Journal article 1111 views 361 downloads

Local quenches and quantum chaos from higher spin perturbations

Justin R. David, Surbhi Khetrapal, Prem Kumar Orcid Logo

Journal of High Energy Physics, Volume: 2017, Issue: 10

Swansea University Author: Prem Kumar Orcid Logo

  • 10.1007-JHEP10(2017)156.pdf

    PDF | Version of Record

    Released under the terms of a Creative Commons Attribution License (CC-BY).

    Download (565.77KB)

Abstract

We study local quenches in 1+1 dimensional conformal field theories at large-c by operators carrying higher spin charge. Viewing such states as solutions in Chern-Simons theory, representing infalling massive particles with spin-three charge in the BTZ back- ground, we use the Wilson line prescripti...

Full description

Published in: Journal of High Energy Physics
ISSN: 1029-8479
Published: Springer Science and Business Media LLC 2017
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa36198
Abstract: We study local quenches in 1+1 dimensional conformal field theories at large-c by operators carrying higher spin charge. Viewing such states as solutions in Chern-Simons theory, representing infalling massive particles with spin-three charge in the BTZ back- ground, we use the Wilson line prescription to compute the single-interval entanglement entropy (EE) and scrambling time following the quench. We find that the change in EE is finite (and real) only if the spin-three charge q is bounded by the energy of the perturbation E, as |q|/c < E^2/c^2. We show that the Wilson line/EE correlator deep in the quenched regime and its expansion for small quench widths overlaps with the Regge limit for chaos of the out-of-time-ordered correlator. We further find that the scrambling time for the two- sided mutual information between two intervals in the thermofield double state increases with increasing spin-three charge, diverging when the bound is saturated. For larger values of the charge, the scrambling time is shorter than for pure gravity and controlled by the spin-three Lyapunov exponent 4π/β. In a CFT with higher spin chemical potential, dual to a higher spin black hole, we find that the chemical potential must be bounded to ensure that the mutual information is a concave function of time and entanglement speed is less than the speed of light. In this case, a quench with zero higher spin charge yields the same Lyapunov exponent as pure Einstein gravity.
Keywords: Quantum chaos, AdS/CFT Correspondence, Conformal and W-symmetry, Higher spin gravity
College: Faculty of Science and Engineering
Issue: 10