Journal article 898 views 202 downloads
Assessing the Progress of Trapped-Ion Processors Towards Fault-Tolerant Quantum Computation
Physical Review X, Volume: 7, Issue: 4
Swansea University Author: Markus Muller
-
PDF | Version of Record
Released under the terms of a Creative Commons Attribution 4.0 International license (CC-BY).
Download (7.31MB)
DOI (Published version): 10.1103/physrevx.7.041061
Abstract
A quantitative assessment of the progress of small prototype quantum processors towards fault-tolerant quantum computation is a problem of current interest in experimental and theoretical quantum information science. We introduce a necessary and fair criterion for quantum error correction (QEC), whi...
Published in: | Physical Review X |
---|---|
ISSN: | 2160-3308 |
Published: |
American Physical Society (APS)
2017
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa36265 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
first_indexed |
2017-10-25T19:11:58Z |
---|---|
last_indexed |
2020-07-28T18:55:03Z |
id |
cronfa36265 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2020-07-28T16:56:36.7294390</datestamp><bib-version>v2</bib-version><id>36265</id><entry>2017-10-25</entry><title>Assessing the Progress of Trapped-Ion Processors Towards Fault-Tolerant Quantum Computation</title><swanseaauthors><author><sid>9b2ac559af27c967ece69db08b83762a</sid><firstname>Markus</firstname><surname>Muller</surname><name>Markus Muller</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2017-10-25</date><deptcode>FGSEN</deptcode><abstract>A quantitative assessment of the progress of small prototype quantum processors towards fault-tolerant quantum computation is a problem of current interest in experimental and theoretical quantum information science. We introduce a necessary and fair criterion for quantum error correction (QEC), which must be achieved in the development of these quantum processors before their sizes are sufficiently big to consider the well-known QEC threshold. We apply this criterion to benchmark the ongoing effort in implementing QEC with topological color codes using trapped-ion quantum processors and, more importantly, to guide the future hardware developments that shall be required in order to demonstrate beneficial QEC with small topological quantum codes. In doing so, we present a thorough description of a realistic trapped-ion toolbox for QEC, and a physically-motivated error model that goes beyond standard simplifications in the QEC literature. We focus on laser-based quantum gates realised in two-species trapped-ion crystals in high-optical aperture segmented traps. Our large-scale numerical analysis shows that, with the foreseen technological improvements hereby described, this platform is a very promising candidate for fault-tolerant quantum computation.</abstract><type>Journal Article</type><journal>Physical Review X</journal><volume>7</volume><journalNumber>4</journalNumber><publisher>American Physical Society (APS)</publisher><issnElectronic>2160-3308</issnElectronic><keywords>Quantum Computing, Quantum Fault-Tolerance, Trapped Ions, Quantum Error Correction</keywords><publishedDay>13</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2017</publishedYear><publishedDate>2017-12-13</publishedDate><doi>10.1103/physrevx.7.041061</doi><url/><notes/><college>COLLEGE NANME</college><department>Science and Engineering - Faculty</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>FGSEN</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2020-07-28T16:56:36.7294390</lastEdited><Created>2017-10-25T15:48:33.8881297</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Biosciences, Geography and Physics - Physics</level></path><authors><author><firstname>A.</firstname><surname>Bermudez</surname><order>1</order></author><author><firstname>X.</firstname><surname>Xu</surname><order>2</order></author><author><firstname>R.</firstname><surname>Nigmatullin</surname><order>3</order></author><author><firstname>J.</firstname><surname>O’Gorman</surname><order>4</order></author><author><firstname>V.</firstname><surname>Negnevitsky</surname><order>5</order></author><author><firstname>P.</firstname><surname>Schindler</surname><order>6</order></author><author><firstname>T.</firstname><surname>Monz</surname><order>7</order></author><author><firstname>U. G.</firstname><surname>Poschinger</surname><order>8</order></author><author><firstname>C.</firstname><surname>Hempel</surname><order>9</order></author><author><firstname>J.</firstname><surname>Home</surname><order>10</order></author><author><firstname>F.</firstname><surname>Schmidt-Kaler</surname><order>11</order></author><author><firstname>M.</firstname><surname>Biercuk</surname><order>12</order></author><author><firstname>R.</firstname><surname>Blatt</surname><order>13</order></author><author><firstname>S.</firstname><surname>Benjamin</surname><order>14</order></author><author><firstname>Markus</firstname><surname>Muller</surname><order>15</order></author></authors><documents><document><filename>0036265-09022018141438.pdf</filename><originalFilename>36265.pdf</originalFilename><uploaded>2018-02-09T14:14:38.2870000</uploaded><type>Output</type><contentLength>7756293</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>Released under the terms of a Creative Commons Attribution 4.0 International license (CC-BY).</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807> |
spelling |
