Journal article 988 views 374 downloads
Phase contrast cell detection using multilevel classification
International Journal for Numerical Methods in Biomedical Engineering, Start page: e2916
Swansea University Author: Xianghua Xie
-
PDF | Accepted Manuscript
Download (13.5MB)
DOI (Published version): 10.1002/cnm.2916
Abstract
In this paper, we propose a fully automated learning based approach for detecting cells in time-lapse phase contrast images. The proposed system combines two machine learning approaches to achieve bottom-up image segmentation.
Published in: | International Journal for Numerical Methods in Biomedical Engineering |
---|---|
ISSN: | 20407939 |
Published: |
2017
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa34727 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
first_indexed |
2017-07-22T20:25:36Z |
---|---|
last_indexed |
2018-02-09T05:25:08Z |
id |
cronfa34727 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2018-01-30T11:10:55.0038346</datestamp><bib-version>v2</bib-version><id>34727</id><entry>2017-07-22</entry><title>Phase contrast cell detection using multilevel classification</title><swanseaauthors><author><sid>b334d40963c7a2f435f06d2c26c74e11</sid><ORCID>0000-0002-2701-8660</ORCID><firstname>Xianghua</firstname><surname>Xie</surname><name>Xianghua Xie</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2017-07-22</date><deptcode>SCS</deptcode><abstract>In this paper, we propose a fully automated learning based approach for detecting cells in time-lapse phase contrast images. The proposed system combines two machine learning approaches to achieve bottom-up image segmentation.</abstract><type>Journal Article</type><journal>International Journal for Numerical Methods in Biomedical Engineering</journal><paginationStart>e2916</paginationStart><publisher/><issnPrint>20407939</issnPrint><keywords/><publishedDay>23</publishedDay><publishedMonth>8</publishedMonth><publishedYear>2017</publishedYear><publishedDate>2017-08-23</publishedDate><doi>10.1002/cnm.2916</doi><url/><notes/><college>COLLEGE NANME</college><department>Computer Science</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>SCS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2018-01-30T11:10:55.0038346</lastEdited><Created>2017-07-22T16:52:31.4691472</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Computer Science</level></path><authors><author><firstname>Ehab</firstname><surname>Essa</surname><order>1</order></author><author><firstname>Xianghua</firstname><surname>Xie</surname><orcid>0000-0002-2701-8660</orcid><order>2</order></author></authors><documents><document><filename>0034727-22072017165322.pdf</filename><originalFilename>eexx_IJNMBE_v6.pdf</originalFilename><uploaded>2017-07-22T16:53:22.8100000</uploaded><type>Output</type><contentLength>14170357</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2018-07-28T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807> |
spelling |
2018-01-30T11:10:55.0038346 v2 34727 2017-07-22 Phase contrast cell detection using multilevel classification b334d40963c7a2f435f06d2c26c74e11 0000-0002-2701-8660 Xianghua Xie Xianghua Xie true false 2017-07-22 SCS In this paper, we propose a fully automated learning based approach for detecting cells in time-lapse phase contrast images. The proposed system combines two machine learning approaches to achieve bottom-up image segmentation. Journal Article International Journal for Numerical Methods in Biomedical Engineering e2916 20407939 23 8 2017 2017-08-23 10.1002/cnm.2916 COLLEGE NANME Computer Science COLLEGE CODE SCS Swansea University 2018-01-30T11:10:55.0038346 2017-07-22T16:52:31.4691472 Faculty of Science and Engineering School of Mathematics and Computer Science - Computer Science Ehab Essa 1 Xianghua Xie 0000-0002-2701-8660 2 0034727-22072017165322.pdf eexx_IJNMBE_v6.pdf 2017-07-22T16:53:22.8100000 Output 14170357 application/pdf Accepted Manuscript true 2018-07-28T00:00:00.0000000 true eng |
title |
Phase contrast cell detection using multilevel classification |
spellingShingle |
Phase contrast cell detection using multilevel classification Xianghua Xie |
title_short |
Phase contrast cell detection using multilevel classification |
title_full |
Phase contrast cell detection using multilevel classification |
title_fullStr |
Phase contrast cell detection using multilevel classification |
title_full_unstemmed |
Phase contrast cell detection using multilevel classification |
title_sort |
Phase contrast cell detection using multilevel classification |
author_id_str_mv |
b334d40963c7a2f435f06d2c26c74e11 |
author_id_fullname_str_mv |
b334d40963c7a2f435f06d2c26c74e11_***_Xianghua Xie |
author |
Xianghua Xie |
author2 |
Ehab Essa Xianghua Xie |
format |
Journal article |
container_title |
International Journal for Numerical Methods in Biomedical Engineering |
container_start_page |
e2916 |
publishDate |
2017 |
institution |
Swansea University |
issn |
20407939 |
doi_str_mv |
10.1002/cnm.2916 |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Mathematics and Computer Science - Computer Science{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Computer Science |
document_store_str |
1 |
active_str |
0 |
description |
In this paper, we propose a fully automated learning based approach for detecting cells in time-lapse phase contrast images. The proposed system combines two machine learning approaches to achieve bottom-up image segmentation. |
published_date |
2017-08-23T03:43:05Z |
_version_ |
1763752002963111936 |
score |
11.036706 |