No Cover Image

Journal article 725 views 517 downloads

Nano–particle drag prediction at low Reynolds number using a direct Boltzmann–BGK solution approach

Ben Evans Orcid Logo

Journal of Computational Physics

Swansea University Author: Ben Evans Orcid Logo

Abstract

This paper outlines a novel approach for solution of the Boltzmann-BGK equation describing molecular gas dynamics applied to the challenging problem of drag prediction of a 2D circular nano–particle at transitional Knudsen number (0.0214) and low Reynolds number (0.25–2.0). The numerical scheme util...

Full description

Published in: Journal of Computational Physics
ISSN: 0021-9991
Published: 2017
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa35652
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2017-09-26T13:00:56Z
last_indexed 2020-07-01T18:49:29Z
id cronfa35652
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2020-07-01T16:22:24.6426267</datestamp><bib-version>v2</bib-version><id>35652</id><entry>2017-09-26</entry><title>Nano&#x2013;particle drag prediction at low Reynolds number using a direct Boltzmann&#x2013;BGK solution approach</title><swanseaauthors><author><sid>3d273fecc8121fe6b53b8fe5281b9c97</sid><ORCID>0000-0003-3662-9583</ORCID><firstname>Ben</firstname><surname>Evans</surname><name>Ben Evans</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2017-09-26</date><deptcode>AERO</deptcode><abstract>This paper outlines a novel approach for solution of the Boltzmann-BGK equation describing molecular gas dynamics applied to the challenging problem of drag prediction of a 2D circular nano&#x2013;particle at transitional Knudsen number (0.0214) and low Reynolds number (0.25&#x2013;2.0). The numerical scheme utilises a discontinuous-Galerkin finite element discretisation for the physical space representing the problem particle geometry and a high order discretisation for molecular velocity space describing the molecular distribution function. The paper shows that this method produces drag predictions that are aligned well with the range of drag predictions for this problem generated from the alternative numerical approaches of molecular dynamics codes and a modified continuum scheme. It also demonstrates the sensitivity of flow-field solutions and therefore drag predictions to the wall absorption parameter used to construct the solid wall boundary condition used in the solver algorithm. The results from this work has applications in fields ranging from diagnostics and therapeutics in medicine to the fields of semiconductors and xerographics.</abstract><type>Journal Article</type><journal>Journal of Computational Physics</journal><publisher/><issnPrint>0021-9991</issnPrint><keywords>nano&#x2013;particle; drag; Boltzmann; molecular dynamics; discontinuous Galerkin; finite element</keywords><publishedDay>31</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2017</publishedYear><publishedDate>2017-12-31</publishedDate><doi>10.1016/j.jcp.2017.09.038</doi><url/><notes/><college>COLLEGE NANME</college><department>Aerospace Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>AERO</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2020-07-01T16:22:24.6426267</lastEdited><Created>2017-09-26T11:36:16.1138903</Created><path><level id="1">College of Engineering</level><level id="2">Engineering</level></path><authors><author><firstname>Ben</firstname><surname>Evans</surname><orcid>0000-0003-3662-9583</orcid><order>1</order></author></authors><documents><document><filename>0035652-04102017103312.pdf</filename><originalFilename>evans2017(7).pdf</originalFilename><uploaded>2017-10-04T10:33:12.4270000</uploaded><type>Output</type><contentLength>5561474</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2018-09-29T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807>
