No Cover Image

Journal article 988 views 374 downloads

Phase contrast cell detection using multilevel classification

Ehab Essa, Xianghua Xie Orcid Logo

International Journal for Numerical Methods in Biomedical Engineering, Start page: e2916

Swansea University Author: Xianghua Xie Orcid Logo

Check full text

DOI (Published version): 10.1002/cnm.2916

Abstract

In this paper, we propose a fully automated learning based approach for detecting cells in time-lapse phase contrast images. The proposed system combines two machine learning approaches to achieve bottom-up image segmentation.

Published in: International Journal for Numerical Methods in Biomedical Engineering
ISSN: 20407939
Published: 2017
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa34727
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2017-07-22T20:25:36Z
last_indexed 2018-02-09T05:25:08Z
id cronfa34727
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2018-01-30T11:10:55.0038346</datestamp><bib-version>v2</bib-version><id>34727</id><entry>2017-07-22</entry><title>Phase contrast cell detection using multilevel classification</title><swanseaauthors><author><sid>b334d40963c7a2f435f06d2c26c74e11</sid><ORCID>0000-0002-2701-8660</ORCID><firstname>Xianghua</firstname><surname>Xie</surname><name>Xianghua Xie</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2017-07-22</date><deptcode>SCS</deptcode><abstract>In this paper, we propose a fully automated learning based approach for detecting cells in time-lapse phase contrast images. The proposed system combines two machine learning approaches to achieve bottom-up image segmentation.</abstract><type>Journal Article</type><journal>International Journal for Numerical Methods in Biomedical Engineering</journal><paginationStart>e2916</paginationStart><publisher/><issnPrint>20407939</issnPrint><keywords/><publishedDay>23</publishedDay><publishedMonth>8</publishedMonth><publishedYear>2017</publishedYear><publishedDate>2017-08-23</publishedDate><doi>10.1002/cnm.2916</doi><url/><notes/><college>COLLEGE NANME</college><department>Computer Science</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>SCS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2018-01-30T11:10:55.0038346</lastEdited><Created>2017-07-22T16:52:31.4691472</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Computer Science</level></path><authors><author><firstname>Ehab</firstname><surname>Essa</surname><order>1</order></author><author><firstname>Xianghua</firstname><surname>Xie</surname><orcid>0000-0002-2701-8660</orcid><order>2</order></author></authors><documents><document><filename>0034727-22072017165322.pdf</filename><originalFilename>eexx_IJNMBE_v6.pdf</originalFilename><uploaded>2017-07-22T16:53:22.8100000</uploaded><type>Output</type><contentLength>14170357</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2018-07-28T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807>
spelling 2018-01-30T11:10:55.0038346 v2 34727 2017-07-22 Phase contrast cell detection using multilevel classification b334d40963c7a2f435f06d2c26c74e11 0000-0002-2701-8660 Xianghua Xie Xianghua Xie true false 2017-07-22 SCS In this paper, we propose a fully automated learning based approach for detecting cells in time-lapse phase contrast images. The proposed system combines two machine learning approaches to achieve bottom-up image segmentation. Journal Article International Journal for Numerical Methods in Biomedical Engineering e2916 20407939 23 8 2017 2017-08-23 10.1002/cnm.2916 COLLEGE NANME Computer Science COLLEGE CODE SCS Swansea University 2018-01-30T11:10:55.0038346 2017-07-22T16:52:31.4691472 Faculty of Science and Engineering School of Mathematics and Computer Science - Computer Science Ehab Essa 1 Xianghua Xie 0000-0002-2701-8660 2 0034727-22072017165322.pdf eexx_IJNMBE_v6.pdf 2017-07-22T16:53:22.8100000 Output 14170357 application/pdf Accepted Manuscript true 2018-07-28T00:00:00.0000000 true eng
title Phase contrast cell detection using multilevel classification
spellingShingle Phase contrast cell detection using multilevel classification
Xianghua Xie
title_short Phase contrast cell detection using multilevel classification
title_full Phase contrast cell detection using multilevel classification
title_fullStr Phase contrast cell detection using multilevel classification
title_full_unstemmed Phase contrast cell detection using multilevel classification
title_sort Phase contrast cell detection using multilevel classification
author_id_str_mv b334d40963c7a2f435f06d2c26c74e11
author_id_fullname_str_mv b334d40963c7a2f435f06d2c26c74e11_***_Xianghua Xie
author Xianghua Xie
author2 Ehab Essa
Xianghua Xie
format Journal article
container_title International Journal for Numerical Methods in Biomedical Engineering
container_start_page e2916
publishDate 2017
institution Swansea University
issn 20407939
doi_str_mv 10.1002/cnm.2916
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Mathematics and Computer Science - Computer Science{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Computer Science
document_store_str 1
active_str 0
description In this paper, we propose a fully automated learning based approach for detecting cells in time-lapse phase contrast images. The proposed system combines two machine learning approaches to achieve bottom-up image segmentation.
published_date 2017-08-23T03:43:05Z
_version_ 1763752002963111936
score 11.036706