2020-07-28T16:56:36.7294390 v2 36265 2017-10-25 Assessing the Progress of Trapped-Ion Processors Towards Fault-Tolerant Quantum Computation 9b2ac559af27c967ece69db08b83762a Markus Muller Markus Muller true false 2017-10-25 FGSEN A quantitative assessment of the progress of small prototype quantum processors towards fault-tolerant quantum computation is a problem of current interest in experimental and theoretical quantum information science. We introduce a necessary and fair criterion for quantum error correction (QEC), which must be achieved in the development of these quantum processors before their sizes are sufficiently big to consider the well-known QEC threshold. We apply this criterion to benchmark the ongoing effort in implementing QEC with topological color codes using trapped-ion quantum processors and, more importantly, to guide the future hardware developments that shall be required in order to demonstrate beneficial QEC with small topological quantum codes. In doing so, we present a thorough description of a realistic trapped-ion toolbox for QEC, and a physically-motivated error model that goes beyond standard simplifications in the QEC literature. We focus on laser-based quantum gates realised in two-species trapped-ion crystals in high-optical aperture segmented traps. Our large-scale numerical analysis shows that, with the foreseen technological improvements hereby described, this platform is a very promising candidate for fault-tolerant quantum computation. Journal Article Physical Review X 7 4 American Physical Society (APS) 2160-3308 Quantum Computing, Quantum Fault-Tolerance, Trapped Ions, Quantum Error Correction 13 12 2017 2017-12-13 10.1103/physrevx.7.041061 COLLEGE NANME Science and Engineering - Faculty COLLEGE CODE FGSEN Swansea University 2020-07-28T16:56:36.7294390 2017-10-25T15:48:33.8881297 Faculty of Science and Engineering School of Biosciences, Geography and Physics - Physics A. Bermudez 1 X. Xu 2 R. Nigmatullin 3 J. O’Gorman 4 V. Negnevitsky 5 P. Schindler 6 T. Monz 7 U. G. Poschinger 8 C. Hempel 9 J. Home 10 F. Schmidt-Kaler 11 M. Biercuk 12 R. Blatt 13 S. Benjamin 14 Markus Muller 15 0036265-09022018141438.pdf 36265.pdf 2018-02-09T14:14:38.2870000 Output 7756293 application/pdf Version of Record true Released under the terms of a Creative Commons Attribution 4.0 International license (CC-BY). true eng http://creativecommons.org/licenses/by/4.0/ |
title |
Assessing the Progress of Trapped-Ion Processors Towards Fault-Tolerant Quantum Computation |
spellingShingle |
Assessing the Progress of Trapped-Ion Processors Towards Fault-Tolerant Quantum Computation Markus Muller |
title_short |
Assessing the Progress of Trapped-Ion Processors Towards Fault-Tolerant Quantum Computation |
title_full |
Assessing the Progress of Trapped-Ion Processors Towards Fault-Tolerant Quantum Computation |
title_fullStr |
Assessing the Progress of Trapped-Ion Processors Towards Fault-Tolerant Quantum Computation |
title_full_unstemmed |
Assessing the Progress of Trapped-Ion Processors Towards Fault-Tolerant Quantum Computation |
title_sort |
Assessing the Progress of Trapped-Ion Processors Towards Fault-Tolerant Quantum Computation |
author_id_str_mv |
9b2ac559af27c967ece69db08b83762a |
author_id_fullname_str_mv |
9b2ac559af27c967ece69db08b83762a_***_Markus Muller |
author |
Markus Muller |
author2 |
A. Bermudez X. Xu R. Nigmatullin J. O’Gorman V. Negnevitsky P. Schindler T. Monz U. G. Poschinger C. Hempel J. Home F. Schmidt-Kaler M. Biercuk R. Blatt S. Benjamin Markus Muller |
format |
Journal article |
container_title |
Physical Review X |
container_volume |
7 |
container_issue |
4 |
publishDate |
2017 |
institution |
Swansea University |
issn |
2160-3308 |
doi_str_mv |
10.1103/physrevx.7.041061 |
publisher |
American Physical Society (APS) |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Biosciences, Geography and Physics - Physics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Biosciences, Geography and Physics - Physics |
document_store_str |
1 |
active_str |
0 |
description |
A quantitative assessment of the progress of small prototype quantum processors towards fault-tolerant quantum computation is a problem of current interest in experimental and theoretical quantum information science. We introduce a necessary and fair criterion for quantum error correction (QEC), which must be achieved in the development of these quantum processors before their sizes are sufficiently big to consider the well-known QEC threshold. We apply this criterion to benchmark the ongoing effort in implementing QEC with topological color codes using trapped-ion quantum processors and, more importantly, to guide the future hardware developments that shall be required in order to demonstrate beneficial QEC with small topological quantum codes. In doing so, we present a thorough description of a realistic trapped-ion toolbox for QEC, and a physically-motivated error model that goes beyond standard simplifications in the QEC literature. We focus on laser-based quantum gates realised in two-species trapped-ion crystals in high-optical aperture segmented traps. Our large-scale numerical analysis shows that, with the foreseen technological improvements hereby described, this platform is a very promising candidate for fault-tolerant quantum computation. |
published_date |
2017-12-13T03:45:17Z |
_version_ |
1763752141346832384 |
score |
11.036116 |