No Cover Image

Journal article 474 views 87 downloads

Phase contrast cell detection using multilevel classification / Ehab Essa, Xianghua Xie

International Journal for Numerical Methods in Biomedical Engineering, Start page: e2916

Swansea University Author: Xianghua Xie

Check full text

DOI (Published version): 10.1002/cnm.2916

Abstract

In this paper, we propose a fully automated learning based approach for detecting cells in time-lapse phase contrast images. The proposed system combines two machine learning approaches to achieve bottom-up image segmentation.

Published in: International Journal for Numerical Methods in Biomedical Engineering
ISSN: 20407939
Published: 2017
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa34727
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2017-07-22T20:25:36Z
last_indexed 2018-02-09T05:25:08Z
id cronfa34727
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2018-01-30T11:10:55.0038346</datestamp><bib-version>v2</bib-version><id>34727</id><entry>2017-07-22</entry><title>Phase contrast cell detection using multilevel classification</title><swanseaauthors><author><sid>b334d40963c7a2f435f06d2c26c74e11</sid><ORCID>0000-0002-2701-8660</ORCID><firstname>Xianghua</firstname><surname>Xie</surname><name>Xianghua Xie</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2017-07-22</date><deptcode>SCS</deptcode><abstract>In this paper, we propose a fully automated learning based approach for detecting cells in time-lapse phase contrast images. The proposed system combines two machine learning approaches to achieve bottom-up image segmentation.</abstract><type>Journal Article</type><journal>International Journal for Numerical Methods in Biomedical Engineering</journal><paginationStart>e2916</paginationStart><publisher/><issnPrint>20407939</issnPrint><keywords/><publishedDay>23</publishedDay><publishedMonth>8</publishedMonth><publishedYear>2017</publishedYear><publishedDate>2017-08-23</publishedDate><doi>10.1002/cnm.2916</doi><url/><notes/><college>COLLEGE NANME</college><department>Computer Science</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>SCS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2018-01-30T11:10:55.0038346</lastEdited><Created>2017-07-22T16:52:31.4691472</Created><path><level id="1">College of Science</level><level id="2">Computer Science</level></path><authors><author><firstname>Ehab</firstname><surname>Essa</surname><order>1</order></author><author><firstname>Xianghua</firstname><surname>Xie</surname><orcid>0000-0002-2701-8660</orcid><order>2</order></author></authors><documents><document><filename>0034727-22072017165322.pdf</filename><originalFilename>eexx_IJNMBE_v6.pdf</originalFilename><uploaded>2017-07-22T16:53:22.8100000</uploaded><type>Output</type><contentLength>14170357</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><action/><embargoDate>2018-07-28T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807>
spelling 2018-01-30T11:10:55.0038346 v2 34727 2017-07-22 Phase contrast cell detection using multilevel classification b334d40963c7a2f435f06d2c26c74e11 0000-0002-2701-8660 Xianghua Xie Xianghua Xie true false 2017-07-22 SCS In this paper, we propose a fully automated learning based approach for detecting cells in time-lapse phase contrast images. The proposed system combines two machine learning approaches to achieve bottom-up image segmentation. Journal Article International Journal for Numerical Methods in Biomedical Engineering e2916 20407939 23 8 2017 2017-08-23 10.1002/cnm.2916 COLLEGE NANME Computer Science COLLEGE CODE SCS Swansea University 2018-01-30T11:10:55.0038346 2017-07-22T16:52:31.4691472 College of Science Computer Science Ehab Essa 1 Xianghua Xie 0000-0002-2701-8660 2 0034727-22072017165322.pdf eexx_IJNMBE_v6.pdf 2017-07-22T16:53:22.8100000 Output 14170357 application/pdf Accepted Manuscript true 2018-07-28T00:00:00.0000000 true eng
title Phase contrast cell detection using multilevel classification
spellingShingle Phase contrast cell detection using multilevel classification
Xianghua, Xie
title_short Phase contrast cell detection using multilevel classification
title_full Phase contrast cell detection using multilevel classification
title_fullStr Phase contrast cell detection using multilevel classification
title_full_unstemmed Phase contrast cell detection using multilevel classification
title_sort Phase contrast cell detection using multilevel classification
author_id_str_mv b334d40963c7a2f435f06d2c26c74e11
author_id_fullname_str_mv b334d40963c7a2f435f06d2c26c74e11_***_Xianghua, Xie
author Xianghua, Xie
author2 Ehab Essa
Xianghua Xie
format Journal article
container_title International Journal for Numerical Methods in Biomedical Engineering
container_start_page e2916
publishDate 2017
institution Swansea University
issn 20407939
doi_str_mv 10.1002/cnm.2916
college_str College of Science
hierarchytype
hierarchy_top_id collegeofscience
hierarchy_top_title College of Science
hierarchy_parent_id collegeofscience
hierarchy_parent_title College of Science
department_str Computer Science{{{_:::_}}}College of Science{{{_:::_}}}Computer Science
document_store_str 1
active_str 0
description In this paper, we propose a fully automated learning based approach for detecting cells in time-lapse phase contrast images. The proposed system combines two machine learning approaches to achieve bottom-up image segmentation.
published_date 2017-08-23T03:51:43Z
_version_ 1711840484269228032
score 10.823442