry vehicle based on solution of the Boltzmann–BGK equation and evolutionary optimisation 3d273fecc8121fe6b53b8fe5281b9c97 0000-0003-3662-9583 Ben Evans Ben Evans true false 0ec10d5e3ed3720a2d578417a894cf49 0000-0002-6451-265X Sean Walton Sean Walton true false 2017-07-18 AERO Over the past decade there has been a surge in the interest, both academic and commercial, in supersonic and hypersonic passenger transport. This paper outlines an original approach for solving the problem of optimal design and configuration of a space vehicle operating in rarefied hypersonic flow. The approach utilises a novel flow solver based on the solution of the Boltzmann–BGK equation. For the first time this solver has been coupled to an evolutionary optimiser to assist in navigation of the unfamiliar hypersonic design space.The Boltzmann–BGK solver is rigorously tested on a number of examples and is shown to handle rarefied gas dynamics examples across a range of length scales. The examples, presented here for the first time, include: a Riemann–type gas expansion problem, drag prediction of a nano–particle and supersonic flow across an aerofoil. Finally the solver is coupled to the evolutionary optimiser Modified Cuckoo Search approach. The coupled solver–optimiser design tool is then used to explore the optimum configuration of the forebody of a generic space reentry vehicle under a range of design conditions.In all examples considered the flow solver produces valid solutions. It is also found that the evolutionary optimiser is successful in navigating the unfamiliar design space. Journal Article Applied Mathematical Modelling 52 215 240 Elsevier BV 0307-904X Boltzmann, Modified Cuckoo Search, Evolutionary Optimisation, rarefied gas flow, hypersonic 1 12 2017 2017-12-01 10.1016/j.apm.2017.07.024 COLLEGE NANME Aerospace Engineering COLLEGE CODE AERO Swansea University 2020-06-27T16:39:28.8101212 2017-07-18T16:32:22.1312713 Ben Evans 0000-0003-3662-9583 1 Sean Walton 0000-0002-6451-265X 2 0034688-09082017134726.pdf 1-s2.0-S0307904X17304626-main.pdf 2017-08-09T13:47:26.8470000 Output 8166440 application/pdf Accepted Manuscript true 2018-07-29T00:00:00.0000000 Released under the terms of a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND). true eng
title Aerodynamic optimisation of a hypersonic reentry vehicle based on solution of the Boltzmann–BGK equation and evolutionary optimisation
spellingShingle Aerodynamic optimisation of a hypersonic reentry vehicle based on solution of the Boltzmann–BGK equation and evolutionary optimisation
Ben Evans
Sean Walton
title_short Aerodynamic optimisation of a hypersonic reentry vehicle based on solution of the Boltzmann–BGK equation and evolutionary optimisation
title_full Aerodynamic optimisation of a hypersonic reentry vehicle based on solution of the Boltzmann–BGK equation and evolutionary optimisation
title_fullStr Aerodynamic optimisation of a hypersonic reentry vehicle based on solution of the Boltzmann–BGK equation and evolutionary optimisation
title_full_unstemmed Aerodynamic optimisation of a hypersonic reentry vehicle based on solution of the Boltzmann–BGK equation and evolutionary optimisation
title_sort Aerodynamic optimisation of a hypersonic reentry vehicle based on solution of the Boltzmann–BGK equation and evolutionary optimisation
author_id_str_mv 3d273fecc8121fe6b53b8fe5281b9c97
0ec10d5e3ed3720a2d578417a894cf49
author_id_fullname_str_mv 3d273fecc8121fe6b53b8fe5281b9c97_***_Ben Evans
0ec10d5e3ed3720a2d578417a894cf49_***_Sean Walton
author Ben Evans
Sean Walton
author2 Ben Evans
Sean Walton
format Journal article
container_title Applied Mathematical Modelling
container_volume 52
container_start_page 215
publishDate 2017
institution Swansea University
issn 0307-904X
doi_str_mv 10.1016/j.apm.2017.07.024
publisher Elsevier BV
document_store_str 1
active_str 0
description Over the past decade there has been a surge in the interest, both academic and commercial, in supersonic and hypersonic passenger transport. This paper outlines an original approach for solving the problem of optimal design and configuration of a space vehicle operating in rarefied hypersonic flow. The approach utilises a novel flow solver based on the solution of the Boltzmann–BGK equation. For the first time this solver has been coupled to an evolutionary optimiser to assist in navigation of the unfamiliar hypersonic design space.The Boltzmann–BGK solver is rigorously tested on a number of examples and is shown to handle rarefied gas dynamics examples across a range of length scales. The examples, presented here for the first time, include: a Riemann–type gas expansion problem, drag prediction of a nano–particle and supersonic flow across an aerofoil. Finally the solver is coupled to the evolutionary optimiser Modified Cuckoo Search approach. The coupled solver–optimiser design tool is then used to explore the optimum configuration of the forebody of a generic space reentry vehicle under a range of design conditions.In all examples considered the flow solver produces valid solutions. It is also found that the evolutionary optimiser is successful in navigating the unfamiliar design space.
published_date 2017-12-01T03:43:03Z
_version_ 1763752000264077312
score 11.012678