spelling 2020-07-01T16:22:24.6426267 v2 35652 2017-09-26 Nano–particle drag prediction at low Reynolds number using a direct Boltzmann–BGK solution approach 3d273fecc8121fe6b53b8fe5281b9c97 0000-0003-3662-9583 Ben Evans Ben Evans true false 2017-09-26 AERO This paper outlines a novel approach for solution of the Boltzmann-BGK equation describing molecular gas dynamics applied to the challenging problem of drag prediction of a 2D circular nano–particle at transitional Knudsen number (0.0214) and low Reynolds number (0.25–2.0). The numerical scheme utilises a discontinuous-Galerkin finite element discretisation for the physical space representing the problem particle geometry and a high order discretisation for molecular velocity space describing the molecular distribution function. The paper shows that this method produces drag predictions that are aligned well with the range of drag predictions for this problem generated from the alternative numerical approaches of molecular dynamics codes and a modified continuum scheme. It also demonstrates the sensitivity of flow-field solutions and therefore drag predictions to the wall absorption parameter used to construct the solid wall boundary condition used in the solver algorithm. The results from this work has applications in fields ranging from diagnostics and therapeutics in medicine to the fields of semiconductors and xerographics. Journal Article Journal of Computational Physics 0021-9991 nano–particle; drag; Boltzmann; molecular dynamics; discontinuous Galerkin; finite element 31 12 2017 2017-12-31 10.1016/j.jcp.2017.09.038 COLLEGE NANME Aerospace Engineering COLLEGE CODE AERO Swansea University 2020-07-01T16:22:24.6426267 2017-09-26T11:36:16.1138903 College of Engineering Engineering Ben Evans 0000-0003-3662-9583 1 0035652-04102017103312.pdf evans2017(7).pdf 2017-10-04T10:33:12.4270000 Output 5561474 application/pdf Accepted Manuscript true 2018-09-29T00:00:00.0000000 true eng
title Nano–particle drag prediction at low Reynolds number using a direct Boltzmann–BGK solution approach
spellingShingle Nano–particle drag prediction at low Reynolds number using a direct Boltzmann–BGK solution approach
Ben Evans
title_short Nano–particle drag prediction at low Reynolds number using a direct Boltzmann–BGK solution approach
title_full Nano–particle drag prediction at low Reynolds number using a direct Boltzmann–BGK solution approach
title_fullStr Nano–particle drag prediction at low Reynolds number using a direct Boltzmann–BGK solution approach
title_full_unstemmed Nano–particle drag prediction at low Reynolds number using a direct Boltzmann–BGK solution approach
title_sort Nano–particle drag prediction at low Reynolds number using a direct Boltzmann–BGK solution approach
author_id_str_mv 3d273fecc8121fe6b53b8fe5281b9c97
author_id_fullname_str_mv 3d273fecc8121fe6b53b8fe5281b9c97_***_Ben Evans
author Ben Evans
author2 Ben Evans
format Journal article
container_title Journal of Computational Physics
publishDate 2017
institution Swansea University
issn 0021-9991
doi_str_mv 10.1016/j.jcp.2017.09.038
college_str College of Engineering
hierarchytype
hierarchy_top_id collegeofengineering
hierarchy_top_title College of Engineering
hierarchy_parent_id collegeofengineering
hierarchy_parent_title College of Engineering
department_str Engineering{{{_:::_}}}College of Engineering{{{_:::_}}}Engineering
document_store_str 1
active_str 0
description This paper outlines a novel approach for solution of the Boltzmann-BGK equation describing molecular gas dynamics applied to the challenging problem of drag prediction of a 2D circular nano–particle at transitional Knudsen number (0.0214) and low Reynolds number (0.25–2.0). The numerical scheme utilises a discontinuous-Galerkin finite element discretisation for the physical space representing the problem particle geometry and a high order discretisation for molecular velocity space describing the molecular distribution function. The paper shows that this method produces drag predictions that are aligned well with the range of drag predictions for this problem generated from the alternative numerical approaches of molecular dynamics codes and a modified continuum scheme. It also demonstrates the sensitivity of flow-field solutions and therefore drag predictions to the wall absorption parameter used to construct the solid wall boundary condition used in the solver algorithm. The results from this work has applications in fields ranging from diagnostics and therapeutics in medicine to the fields of semiconductors and xerographics.
published_date 2017-12-31T03:48:32Z
_version_ 1737026240596934656
score 10.8881445