Journal article 1273 views 484 downloads
Phase contrast cell detection using multilevel classification
International Journal for Numerical Methods in Biomedical Engineering, Start page: e2916
Swansea University Author:
Xianghua Xie
-
PDF | Accepted Manuscript
Download (13.5MB)
DOI (Published version): 10.1002/cnm.2916
Abstract
In this paper, we propose a fully automated learning based approach for detecting cells in time-lapse phase contrast images. The proposed system combines two machine learning approaches to achieve bottom-up image segmentation.
| Published in: | International Journal for Numerical Methods in Biomedical Engineering |
|---|---|
| ISSN: | 20407939 |
| Published: |
2017
|
| Online Access: |
Check full text
|
| URI: | https://cronfa.swan.ac.uk/Record/cronfa34727 |
| first_indexed |
2017-07-22T20:25:36Z |
|---|---|
| last_indexed |
2018-02-09T05:25:08Z |
| id |
cronfa34727 |
| recordtype |
SURis |
| fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2018-01-30T11:10:55.0038346</datestamp><bib-version>v2</bib-version><id>34727</id><entry>2017-07-22</entry><title>Phase contrast cell detection using multilevel classification</title><swanseaauthors><author><sid>b334d40963c7a2f435f06d2c26c74e11</sid><ORCID>0000-0002-2701-8660</ORCID><firstname>Xianghua</firstname><surname>Xie</surname><name>Xianghua Xie</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2017-07-22</date><deptcode>MACS</deptcode><abstract>In this paper, we propose a fully automated learning based approach for detecting cells in time-lapse phase contrast images. The proposed system combines two machine learning approaches to achieve bottom-up image segmentation.</abstract><type>Journal Article</type><journal>International Journal for Numerical Methods in Biomedical Engineering</journal><paginationStart>e2916</paginationStart><publisher/><issnPrint>20407939</issnPrint><keywords/><publishedDay>23</publishedDay><publishedMonth>8</publishedMonth><publishedYear>2017</publishedYear><publishedDate>2017-08-23</publishedDate><doi>10.1002/cnm.2916</doi><url/><notes/><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2018-01-30T11:10:55.0038346</lastEdited><Created>2017-07-22T16:52:31.4691472</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Computer Science</level></path><authors><author><firstname>Ehab</firstname><surname>Essa</surname><order>1</order></author><author><firstname>Xianghua</firstname><surname>Xie</surname><orcid>0000-0002-2701-8660</orcid><order>2</order></author></authors><documents><document><filename>0034727-22072017165322.pdf</filename><originalFilename>eexx_IJNMBE_v6.pdf</originalFilename><uploaded>2017-07-22T16:53:22.8100000</uploaded><type>Output</type><contentLength>14170357</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2018-07-28T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807> |
| spelling |
2018-01-30T11:10:55.0038346 v2 34727 2017-07-22 Phase contrast cell detection using multilevel classification b334d40963c7a2f435f06d2c26c74e11 0000-0002-2701-8660 Xianghua Xie Xianghua Xie true false 2017-07-22 MACS In this paper, we propose a fully automated learning based approach for detecting cells in time-lapse phase contrast images. The proposed system combines two machine learning approaches to achieve bottom-up image segmentation. Journal Article International Journal for Numerical Methods in Biomedical Engineering e2916 20407939 23 8 2017 2017-08-23 10.1002/cnm.2916 COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University 2018-01-30T11:10:55.0038346 2017-07-22T16:52:31.4691472 Faculty of Science and Engineering School of Mathematics and Computer Science - Computer Science Ehab Essa 1 Xianghua Xie 0000-0002-2701-8660 2 0034727-22072017165322.pdf eexx_IJNMBE_v6.pdf 2017-07-22T16:53:22.8100000 Output 14170357 application/pdf Accepted Manuscript true 2018-07-28T00:00:00.0000000 true eng |
| title |
Phase contrast cell detection using multilevel classification |
| spellingShingle |
Phase contrast cell detection using multilevel classification Xianghua Xie |
| title_short |
Phase contrast cell detection using multilevel classification |
| title_full |
Phase contrast cell detection using multilevel classification |
| title_fullStr |
Phase contrast cell detection using multilevel classification |
| title_full_unstemmed |
Phase contrast cell detection using multilevel classification |
| title_sort |
Phase contrast cell detection using multilevel classification |
| author_id_str_mv |
b334d40963c7a2f435f06d2c26c74e11 |
| author_id_fullname_str_mv |
b334d40963c7a2f435f06d2c26c74e11_***_Xianghua Xie |
| author |
Xianghua Xie |
| author2 |
Ehab Essa Xianghua Xie |
| format |
Journal article |
| container_title |
International Journal for Numerical Methods in Biomedical Engineering |
| container_start_page |
e2916 |
| publishDate |
2017 |
| institution |
Swansea University |
| issn |
20407939 |
| doi_str_mv |
10.1002/cnm.2916 |
| college_str |
Faculty of Science and Engineering |
| hierarchytype |
|
| hierarchy_top_id |
facultyofscienceandengineering |
| hierarchy_top_title |
Faculty of Science and Engineering |
| hierarchy_parent_id |
facultyofscienceandengineering |
| hierarchy_parent_title |
Faculty of Science and Engineering |
| department_str |
School of Mathematics and Computer Science - Computer Science{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Computer Science |
| document_store_str |
1 |
| active_str |
0 |
| description |
In this paper, we propose a fully automated learning based approach for detecting cells in time-lapse phase contrast images. The proposed system combines two machine learning approaches to achieve bottom-up image segmentation. |
| published_date |
2017-08-23T04:04:09Z |
| _version_ |
1851454967003480064 |
| score |
11.089572 |

